

Extreme physical conditions in luminous infrared galaxies

Chris Wilson McMaster University

Outline

- Arp 220: dense gas and complex kinematics
- Dense gas tracers in galaxies
- Trends along the merger sequence:
 - [12CO]/[13CO] abundance ratio
 - \circ α_{CO}
- See also Saito et al. 2015 (VV114), Johnson et al. 2015 (proto-SSC in Antennae), Xu et al. 2014, 2015 (CO J=6-5 in NGC 34 and NGC 1614)

Global properties of Arp 220

 \boldsymbol{J}_{upper}

Arp 220 in ¹²CO J=6-5 and continuum with ALMA

 ◆ Dust traces two high density (10⁴-10⁵ cm⁻³) nuclei (Wilson et al. 2014, ApJ)

Arp 220 in ¹²CO J=6-5 with ALMA

- Asymmetric line profiles modeled as rotating disk
 - \bullet τ_{line} ~ 4, τ_{dust} ~1
- foreground absorption needed to reproduce line asymmetry

(Rangwala et al. 2015, ApJ)

HCN J=4-3: Dense gas in Arp 220

Gas densities few x 10⁵ cm⁻³ Dynamical masses few x 10⁹ M_o

Scoville et al. 2015 ApJ

HCN, HCO+, HNC: Tracing dense gas in galaxies

Imanishi & Nakanishi 2013, 2014, AJ

- J=4-3 transitions: critical densities 10⁶-10⁷ cm⁻³
- HCN/HCO+ ratio tends to be larger in AGNdominated systems

Dense gas in the Antennae: into the heart of a merger

Schirm et al., 2015, ApJ, submitted

HCN/CO: higher dense gas fraction in two nuclei

Dense gas in the Antennae: into the heart of a merger

HCN/HCO+: changes in cosmic ray rate?

Schirm et al., 2015, ApJ, subm.

Uniform HNC/HCN ratio requires PDRs with mechanical heating

Molecular gas in LTRGs: trends along the merger sequence

¹²CO J=1-0 data from CARMA on HST image

¹²CO/¹³CO abundance ratio is high in LIRGs

- Four galaxies, range of merger properties
 - Arp 55, NGC 1614, VV114, NGC 2623
- RADEX + Bayesian likelihood modelling of low-J ¹²CO and ¹³CO lines
- Find high abundance ratios [¹²CO]/[¹³CO] ~ 100-200
 - except Arp 55 (earliest) which has ~30
- How to drive up this ratio (Casoli et al. 1992)
 - Inflow of low ¹³CO abundance gas from large galactic radii
 - massive stars produced in starburst enrich ISM in 12CO

Sliwa et al. 2013, 2014, and in prep

The CO-to-H₂ conversion factor is mostly ULIRG-like

- Can constrain CO-to- H_2 conversion factor, α_{CO} by comparing N(CO) (from RADEX models) to I(CO) (measured)
 - Must assume $x_{CO}=^{12}CO/H_2$ abundance ratio
- \bullet α_{CO} ~ 0.1 (3x10-4/x $_{CO}$) $M_o/(K~km/s~pc^2)$ in NGC 2623 and Arp 55
 - 0.5 for VV114
 - o 0.9-1.5 for NGC 1614
- For Arp 55 and NGC1614, also constrain $x_{CO} > 1-2 \times 10^{-5}$ using M_{dyn}

Sliwa et al. 2013, 2014, and in prep

Conclusions

- We see significant changes in the molecular gas in mergers compared to normal spirals
- Dense gas tracers are a powerful new tool to study the extreme ISM