

EAGLE: an MOAO fed dIFU working in the NIR on the E-ELT

J.-G. Cuby (LAM) Au nom du consortium EAGLE

The European Extremely Large Telescope

E-ELT baseline design November 2006

M1 42m segmented M2 6m monolithic, active M4, M5 adaptive

Schedule: 2007-2009 Phase B 2010-2017 Construction

JWST - 2013

Galaxies Étoiles Physique et Instrumentation

GMT - 2015

E-ELT Instruments

- CODEX High R visible spectrograph
- EPICS High contrast imager
- EAGLE Multi-field near IR spectrograph
- HARMONY Single Field Wide Band Spectrograph
- METIS Mid IR Imager and Spectrograph
- New concept MOS
- High Angular Resolution Camera
- New concept TBD
- All in Phase A !

The European Extremely Large Telescope

The Gravity Invariant Nasmyth Focal Station

1 arcsec = 3.25 mm 5 arcmin ~ 1m

(purple cylinder, 8m diameter)

(mass limit of 20 tons)

L-ELT 'Prominent' Science Cases

- Planets and Stars:
 - Extrasolar Planets (S3)
 - Circumstellar disks (S8)
 - IMF in Stellar Clusters (S5)
- Stars and Galaxies:
 - Resolved Stellar Populations (G4)
 - Black Holes/AGN (G9)
- Galaxies and Cosmology
 - First light-the highest redshift galaxies (C4)
 - Studies of Absorption lines: Dynamical measurement of universal expansion,
 - IGM studies (C2, C7)
 - Physics of high redshift galaxies (C10)

Red Cases have common instrument requirements well served by EAGLE

Notes:

- Design Reference Mission (see ESO web site)
- Match to the Astronet Science Vision

The EAGLE Science Requirements

- High spatial resolution (~ 75 milli-arcsec)
 - Adaptive Optics needed
- Extended sources (~ 2 x 2 arcsec)
 - For galaxies, clustered stellar objects etc
 - Integral Field Units needed
- Source count for statistics etc
 - Multi-object instrument (20+)
- Spectral range: 0.9 2.4 μm (near IR)
- Efficiency
 - Wide-field (5 arcmin) to ensure all IFUs are used for each observation
- R~4,000 main spectral resolution (OH + 1 band in 2000 pix), but also R~10,000 being considered for stellar physics

Highlight ELT Science Case First Galaxies in the Universe

5

4

3

The EAGLE Science Case (including why observe in the Near Infra-Red)

A2218 Z=2, 5, 10 & 20 critical lines shown

Boxes show possible EAGLE IFU Mapping of high z Critical lines

Galaxies Étoiles Physique et Instrumentation

THE FRENCH AEROSPACE LAB

Rotating Disk Simulation

Puech et al., 2007

Improving AO correction =>

Merger Simulation

Improving AO correction =>

Puech et al., 2007

Globular cluster Candidates around Cen A

5 arcmin EAGLE FOV green circle

Candidate stars beyong tip of RBG for around Cen A selected on IR colours

The Challenge of Multi-Object Adaptive Optics

CANARY on the William

Galaxies Étoiles Physique et Instrumentation

EAGI

Mechanical Support, Software and Packaging

Marseille Packaging

Mechanical Support, Software and Packaging

Mechanical Support, Software and Packaging

Toulouse Research Center

TMT WFOS (for scale comparison with EAGLE)

Management, Funding and Politics

- French/UK instrument 50%/50% split
- French PI, Jean-Gabriel Cuby (Marseille)
- UK coPI, Simon Morris (Durham)
- Current French Institutions:
 - LAM (Marseille)
 - ONERA
 - Observatoire de Paris (GEPI and LESIA)
- Current UK Institutions
 - UK ATC
 - Durham (CfAI)

Conclusions

- Baseline selection June 2008
- Detailed science case 2008-2009
- End of phase A 2009
 - Design, development plan including costing
 - Evaluate phased development
- Contract for construction, if any, not expected before 2011
 - One year of intense lobbying in 2010
- Consortium extension
- National support in F and UK will be essential
 - EAGLE is supported in France by an ANR programme and in UK by STFC grants

