Dwarf galaxy mergers

Annelies Cloet-Osselaer

Sven De Rijcke

Joeri Schroyen

Sander Valcke

t = 3.34

Why merging dwarf galaxies?

- ACDM cosmology: Hierarchical structure formation
- Simulations of isolated galaxies:(Valcke et al. 2008, Schroyen et al. 2010)
 - \rightarrow making simulations more cosmologically motivated by adding a merger history
- Merger trees:

Millenium run (Springel et al., 2005)

Simulations

Code: modified version of Gadget2 (Springel et al. 2005)

- + star formation
- + feedback
- + cooling (metallicity dependent radiative cooling (Sutherland and Dopita, 193) and cooling below 10^{4} K (Maio, 2007))

Initial conditions:

- \rightarrow Joining 2 isolated simulations
- \rightarrow Orbital parameters of galaxies \rightarrow Benson et al., 2005

Isolated simulations

Initial setup:

- spherical symmetric dark matter (DM) halo with NFW density profile
- homogeneous gas cloud

 stable in DM only simulations
 conversion from cusp to core in DM + gas simulations and in DM + gas + star formation simulations.

(Navarro, Frank & White, 1994)

Star formation criteria:

$$egin{array}{lll} ec
abla .ec v &\leqslant 0, \
ho_{
m g} &\geqslant
ho_{
m SF} \end{array}$$

Isolated simulations

Feedback efficiency $\boldsymbol{\epsilon}_{FB}$ = fraction of supernova energy that is absorbed by the ISM (SNIa, SNII and stellar winds)

Other poster: parameter survey to investigate the degeneracy

between $\boldsymbol{\epsilon}_{FB}$ and $\boldsymbol{\rho}_{SF.}$

$$\begin{array}{c} \rho_{\rm\scriptscriptstyle SF}=6\ {\rm cm}^{{\rm\scriptscriptstyle -3}}\ \rightarrow \epsilon_{\rm\scriptscriptstyle FB}=0.5\\ \rho_{\rm\scriptscriptstyle SF}=50\ {\rm cm}^{{\rm\scriptscriptstyle -3}}\ \rightarrow \epsilon_{\rm\scriptscriptstyle FB}=0.7 \end{array} \end{array}$$

Simulations are in agreement with the observed kinematical and photometric scaling relations

Top: half-light radius versus V-band magnitude **Right**: metallicity versus V-band magnitude

20

40

60

t = 2.80

10

1e-01

1e-02

1e-03

densitu

20

-60

-80

-100

-120

-20

100 000 gasparticles 100 000 DM particles \rightarrow total mass: 1.5 10⁹ M_{sol}

Increase of the star formation rate at the moment of the

Final galaxy is **triaxial** and is **rotating**

Small gas clumps:

We observe very small gas clumps which collapse and in which stars form. Supernova explosions redistribute the gas and create a bubble structure in the ISM.

Small gas clumps:

We observe very small gas clumps which collapse and in which stars form. Supernova explosions redistribute the gas and create a bubble structure in the ISM.

Small gas clumps:

We observe very small gas clumps which collapse and in which stars form. Supernova explosions redistribute the gas and create a bubble structure in the ISM.

 \rightarrow kinematic and photometric scaling relations \rightarrow slope of the $M_{_{star}}\text{-}M_{_{halo}}$ relation

Relation between the stellar and halo mass

Movie

Thank you for your attention. Questions?