Non-equilibrium chemistry in the cold diffuse interstellar medium

Falgarone E. LERMA/LRA, ENS & Observatoire de Paris

with the collaboration of
Hily-Blant P. & Pety J. (IRAM, Grenoble, France)
Pineau des Forêts G. (IAS, Orsay, France)
Phillips T.G. & Pearson J. (CSO and JPL, Pasadena, USA)
Schilke P. (MPIfR, Bonn, Germany)

• A longstanding problem: how to incorporate C and O in the chemistry of diffuse clouds?

- Where complex physics meets stiff chemistry: outlines of a model
- The guidance of observations:
 - towards high spectral resolution observations of $^{13}CH^+(1-0)$

- the location of large HCO $^+$ abundances in diffuse molecular gas

Hunt for molecules, IAP, September 2005

Warm glitters in the cold diffuse ISM

• Large abundances of molecules which cannot form in cold gas are observed in the CNM:

CH⁺: C⁺ + H₂ \rightarrow CH⁺ + H ($\Delta E/k = 4640$ K)

e.g. Crane et al. 1995; Gredel 1997

HCO⁺: a daughter molecule of CH⁺ via CH₃⁺ + O \rightarrow HCO⁺ + H₂

Liszt & Lucas 2000; Falgarone et al. 2005 submitted

 H_2O and $OH: O + H_2 \rightarrow OH + H (\Delta E/k = 2980K)$

Neufeld et al. 2002, Plume et al. 2004

• large rotational excitation of H_2 in the diffuse medium, not ascribed to UV photons

FUSE and ISO-SWS data

e.g. Gry et al. 2002, Lacour et al. 2005, Falgarone et al. 2005

Formation energy required >> available thermal energy

Reservoirs:

- non-thermal turbulent and magnetic energy, $\sim 30 \times$ thermal on average
- \bullet H_2 formation energy, a fraction of 4.7 eV

First detection of ¹³CH⁺(1-0)

Laboratory measurement of ¹²CH⁺(1-0) ν =835.079(1) GHz Pearson 2005 Predicted ¹³CH⁺(1-0) ν =830.131 GHz, mass scaling If absorption line originates in the cold HI (self-absorption dip) ν = 830.132(3) GHz

Falgarone, Phillips & Pearson 2005 submitted

Comparison with results from absorption lines in the visible

Crane et al. 1995, Gredel 1997

Assumed $[^{12}CH^+/^{13}CH^+]=40$

Visible and submm: similar sensitivities, Submm line detections: high spectral resolution and possible detections in emission (dust FIR excitation in diffuse gas)

A framework for non-equilibrium chemistry

Heating and triggering of warm chemistry within **only a few 100 yr** Joulain et al. 1998

After vortex blow-up, isobaric thermal and chemical relaxation

UV shielding: $A_v = 0.2$ and 1 mag Steady-state HCO⁺ abundances 10^{-10} to 10^{-12} Warm chemistry signatures persist over several 10^3 yr.

Falgarone, Pineau des Forêts, Hily-Blant & Schilke, submitted

Turbulent environment of a low mass dense core

flare), size 1.5×1.2 pc

8000 spectra, resolution 22 arcsec, 0.015 pc, spectral resolution < 0.1 km/s

The regions of largest velocity shear (CVIs)

Hily-Blant, Falgarone, Pety 2005

Characteristics of the regions of largest CVIs

- \bullet network of filaments, thickness \sim 0.05 pc
- not density maxima but associated with lower density, warmer gas
- substructure down to 700 AU
- largest shear $\sim 200~{\rm km~s^{-1}~pc^{-1}},$ or timescale $\sim 10^3~{\rm yr}$
- HCO⁺ orders of magnitude above steady-state values

IRAM-30m weak HCO⁺(1-0) emission lines

HCO⁺(J=1-0) observations confronted to models

Summary

- Source of non-thermal trigger of the warm chemistry in the CNM still elusive: opening of possible ground based $^{13}CH^+(1-0)$ observations

- If driven by intermittent dissipation of its turbulence:
- a few 10^{-2} of warm gas are sufficient to reproduce the observables
- possible sites of the warm chemistry: the locus of largest velocity shears
- = network of narrow filaments of thickness $\sim 0.05~{\rm pc}$
- large velocity shear observed at 700 AU scale (3 mpc)
- warm chemistry signatures survive a few 10³ yr after the end of the dissipation burst
- powerful tracers of hidden masses of cold gas (H2EX project)

Tentative detection of $CH^+(1-0)$ in the Cloverleaf quasar

Average column density in the CSO beam: $\overline{N}(CH^+) = 4 \times 10^{12} \text{ cm}^{-2}$ for FIR $u_{\nu} = 10^3 \times u_{\nu}(MR)$ Estimated gas mass traced: ~ 10^{11} M_{\odot} for $X(CH^+) = 4 \times 10^{-9}$ Line shifted by 400 km s⁻¹ from the CO lines

Falgarone, Phillips, Yoshida, Cernicharo, Black, Pearson in prep.

FIR image of the Polaris Flare

Reprocessed IRAS maps: Miville-Deschênes & Lagache (2005) $\sim 10^{\circ} \times 10^{\circ}$ or 20 pc, 100 μ m red, 60 μ m green 12-25 μ m blue