The Magneticum Simulations, from Galaxies to Galaxy Clusters

Klaus Dolag, Universitäts Sternwarte München

Remus, Saro, Steinborn, Teklu (USM), Hirschmann (AIP) , Petkova (C2PAP), Ragagni (LRZ) ...

Physics:

cooling+sfr+winds Springel & Hernquist 2002/2003 Metals cooling Wiersma et al. 2009 SNIa,SNII,AGB

Tornatore et al. 2003/2006

BH+AGN feedback

Springel & Di Matteo 2006 Fabjan et al. 2010 Hirschmann et al. 2014 Steinborn et al. 2015 **Thermal conduction** 1/20th Spitzer Dolag et al. 2004

Numerics: New Kernels: WC6 Dehnen et al. 2012 Low visc. scheme mr/hr (time dep. alpha) Dolag et al. 2005

uhr (high order grad.) Beck et al. 2015

Sub-resolution star-formation:

Star formation

Multi phase model (sub-scale)

Springel & Hernquist 2002

supernova mass fraction

$$\frac{\mathrm{d}\rho_{\star}}{\mathrm{d}t} = (1-\beta)\frac{\rho_{c}}{t_{\star}}$$

star formation timescale

Cloud evaporation

Growth of clouds

$$\frac{\mathrm{d}\rho_h}{\mathrm{d}t}\bigg|_{\mathrm{evap}} = A\beta \frac{\rho_c}{t_\star}$$

cloud evaporation parameter

cooling function

$$\frac{\mathrm{d}\rho_c}{\mathrm{d}t}\Big|_{\mathrm{TI}} = -\left.\frac{\mathrm{d}\rho_h}{\mathrm{d}t}\right|_{\mathrm{TI}} = \frac{\Lambda_{\mathrm{net}}(\rho_h, u_h)}{u_h - u_c}$$

Chemical enrichment:

Stellar evolution model (sub-scale)

Energy: SNIa, SNII Metals: SNIa, SNII, AGB winds H,He,C,Ca,O,N,Ne,Mg S,Si,Fe,Na,Al,Ar,Ni

Sub-resolution SMBH-formation:

Black Hole model (sub-scale)

Springel & Di Matteo 2006

Seeding

Constant seeding Seeding on m-sigma

Accretion on BH α-Bondi (Springl & Di Matteo 06) β-Bondi (Booth & Schaye 09) cold/hot (Bachmann et al. 14)

Feedback

Thermal (Springel & Di Matteo 06) Bubbles (Sijacki et al. 07) Mass dependent (Bachmann et al. 14)

Merging

Instant merging Based on velocity

Growth of Black Hole

 $\dot{M}_{\rm B} = lpha imes 4\pi R_{\rm B}^2 \,
ho \, c_s \simeq rac{4\pi lpha G^2 M_{ullet}^2 \,
ho}{(c_s^2 + v^2)^{3/2}}$

 $\dot{M}_{ullet} = \min(\dot{M}_{\mathrm{B}}, \dot{M}_{\mathrm{Edd}})$

Feedback by Black Holes $L_{
m bol}=0.1 imes\dot{M}_{ullet}\,c^2$ $\dot{E}_{
m feedback}=f imes L_{
m bol}$

efficiency

gas density

— sound speed

What can we do ...

Gas mass of halos

Cluster Cosmology and PLANCK...

Cluster Cosmology and PLANCK...

Simulations vs. observations

Black Hole properties

AGN distribution

MAGNETICUM

Conclusions (general)

1) ICM: Clusters well reproduced

pressure profiles, SZ powerspectrum, Cluster counts, no tension with CMB cosmology !

2) Galaxies: Dynamics well reproduced

spin, morphologies, colors, mass-size relation

3) Black holes: Observations well reproduced

mass functions, luminosity functions, correlation functions, AGN-host connections

4) Universality in outer halos

from galaxies to clusters, not directly related to morphology, reflecting recent dynamical activity

