

Large-scale clustering measurements of broad-line AGN at low redshifts

Mirko Krumpe (Leibniz Institute for Astrophysics Potsdam) mkrumpe@aip.de

Collaborators: Takamitsu Miyaji (UNAM-E, UCSD), Alison L. Coil (UCSD), Hector Aceves (UNAM-E), Bernd Husemann (ESO, AIP), Nikos Fanidakis (MPIA)

Galaxies cluster!

SDSS DR7

Miguel A. Aragon (JHU) Mark Subbarao (Adler P.) Alex Szalay (JHU)

Mirko Krumpe

What drives clustering?

1) Cosmology

Based on Zheng & Weinberg 2007, Weinberg 2002

Mirko Krumpe

XXIX IAU General Assembly, Hawaii

Z=28.62

National Center for Supercomputer Applications(Kravtsov & Klypin)

2) Galaxy distribution within DMHs

broad-line AGN samples

X-ray selected (ROSAT All-Sky Survey)

Krumpe et al. (2010)

- still the most sensitive all-sky (soft) X-ray survey (Voges et al. 1999)
- 6224 broad-line AGN with spectroscopic redshifts from SDSS (Anderson et al. 2003, 2007)

optically-selected (SDSS) Krumpe et al. (2012)

- at least one broad emission line (FWHM > 1000 km s⁻¹)
- M_i < -22 mag, i > ~15 mag

Mirko Krumpe

Clustering of luminous, broad-line, X-ray AGN

Mirko Krumpe

XXIX IAU General Assembly, Hawaii

X-ray vs. optical broad-line AGN

Origin of the L_X dependence of the broad-line AGN clustering strengths at low z *Krumpe et al. 2015, ApJ accepted, soon on astro-ph*

L_X dependence of the AGN clustering strength

Krumpe et al. (2010):

more X-ray luminous AGN cluster more strongly (higher M_{DMH}) than lower-luminosity counterparts

X-ray luminosity depends on physical properties: black hole mass (M_{BH}) and accretion rate relative to Eddington (L/L_{EDD})

explore physical origin of clustering dependence \Rightarrow caused by M_{BH} or/and L/L_{EDD}?

Mirko Krumpe

Determine M_{BH} from SDSS spectra

Mirko Krumpe

M_{BH} - L/L_{EDD} plane

Mirko Krumpe

Unbiased split distributions

break dependence on M_{BH} and L/L_{EDD}

Mirko Krumpe

Results

L_X dependence of clustering due to M_{BH} dependence (and not L/L_{EDD})

Mirko Krumpe

Is this result due to selection effects?

semi-analytic cosmological simulations (GALFORM) that include SMBH physics (Fanidakis et al. 2011, 2012, 2013)

1) all simulated AGN sample:

accreting SMBH with $L_{X,2-10 \text{ keV}} > 10^{41.5} \text{ erg s}^{-1}$

2) simulated RASS-selected AGN:

out of 1) only objects with:

- f_X high enough to be detected
- soft X-ray selected
- log (L/L_{EDD}) > -2

Mirko Krumpe

Comparison: simulations vs observations

only moderate changes due to selection effects

simulations and observations agree well

Mirko Krumpe

Consequences

at the luminosity and redshift range studied: (broad-line AGN; $L_X \sim 10^{43}$ - 10^{45} erg s⁻¹; 0.16<z<0.36)

no correlation with L/L_{EDD}:

higher densities of galaxies/larger DMH masses do NOT cause more accretion of matter

correlation with M_{BH}:

more massive accreting black holes reside in more massive DMHs

more consequences and details given in Krumpe et al. 2015, ApJ, accepted

Mirko Krumpe

Conclusions

• we accurately measure the clustering of X-ray and optically selected AGN at low redshift through CCFs (Krumpe et al. 2010, 2012)

Broad-line, luminous AGN (z=0.07-0.5):

 no statistically convincing difference between: X-ray, optically selected, radio-quiet AGN

• weak L_X dependence of the clustering strength

 L_X dependence of the clustering strength due to dependence on M_{BH} \Rightarrow more massive SMBH reside in more massive DMH \Rightarrow more luminous AGN do not require denser galaxy environments
(Krumpe et al. 2015, ApJ accepted, soon on astro-ph)

Mirko Krumpe