AST (RON

Presence of gas in early-type galaxies as a signature of minor mergers

or the continuing assembly of early-type galaxies

Raffaella Morganti ASTRON (Netherlands Institute for Radio Astronomy & Kapteyn Institute, Groningen (NL)

ASTRON is part of the Netherlands Organisation for Scientific Research (NWO)

Netherlands Institute for Radio Astronomy

Minor merging as a driver of galaxy evolution, JENAM-11: 7 July 2011, St Petersburg

Why study gas in gas-poor galaxies?

Complex kinematical structure suggests complex evolution.

Saturday, 23 July 2011

Krajnovic+ 2011

Why study gas in gas-poor galaxies?

Other issues:

Many ETGs have small, young(ish) population of stars Density-morphology relation; Gas content \rightleftharpoons environment What is feeding the AGN?

> What is the role of gas in all this? What are the gas properties of ETGs?

Why study gas in gas-poor galaxies?

Other issues:

Many ETGs have small, young(ish) population of stars • Density-morphology relation; Gas content \rightleftharpoons environment ► What is feeding the AGN?

> What is the role of gas in all this? What are the gas properties of ETGs?

This talk: results from HI studies

Detecting and tracing HI in early-type galaxies

Different, complementary ways are used and planned for tackling this problem

MAIN issues:

it requires deep observations ➡ the features we are looking for (signs of minor merger and/or accretion) are there but are faint!

and

imaging capability IP crucial for the morphology and kinematics

and

data from other wavebands I correlation between different indicators

The role of the HI in ETGs:a brief history

- Different, complementary ways of tackling this problem:
 - single-dish datasets (Knapp, ALFALFA,...)
 - many galaxies, only global information, higher z
 - HI imaging (van Gorkom, Schiminovich, …)
 - fewer galaxies, detailed information on internal structure and kinematics

The past

< 2000: general perception was that ETGs are gas poor

- HI detection rates of ~10% mostly single dish work (e.g. Knapp), not sensitive
- Some suggestion that presence of HI is connected to merging (e.g. Knapp; van Gorkom, Schiminovich)

erican Astronomical Society • Provided by the NASA Astrophysics Data System

NGC 2865 Schiminovich+ 1995

Saturday, 23 July 2011

h work (e.g. Knapp), not sensitive ected to merging

FIG. 1a.—A morphological association between gas and stars is evident in the total H 1 overlay on an optical image of NGC 2865. Inner shells, diffuse outer shells, and "jet" are clearly visible in the optical image. The H 1 peaks to the outside of the southern and easern outer shells and to the outside of the northern loop. The H 17 southeast of the galaxy center corresponds to an edge-on dwarf companion, or shred. The H 1 contour levels are 1.9, 3.8, 7.6, and 11.4 × 10¹⁹ cm⁻². The optical image is from photoamplified AAT IIIa-J plates. The 73" × 40" VLA beam is shown in the lower right-hand comer of the image.

SCHIMINOVICH et al. (see 444, L78)

PLATE L2

The role of the HI in ETGs:a brief history

• Different, complementary ways of tackling this problem:

- single-dish datasets (Knapp, ALFALFA,...)
 - many galaxies, only global information, higher z
- HI imaging (van Gorkom, Schiminovich, ...)
 - fewer galaxies, detailed information on internal structure and kinematics

- HIPASS sample - 54 galaxies, ATCA, limited sensitivity $(10^{8-9} \text{ M}_{\odot})$ detection rate 5-10%. Oosterloo+ 2007

> LARGE REGULAR DISKS! A lot of HI!! Possibly the result of major mergers?

The role of the HI in ETGs:a brief history

- Different, complementary ways of tackling this problem:
 - single-dish datasets (Knapp, ALFALFA,...)
 - many galaxies, only global information, higher z
 - HI imaging (van Gorkom, Schiminovich, …)
 - fewer galaxies, detailed information on internal structure and kinematics
 - 54 galaxies, ATCA, limited sensitivity ($10^{8-9} M_{\odot}$) - HIPASS sample detection rate 5-10%. Oosterloo+ 2007
 - SAURON - 33 galaxies, WSRT, better sensitivity (10^{6-7} M $_{\odot}$). detection rate in field 60%. Morganti+ 2006; Oosterloo+ 2010 lots of complementary data - ATLAS3D - Superset of SAURON sample, slightly more distant 166 galaxies, WSRT, $(10^{6-7} \text{ M}_{\odot})$. Serra+ 2011 detection rate in field 45%. Deep follow up on subset ($t \ge 10$)

- WSRT observations of SAURON sample
 - 33 galaxies, 'representative sample', field and cluster
 - optical 2D spectroscopy of stars and ionised gas, + lots of other data (e.g. CO, FIR, UV)
 - all galaxies above $\delta > 10^{\circ}$ (33)
 - detection limit 10^{6} - 10^{7} M $_{\odot}$, $n_{\text{HI,lim}}$ 3-5 x 10^{19} cm⁻²

- Much higher detection rate: $\sim 60\%$ in field; $\sim 2\%$ in Virgo. For CO the field and cluster detection rates are about the same!
- Environmental effects stronger than for spirals. Older cluster population, more affected by ICM?

Morganti+ 2006; Oosterloo+ 2010

- WSRT observations of SAURON sample
 - 33 galaxies, 'representative sample', field and cluster
 - optical 2D spectroscopy of stars and ionised gas, + lots of other data (e.g. CO, FIR, UV)
 - all galaxies above $\delta > 10^{\circ}$ (33)
 - detection limit $(10^{6}-10^{7} \text{ M}_{\odot})$, $n_{\text{HI,lim}} 3-5 \times 10^{19} \text{ cm}^{-2}$

- Much higher detection rate: $\sim 60\%$ in field; $\sim 2\%$ in Virgo. For CO the field and cluster detection rates are about the same!
- Environmental effects stronger than for spirals. Older cluster population, more affected by ICM?

Morganti+ 2006; Oosterloo+ 2010

- WSRT observations of SAURON sample
 - 33 galaxies, 'representative sample', field and cluster
 - optical 2D spectroscopy of stars and ionised gas, + lots of other data (e.g. CO, FIR, UV)
 - all galaxies above $\delta > 10^{\circ}$ (33)
 - detection limit $(10^{6}-10^{7} \text{ M}_{\odot})$, $n_{\text{HI,lim}} 3-5 \times 10^{19} \text{ cm}^{-2}$

- Much higher detection rate: $\sim 60\%$ in field; $\sim 2\%$ in Virgo. For CO the field and cluster detection rates are about the same!
- Environmental effects stronger than for spirals. Older cluster population, more affected by ICM?

Morganti+ 2006; Oosterloo+ 2010

HI characteristics

- Diverse morphologies
- Again many disks, ~50% of detections
- But: recent or on-going accretion ubiquitous (also for gas disks).
 But of small amounts
- Some but no strong relation between HI disks and stellar dynamics
- Galaxies with large HI disks also show 'fast' stellar rotation

Morganti R., deZeeuw T., Oosterloo T. et al. (2006) Oosterloo et al. 2010

Accretion

- Accretion very common (>50%), smaller amounts than spirals, ≤ 0.1 M_☉ per yr.
 No major direct effect on galaxy
- See many cases of formation of small inner disk which is also seen in CO.
 Connection with KDC

NGC3489

Remnant tail pointing to inner disk

AST(RON

Small counterrotating CO disk in N3032, also seen in HI

Other examples

CO(1-0) data from Young et al. 2008
 Optical data from Sarzi et al. 2006
 HI from Morganti et al. 2006 and Oosterloo et al. 2010

Atlas^{3D} sample: Ellipticals and Lenticulars

- Problem with SAURON sample:
 - small; perhaps not as representative as one would like it to be
- Atlas^{3D} sample: volume limited sample: 260 galaxies < 42 Mpc brighter that M_{K} -21.5. Main selection criterion: no spiral arms or dust lanes (Sandage 1961, 1975), so include ellipticals and lenticulars. No colour selection Comprehensive study of ETGs; Large collaboration; optical (2D spec, imaging), CO, HI, UV, Xray, theory, simulations...
- Pls: Cappellari, Emsellem, Krajnovic, McDermid. (arXiv:1012.1551, 1102.3801 1102.4444, 1102.4633, 1102.4877, 1104.2326, 1104.3545, 1105.5654, 1105.4076,...)

NGC4733	NGC3457	N003757	NGC4649	NGC3073	NGC3379	NGC2679	NGC4382	NGC3412	NGC3384	NGC5839	NGC2950	NGC3605	N0C4754	NGC4340.	NGC4429	NGC3230	* NGC4684	NGC4255	UCC09519	NG06547	NGC3245	NGC5342	NGC454Ę
Е	E	50	. E	50	E	so	50	50	50	sò	50	E	so -	50	50	50	so	so	50	50	so	50	* so
NGC4278	NGC5173	NGC4283	NGC5485	NGC5500	P00058114	NGC3193	SCC4803	NGC2699	NQC5574	NOC2962	NGC4474	PGC044433	UG006062	NGC4425	NGC4377	NGC4281	N004111	NOC4350	+ NGC5308	NGC2974	NGC3156	NGC3530	NGC4638
E	E	E	50	E	so	E	50/a	E,	s0 .	so	50	50/a	so *	so	S0 -	50	50	50	50	E	so	50/a	50
NGC0770	NGC4249	NGC3607	. NGC4489	PGC035754	- NGC0474 -	NG04608	NGC4475	NGC4459	NGC4612	NGC3458	NGC4371	NGC5687	NGC5473	NGC4483	NGE3998	NGC3630	NGC2764	NGC4452	NGC0936	NGC0516	NGC1266	PGC042549	NGC 3400
												1.00								14.1			
E NGC4494	S0 NGC3613	50 NGC4477	E NGC4478	S0" NGC0502	50 NGC 5225	50 NGC4259	E NGC3641	\$0 +NGC6798	SO NGC0509	S0 NGC4264 -	50 NGC4268	\$0 NBC4753	S0	50 NGC2824	50 NGC3595	-S0 NGC4710	. SO NGC3626	-S0 'NGC3098	\$0 NGC1665	. SO	SD NGC3838	E NGC2685	So NGC6010
																							-
	Sec. 1	-			1.	-	Sec. S	-		50	50/2	60.5	- 60		60	20	en			50/4	50/2	50	soin
IC3631	NGC3694	N0C4643	· IC0719	NGC7465	UCC05408	NGC0821	NGC3182	NGC3377	NGC6014	NGC4150	NGC4526	NGC5507	NOC3945	NCC4078	IC0676	NGC5854	NGC4521	NGC4036	100560	NGC3648	NGC5611	NGC2577	NGC1121
			-																				
50	E	50	so	50	so	Ē	50/a *	E	\$0. ¹	· (+ so.	50	50	so	50	50	· 50	* 50/a	so	so -	50	SO	so	so *
UGC04551	NCC5538	NGC4694	NGC4434	NGC5770	NGC5355	NGC4621	NGC4596	NGC3610	NGC4461	NGC3248	NGC5838	NGC1248	NCC7457	NGC4503	NGC2592	NGC5379	IC1024	NGC4119	NGC4762	100598	NGC5493	000016060	NGC5475
							1.0											-	• \				
50 NCC 2768	E NOCTORIO	50 NOC4551	E .	50 NCC4697	50	E	50 NCC4267	E	SO	. SO	· 50 ·	SU	50	SO	5 NOT 1674	SO NOCHARE	50 NGC4374	- SO	SO NOCABAS	50/a	SO NODATION	SO NOCAGO	So NGC5557
HUGZYUU	Notes of St	14364351	Aucostra	Hotorogra		P00000712	100420	HUCHTHU	No. Cogo	No control 1	100702	HOCCODY	Macazra	NACHOOD	Housena	all	Noorona -	1000010	1004000	- Alexander		1003003	ALCOCOU.
E NGC3499	S0 PGC170172	NGC4203	SO NGC0448	E NGC5866	SD NGC7710	PGC071531	S0 PG0029321	S0 NGC4215	SD NGC3658	S0 NGC6149	Sb NGC7280	. E NGC7332	SO NGC2778	-E NGC4342	S0 NGC2695	E NGC4406	NGC4552	NGC3522	NGC5831	S0 NGC5813	E NGC5198	E NGC4458	E NGC5322
50/a	1 44	- 50	150	50	50		\$0/a	50	50	50	50	50	** .* <u>e</u>	- 50	50	E	E	N. T. E.	E.	e	E	· E	E
NGC4339	NGC4624	NGC0524	NGC0548	NGC4486A	NGC 3032	NGC2859	NGC2852	NGC5103	NGC2549	NGC6278	NGC4233	PGC051753	NGC4435	NGC4346	NGC4251	NGC3414	NGC4472	NGC4365	NGC4261	NGC4528	NGC5631	NGC7454	NGC4550
													1. 1. 1.									· • •	
. E	.50	* sō	50.	Sec. 6. 1	so	50	So -	50/0	so	so	. 50	- SO/a	so	50	50	50	1 E	C	i.	so	so	E	50
NGC4442	NGC3540	NGC1023	NGC2594	NGC4387	N005845	NCC0680	NGC4379	NGC4179	NGC2880	UCC06176.	NGC4623	NGC2698	NGC3489	NGC4578	NGC5422	NGC5576	NGC5481	NOC4191.	neco3960	PGC050395	NGC0661	PGC028887	NGC1222*
		-													1								
50	.E	50	50/0	Тв.	E	ε	50	50.	- 50	so	so	-50	50	so	so +	E E	E	50	E	50/a	- 6	50/a	50
NGC4270	PC0061468	NGC0525	PGC054452	NGC3665	NGC6017	UGC08876	NGC5869	NGC4324	NGC4570	NGC 5353	NGC5864	NGC3301	NGC7693	NGC5358	NGC4564	NGC4476	NGC4690	NGC3796	NGC1289				
														1									
50	• SD/o	SO	- S0	S0,	E	- S0/a	50	\$0	SO	SO	50	50/a	SO	50/0 .	E	50	50	50/0	50				

Data.....

A.	. •		. "		
					0
+	•		•	•	0
				1	
	•			-	
:0.	·Bra	1			and a state

A									449200 204090 +					
A sender					177				1980 04180 102000 1980 04180 102000 5-20 0 20 40 5-20 0 20 40	40-40-10 0 -40-40-10 0	2010-40-4404046_167_107_000 2014-0-4404-40-200_0_20	12-40-440-520 0 12:000 40 -400-40-10 0 20 4 40 -400-40-10 0 20 4 10 -400-40-10 0 0 10 10 10 10 10 10 10 10 10 10 10	40 - 4634040 00 10200 0 - 465-40-20 0 20	10 10 10 10 10 10 10 10 10 10 10 10 10 1
and how a		And And	hadden fallen						2010 10 20 3040 5414100 10 20 3040 40-20 8 20 40	20 -40-20 0 2 -40-20 0 0 -40-20 0 2 -40-20 0 0 -40-20 0 0 -40-20 0 0 -40-20 0 0 -40-20 0 -40-20 0 0 -40-20 0 0 -40-20 0 -40-2000 0 -40-2000000000000				
ALA	Math		man unter	indering shares		L <mark>ine l</mark>				30-40-200	•		10-10-10-20-0 10-10-10-10-10-10-10-10-10-10-10-10-10-1	Transfer Street
A 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	MAX	Building transmer			-20 0 20	-50 0 50	-50 0 50	-50 0 50 -	50 0 50 [']	20	A 40			
			A here							-40-20 0 -40-20 0 -40-20 0 -40-20 0 -40-20 0 -40-20 0 -40-20 0 -40-20 0		0 -40-20 0 20 4 -40-20 0 20 4 -40-20 0 20 4	-40-20 0 20 4	ALC: NAME OF TAXABLE AND DESCRIPTION OF TAXABLE AND DESCRIPANTE AND DESCRIPTION OF TAXABLE AND DESCRIP
														RECORD DISCOUNT DISCOUNT DISCOUNT
														Trool Groots French Scored Active Scored

AST(RON

•	1	1	4	۲	0	2 de la companya de l	Ş	9	۶		0	Ø	Ŷ	0	23	*
0	0	0	0	Ø		-		*	1	(C)	8	1	1		<u> </u>	0
1.65		4	0	0	1		sie -	8	<u> </u>	۰	٩	8	۲	1	ø	N
æ		19	**	1	<u>.</u>	8	۲	•	2	黨		0	0	9		ø
0		2	1	ur	2		1	1		*		0	۲	÷.	0	0
ø	9	۲	9	1	۰	۱	8	\$	1		ø	۲	0	6)		A
×.	10	1	0	6	104	0	1	4	0	9		1	۲		Ø	7
	2	۰		۲		1	0	*		0	۲	•	2	1		
0		1	٩	٠	0	۲	0		1	1	0		i.		۲	0
	0	8	1		۲	1	9	1	i	6	9	۱	8	ō,	R	iii
0		0	0	đ.	۲	N	0	.	1	1	۲			10 ,		6
1	1	1	Ø,	0	1	0	1	(¢			1	0	1	۲	6
	8		1	0	2	1		0	Ø	0		1	ø	()		1
	12	2	0	1		1	*	<u> </u>	1	•	۱		-		B	
2		S	6		œ	۲		*						2	2	-
۲	3	**	No.		1											

HI observations of Atlas^{3D} sample

- WSRT observations of those Atlas^{3D} galaxies with δ >10°
 - 12 h per galaxy. Detection limit 10^6 - 10^7 M $_{\odot}$, $n_{\text{HI,lim}}$ 3-5 x 10^{19} cm⁻² deep follow up on subset (10x12h)
 - Complements CO observations
 - large range in morphologies, many disks/rings (large and small), tails, clouds

Serra, Oosterloo, Morganti et al. 2011 almost ready!

Many regular disks/rings (50% of detections)

AST (RON

some are small, few kpc (and are also detected in CO)

irregular features at

AST(RON A continuum of HI morphologies sequence Serra et al. 2011

Sequences of HI-rich ETGs with increasingly less regular gas configurations

NGC 3945 (D)

Shows how the HI structures form and evolve: accretion

NGC 5422 (d)

HI distribution of size very large compared to the stellar body

NGC 7280 (u) NGC 2768 (u) • 2.1 (3.1) $\times 10^{19} \text{ cm}^{-1}$ $3.3 \times 10^{19} \mathrm{cm}^{-2}$ 0

HI distribution of size similar to the stellar body

Environment

- HI morphology depends on small-scale environment
- Related to density-morphology relation?

0

2.7 (3.0) ×10¹⁹ cm⁻²

low density

0

2.7 ×10¹⁹ cm⁻²

ŀО

Cappellari et al. paper 7. arXiv: 1104.3545

Do not see evidence of effect of intergalactic radiation field on HI disks

'Expected': below column densities of a several x 10^{19} cm⁻² HI disks should be ionised. Should see truncation of outer HI disk.

Do not observe such edges of HI disks. Outer HI disks consist of clumps of accreting material?

Very similar to outer regions of spirals

Deep HI observations

Evidence of accretion/interaction in all galaxies

7)

AST(RON

Spiral-like streaming motions, HI still settling. Timescale few x 10^9 yr (z ~ 0.3-0.5)

More signs of accretion

HI disk (90 kpc diameter) counterrotating to stars - co-rotating with ionised gas NGC 6798

Not your regular S0

HI disk (90 kpc diameter) counterrotating

AST (RON

HI velocity field

stellar velocity field

Many polar gas rings and 90-degree warps

Continuing accretion may have influence on stellar pop, but no strong trend with current HI content

Some galaxies are (very) gas rich, but have old stellar population

Exception: galaxies with small inner gas disk have young stars in centre

ASTRON

HI and radio continuum

- Many galaxies also detected in radio continuum (most at mJy level)
- ► Star formation or AGN?
- Use high-res radio data to look for AGN

Oosterloo et al. 2010

SFR from radic

Galaxies with central HI are more likely to be detected in continuum. Due to star formation, not AGN.

SFR from Spitzer

Follow radio-FIR relation

- Young stellar population detected in ~30% of radio galaxies: likely fraction of galaxies resulting from major mergers (Tadhunter et al. 2011)
- but sign of interaction/accretion in the majority of the galaxies (Ramos Almeida et al. 2011)
-but is the interaction really responsable for the triggering of the AGN?
- ► Two cases: NGC1167 and Centaurus A

NGC1167: many accretion of small satellites?

Disrupted satellite?

- Huge HI disk \rightarrow ~170 kpc with more than 10¹⁰ M_{\odot} of cold gas
- Very regular kinematics \rightarrow but disturbances in the outer parts and evidence for a disrupted satellite
- No "diffuse" accretion from small gas cloud, no HI halo
- No widespread starformation
- A large fraction of the HI disk was built up via minor mergers (and interactions) in the course of several Gyr
- Any relation between these mergers and the AGN activity?

AST(RON Struve, Oosterloo, Sancisi, Morganti, Emonts A&A 2010

B2 0258+35: recurrent activity and large reservoir of gas

Struve, Sancisi, Oosterloo, Morganti 2010 Shulevski in prep.

 Recurrent radio emission => young radio source (10⁶ yr) plus a large structure possible left over of previous phase of activity (at least 10⁸ yr)

AST(RON

• What is the trigger of these different phases of activity? Same minor mergers likely forming the HI disk?

• No particular features in the HI distribution: cannot have been a large event

• Study of the central HI (absorption) in progress

HI in Centaurus A: latest news

Struve, Oosterloo & Morganti 2010

 Regular kinematics inside 5 kpc Asymmetries and filaments at larger radius No need for non-circular orbits between <5 kpc Reproduces H I kinematics & shape dust disk (and stellar ring)

• $M_{HI}/L_B = 0.01$, so H I disk might well be the result of accretion of

Saturday, 23 July 2011

Modelling of the HI

llar ring) Accretion of

Merger/accretion and activity

- Difficult to reconcile time scales?
- ► Age merger few x 10⁸ yr (consistent with other indicators, e.g. warp structure, stars associated with the young blue tidal stream → 300 Myr, Peng et al. 2002)
- Too old for triggering recent AGN activity? 10⁶ yr inner lobe (Croston et al.), >10⁷ yr outer lobes
- Connected to previous episode of AGN activity?
- Merger actually disrupted the plasma flow (Saxton, Sutherland, Bicknell 2001)?

The delay would represent the time to recover from this!?

APoD 13 April 2011 Centaurus A - 1.4GHz ATCA Feain et al.

oung stars outer filamen inner filamen Optical image from D. Malin

Summary

- ▶ ~50% of field ETGs have HI (detection limit 10^{6} - 10^{7} M_☉); only few % of 'cluster' ETGs have HI. HI mass function is flat; HI has low column density. Environment very important
- Diverse HI characteristics. 50% have HI in regular HI disks of low column density. Lenticulars more often have HI disks, but exceptions exists
- Field: accretions very common, but of small amounts, $\leq 0.1 \, \text{M}_{\odot}$ per yr. Only subtle effects on galaxy, only after long time. Do see formation of inner disks and KDCs;
- No strong relation between HI and stellar pop. Some galaxies are very HI rich but no young stars. Exception: small inner disks .
- Most cold ISM in centre is molecular (10:1)
- Galaxies with central HI are more likely to be detected in radio continuum. Due to star formation, no connection with AGN
- relation to AGN?

Next step: ASKAP, Apertif, MeerKat, EVLA - 10,000++ galaxies not only local Universe

2014+