

Fenêtres ouvertes par ALMA Françoise Combes Observatoire de Paris PNG, 1er Avril 2008

ALMA et les galaxies

 Premières galaxies z> 5 sortie de l'âge sombre
 Histoire de la formation d'étoiles
 Matière noire des galaxies (évolution)
 SZ pour détecter les amas à tous z
 Exploration des systèmes d'absorption
 + galaxies proches, milieu interstellaire, etc..

Capacités d'ALMA

→ 50 x 12m, bases de 200m à 14km, 3mm à 0.3mm (facteur ~6 en surface par rapport à IRAM)
→ 4 Bandes de fréquence au début
84-116 GHz, 211-275 GHz, 275-370 GHz, 602-720 GHz
Bande passante de 8GHz/polar

Résolution spatiale, jusqu'à 10mas, Résolution spectrale jusqu'à R=10⁸ Dynamique de 128x128 à 8192x8192 pixels

Petit Champ: de 1arcmin (3mm) à 6 arsec (0.3mm) Possibilité de mosaïques

Early Science? En question En 2012-3: Full Operation

Intérêt du domaine mm/submm

Correction K négative: exemple de Arp 220

Galaxies à grand redshift

→Pour les galaxies à grand z, les basses fréquences seront privilégiées
→A 3mm (115GHz), champ de 1 arcmin x 1 arcmin Le plus courant 300x 300 = 90 000 pixels/spectres (idem pour PdB IRAM)

Bande passante 2x 8GHz ~ 16%, ou ~50 000km/s Possibilité d'avoir plusieurs raies de l'échelle de rotation de CO, ou autre molécule..

@z =6, l'espacement entre raies de CO est de 16 GHz. Avec 2 tunings, on obtient une « redshift-machine »

Abell 1835, sources Scuba (Ivison et al 2000)

Beaucoup de sources submm (0.85mm) n'ont pas de contreparties optiques

L'apport de plusieurs longueurs d'ondes est fondamental

MUSE + JWST+ELT-30m +ALMA

Surveys continuum mm

Distribution of Identified sources

Chapman et al 2003, 2004

z=1.5 redshift desert

High-z: lack of high mass sources

Identification due to VLA radio sources, and optical redshifts

Radio selection introduces bias against z > 3

SHADES survey: 850µm and 350µm

Coppin et al 2008, follow up @ 350µm of 30 sources (rms 2mJy) SCUBA Half Degree Survey (0.25 deg²) → 120 SMGs detected

Typical z ~2-3, degeneracy column density – temperature

Average temperature 35K $L_{FIR} 2 \ 10^{12} \text{ Lo}$ SFR 400 Mo/yr

Luminosity evolution obvious

Not yet known whether SED evolution or selection effects

Observations des raies CO

Emission CO: ~40 sources à gd z (2008)

1ère détection: Faint IRAS source F10214+4724 à z=2.3 (Brown & van den Bout 92, Solomon et al 92)

Raies CO à haut J

Avantage par Rapport au HI (hydrogène atomique)

Kneib et al 98

Omont et al 96

Plusieurs quasars ou objets ultra-lumineux IR ou submm, avec amplification gravitationnelle, le plus souvent On remonte 93% de l'âge de l'Univers enrichissement très tôt en éléments lourds

Suivi des SMM: spectro Keck

SMM J2399-0136 Frayer et al (1998) CO(3-2) z=2.808 Genzel et al (2002) IRAM-PdB Amplification de 2.5

Beelen et al (2004)

The most distant QSO at z=6.4

Fan et al 2003, White et al 2003

 $M_{dust} \sim 10^{8}$ Mo (Bertoldi et al 2003) $M_{BH} = 1.5 \ 10^{9}$ Mo (Willot et al 2003)

SDSS 1148+5251 QSO z=6.4 M= 2 10¹⁰ Mo H₂

Use of the gravitational telescope

5 strong SMG, lensed with S(350GHz) < 1 mJy

Abell 2218, Kneib et al 04

Knudsen et al 07

Molecular and atomic gas at sub-kpc scale

Mergers of galaxies

Riechers, Walter, Carilli et al 2007

Cosmic eye

LGB @z=3.07 Plateau de Bure CO(3-2) detection (only the 2nd LBG, after cB58) MH2 = 2.4 10⁹ Mo M* = 6 10⁹ Mo (Spitzer mid-IR)

SFR = 60Mo/yr life-time =40Myr High-z analog of LIRGs

Magnification of 28 2 UV components, 3kpc apart Coppin et al 2007

Dynamical mass ~10¹⁰ Mo But inclination uncertain

Star formation rate in LBGs

SFE ~140 Mo/Lo

LCO & gas mass 7 times higher than cB58

z=2.73

8 o'clock arc Allam et al 2007

20

SMGs: Submillimeter Galaxies Star formation efficiency L_{IR}/L'_{CO} vs z

Greve et al 2005

6 SMGs not detected in CO

40- 200 Myr SB phase SFR ~700 Mo/yr More efficient than ULIRGs

Mergers without bulges?

Total masses ~0.6 M*

21

Comoving number density of galaxies $M_{bar} > 6 E10 Mo$

Models (Cole et al 01, Baugh et al 04) Recent top-heavy IMF +SB at high z

Total baryonic mass In dark halos > E11 Mo

Compatible, if 10% baryons are rapidly converted into galaxies ²²

Excitation in high-z starbursts

Weiss et al 2007

z>7 sources: ALMA CO discovery space

24

Other lines CII 158 micron, CI, NII...

Difficult to predict: how much ionised/neutral gas? Optical depth?

Nagamine et al 2006: (HIM), WNM, CNM-Anyway, can be used at larger frequency. Less numerous than CO Not optimum for a z-machine

Sensitivity: detection of CO lines of 300km/s at 300 GHz, of 0.3 mJy, i.e. 10^{-21} Wm⁻² at 5 σ in 1hr with ALMA, Lines spaced by 33GHz (if z=2.5), so about one source per arcmin², with a bandwidth of 16 GHz

With a primary beam of 0.15 arcmin²
→Large mosaics should be done

Most will be detected at z=1-3, so at 1mm for CO54-CO98 Might be better to go to even lower frequency

High density tracers

HCN appears better correlated to star formation that CO

CI is detected, CII is proportionally weaker in ULIRGs

27

Cartographier les grandes structures et l'environnement des SMGs

Avec APEX, survey @870mu
→COSMOS 2deg² à rms=2mJy: 300-600 sources avec S/N>4
→20x20 armin2 au niveau de confusion, 0.5-07mJy: 200-400 sources

Plus profond avec SCUBA-2 @450mu, CCAT 200/350mu (25m)

ALMA rms=50µJy N (>0.2mJy) = 60 000/deg², 870mu FoV 19" 1h 1 armin2: 20sources 1an = 1sqdeg Certainement plusieurs plus petites régions

COSMOS: overdensités z=0.25-1.05

MAMBO 1.2mm survey of COSMOS

Molecular Absorptions

Up to now, only 5 systems: PKS1413, B3 1504 (self-abs) B0218, PKS1830, PMN J0134 (OH): gravit lenses + local: CenA, 3C293 (0.045), 4C 31.04 (0.06)

Chemistry @highz Variations of cst

~ 30-100 times more sources with ALMA?

Combes & Wiklind 1998

Perseus A, nearby

Conclusions

•ALMA deep field en continuum: N(S) taux de formation d'étoiles (z)

•Les raies CO pourront être observées à grand z avec ALMA

•Beaucoup plus d'information que le continuum: masse de H_2 dans la galaxie, l'efficacité de formation d'étoiles en fonction du redshift, la cinématique

•Information complémentaire à l'optique, où la largeur de raies ne reflète pas la masse totale (outflows, extinction..)

•Matière noire en fonction du redshift: études de galaxies individuelles avec MUSE+JWST + ELT-30m + ALMA et études statistiques, avec loi de Tully-Fisher