

DUNE: the Dark UNiverse Explorer

Nabila Aghanim (IAS Orsay) for the DUNE Collaboration

Proposed to ESA's Cosmic vision

Project status

DUNE THE DARK UNIVERSE EXPLORER Proposal to ESA's Cosmic Vision

DARK ENERGY

DUNC

DARK MATTER GRAVITATIONAL LENSING GALAXIES EVOLUTION EXTRASOLAR PLANETS

- 2004: Dark Energy proposed as a theme for ESA's Cosmic vision
- 2006-2007: ESO-ESA WG, DETF and Astronet reports

June 2007: Proposed to ESA's Cosmic Vision as M-class mission, Support from ESO and NASA
Oct 2007: DUNE selected jointly with SPACE as one of the mission concept study by ESA
May 2008: New merged concept *Euclid* presented to the AWG

Weak Gravitational Lensing

- WL: statistically most powerful probe for Dark Energy (Cf. DETF, ESO-ESA WGFC)
- WL probes both geometry and structure growth
- WL provides a map of the Dark Matter
- \rightarrow Central probe for DUNE

Jain et al. 1997

Requirements for Weak Lensing

Statistics: optimal survey geometry: wide rather than deep for a fixed survey time, \rightarrow need 20,000 deg² to reach ~1% precision on w Systematics: Need to gain 2 orders of magnitude in systematic residual variance \rightarrow need about 50 bright stars to calibrate PSF Redshift bins: need good photo-z to make redshift bins and to correct for

DUUG

Advantages of Space

Mission Baseline

- Visible: 0.5 deg², pixels 0.10'', shapes, band: broad R+I+Z, e2v CCDs
- NIR: 0.5 deg², pixels 0.15'', photometry, bands: Y,J,H, Teledyne HgCdTe
- PSF FWHM 0.23'', 2.2 pix/FWHM (vis)
- GEO (or HEO) orbit with Soyuz Launch

Requirements: Tight control of systematics

DUNE Surveys

- DUNE Extragalactic All-Sky Survey: 20,000 deg², $|b|>30^{\circ}$, R+I+Z=24.5 (10 σ ext.), Y,J,H=24 (5 σ , PS), 40 WL galaxies/amin², $z_m \sim 1$, photo-z with ground-based complement, 3 years
- Medium Deep Survey: $2 \times 50 \text{ deg}^2$, R+I+Z=26.5 (10 σ extended), Y,J,H=26 (5 σ , PS), 6 months
- DUNE Galactic Plane Survey: 21,000 deg², $|b| < 30^{\circ}$ R+I+Z=23.8, Y,J,H=22 (5 σ , PS), complete 4π coverage, 3 months
- Microlensing Survey (DUNE-ML): 4 deg² in the bulge, visited every 20 minutes over 3 months (Y,J,H~22 per visit), 3 months

Weak Lensing Power Spectrum Tomography

DUNE Wide Survey: 20,000 deg², 40 galaxies/amin², z~1, ground-based complement for photo-z's (PanSTARRS1 (north) and DES (south)), 3 year WL survey

image simulations from 3 groups

Dark energy precision and multi-probes

Complementary probes for DUNE:

- Baryon Acoustic Oscillations (photo-z based)
- Galaxy Cluster counts (40,000 mass selected clusters)
- Integrated Sachs Wolfe Effect (cross correlation with CMB)

Overall Impact on Cosmology

	DE FoM	Dark Energy			Matter Content		Initial Conditions	
		∆w _n	∆w _a	ΔΩγ	ΔΩm	ΔΩь	Δσ ₈	Δns
WMAP 6	0.13	0.6	13	0.07	0.06	0.008	0.14	0.03
Planck	12	0.03	2.5	0.0036	0.006	0.0009	0.031	0.0037
DUNE Lensing	400	0.02	0.12	0.007	0.004	0.1	0.006	0.011
DUNE + Planck	1600	0.011	0.056	0.0018	0.002	0.0006	0.0020	0.0031

DUNE will challenge all the sectors of the Cosmological model:

- Dark Energy: w_n and w_a with an error of 2% and 10% respectively
- Dark Matter properties: test of CDM paradigm, precision of 0.04eV on sum of neutrino masses (with Planck)

• Initial Conditions: constrain amplitude, slope and higher order parameters of primordial power spectrum, constrain primordial non-gaussianity

• Gravity: Distinguish GR from simplest modified Gravity theories by reaching a precision of 2% on the growth exponent $\gamma (d \ln \delta_m / d \ln a \propto \Omega_m^{\gamma})$

 \rightarrow Uncover new physics

Legacy Surveys for Galaxy Evolution

- Map relation between Mass and Light: Correlation of WL mass map with galaxy distribution -> high precision measurement of bias properties b(z, k)
- Constrain drivers of star formation: Galaxy morphology and NIR properties; SNe rate (detection of ~3000 Type Ia and Type II supernovae in MD survey)
- High-z object physics: Using the Ly-dropout technique in MD survey, detect 10^{3-4} star forming galaxies at z~8, 10^{2-3} at z~10; also detect 10^{2-4} quasars at z~7, and 10^{1-3} at z~9
- Galaxy Clusters: NIR detection of several 100 Virgo-like clusters and several 1000 10^{13} M_{sun} at z>2, mass detection of 40,000 clusters at z~0.3-0.7, well matched to eROSITA, XEUS and Planck
- Strong-Lensing systems: ~10⁵ Galaxy-galaxy lenses, ~10³ galaxy-quasar lenses, 5000 strong lensing arcs in clusters.

Search for Planets with Microlensing

Microlensing survey: 4 deg² in the bulge, visited every 20 minutes over 3 months (Y,J,H~22 per visit), monitor $2x10^8$ stars

 \rightarrow Detect ~ Earth Mass planets in the habitable zone

DUNE Consortium

France: Alexandre Refregier (PI, CEA Saclay), IAS Orsay, IAP Paris, LAM Marseille, **Germany:** U. Bonn, MPIA Heidelberg, MPE Garching, **Italy:** INAF-OARM, U. Bologna, INAF-OATS, **Spain:** ICE, Barcelona, IFAE Barcelona, CIEMAT Madrid, **Switzerland:** ETH Zurich, EPFL-UniGE, **UK:** IfA Edinburgh, UCL London, MSSL, **USA:** JPL, U. Stanford

Working Groups:

Weak Lensing BAOs Clusters/CMB Strong Lensing Galaxy Evolution Galactic Studies Supernovae Theory Photo-z Image Simulation Instrument

- DUNE concept: centered on Weak Lensing, Visible+NIR all-sky coverage, Ground/Space Synergy, heritage from Gaia mission, moderate cost, tight control on systematics
- DUNE optimised to derive decisive constraints on Dark Energy and Dark Matter, and challenge all sectors of the cosmological model from a combination of cosmological probes (WL,BAO, clusters, ISW)
 DUNE will provide unique legacy surveys synergy with Planck, eRosita, XEUS, JWST: 4π survey + deep surveys in visible and NIR for galaxy evolution, search for extra-solar planets
- DUNE is a realisation of the recommendation of the ESO/ESA working group on fundamental cosmology

Project status

DUNE THE DARK UNIVERSE EXPLORER Proposal to ESA's Cosmic Vision

DARK ENERGY

DUNC

DARK MATTER GRAVITATIONAL LENSING GALAXIES EVOLUTION EXTRASOLAR PLANETS

- 2005: Pre-study (phase 0) by CNES (V-FP)
 Dec 06-Dec 07: DUNE workshops in Paris, London, and Bonn -> V-FP + NIR-FP
 June 2007: Proposed to ESA's Cosmic Vision as M-class mission, Letters from NASA and ESO
 Oct 2007: DUNE selected jointly with SPACE as one of the mission concept study by ESA
- May 2008: New merged concept *Euclid* (V, NIR, NIR spectro) presented to the AWG
 2008 2009: ESA assessment study for a

European dark energy mission: *Euclid*

• 2017: ESA first M-class mission launch