GRAVITY : Observation de Sgr A* par interférométrie infrarouge

Journées PNC/PNG 2008 Paris

Guy Perrin

Mardi 1er Avril 2008

Le trou noir supermassif le plus prochese trouve au centre de la Galaxie-

La direction du centre galactique vue par Spitzer

elative R.A. (arc sec

© X. Haubois 2007

Observations monotélescope

Orbite de S2 observée par NACO

(120 ua ou 1200 R_s)

Schödel et al. (2002)

Orbites 3D : SINFONI + NACO

Orbites 3D : SINFONI + NACO

 $d = 7,62\pm0,32$ kpc

Eisenhauer et al. (2005)

Orbites 3D : SINFONI + NACO

Quid des effets relativistes sur les orbites des étoiles les plus proches ?

→ plus de résolution est nécessaire : de l'ordre de quelques mas ie quelques 100 R_s

Si la théorie de la relativité générale est la bonne alors ...

Le poisson d'Avril de la nature

Genzel et al. (2003)

Sursauts en fonction du temps

Genzel et al. (2003)

Modèles possibles pour les sursauts

Ou encore, étoiles *traversant* le disque d'accrétion près de la dernière orbite stable

Il est nécessaire d'accéder à une échelle de 3 Rs (dernière orbite stable) soit 30 µas

Aller plus loin grâce à l'information spatiale

Apporter définitivement la preuve du trou noir : montrer que la masse est contenue dans 1 Rayon de Schwarzschild

Comprendre la nature des sursauts

Utiliser le trou noir comme un laboratoire unique pour la relativité générale en champ fort

Échelle ~ 1 Rs 10 μ as

Étudier les effets relativistes sur les orbites d'étoiles proches

Comprendre la nature des étoiles centrales et leur distribution

Échelle ~ 100 Rs 1 mas

Technique VLBI

Diamètre ~ 20 $R_{S} (\lambda_{5mm})^{1,3-1,7}$ 1 ua ou 13 R_{S} @ 3,5 mm

Cette loi est due à la diffusion du rayonnement par le gaz ionisé

Bower et al. (2006, 2004) Shen et al. (2005)

Interférométrie infrarouge

Le Very Large Telescope Interferometer (Mont Paranal, Chili)

Potentiel du VLTI

 $\lambda = 2 \,\mu m$

\mathcal{L} 'instrument GRAVITY

GRAVITY : General Relativity Analysis with VLTI inTerferometrY

THE FRENCH AEROSPACE LAB

LAAC

Imagerie et astrométrie par référence de phase

Imagerie des étoiles proches du centre galactique

Exemple pour une nuit d'observation

Imagerie des étoiles proches du centre galactique

Après 15 mois d'observation :

La précession relativiste est détectée.

Paumard et al. (2005)

Astrométrie (petit angle) et interférométrie

Démonstration avec le Palomar Testbed Interferometer

Recherche de planètes géantes dans des systèmes binaires

Bases de 110 m et 87 m Télescopes de 40 cm

Muterspaugh et al. 2006 : "... the 20µas level has been demonstrated ..."

Secret de la réussite : le petit champ

Exploration de la dernière orbite stable

Exploration de la dernière orbite stable

 $10 \ \mu as = 1 \ R_s$

Objectifs astrophysiques de GRAVITY

Noyaux ac

<T> = 366K

radius (in pc)

(Poncelet, Perrin & Sol, 2006)

Où en est-on ?

1^{ère} lumière visée pour 2012-2013