SNAP-L Probing the nature of dark energy..

A.EALET

CPPM/IN2P3

SNAP collaboration

Berkeley / Berkeley Lab Caltech **CPPM Marseille, CNRS/IN2P3 CRAL Lyon, CNRS/INSU** Fermi National Laboratory GSFC Indiana U. IPNL Lyon, CNRS/IN2P3 JPL LAM Marseille, CNRS/INSU LPNHE Paris, CNRS/IN2P3 RIT Sonoma State Univ. of BC/Victoria Univ. of Michigan Univ. of Pennsylvania Univ. of Stockholm **SLAC** STScl Yale U.

WILVERSTATIS WILLESSA WILLIAM WILLIA IN2P3 IN2P3/INSU Property

> University of Victoria

PROBING THE NATURE OF DARK ENERGY.

Require very precise measurements and interpretation:

- Compare effect of dark energy on the expansion rate (geometry)
- with the effect of dark energy on growth of cosmological structures
- Need more than one probe to do consistency tests between gravity effect and expansion history

Anne

Ealet

PNC,

N

- Most promising approaches : SNe, WL, BAO, clusters...
- All probes will be systematic errors limited

SNAP-L = clean, well controlled measurements for both SNIa (geometrical) and WL (dynamical) using space advantages

Map the expansion history precisely and see the transition from acceleration to deceleration.

Test the cosmology framework – alternative gravitation, higher dimensions, etc.

Modifications of the expansion history = w(z).
an underlying theory beyond Einstein gravity?
=>Growth history and expansion history work together.

SNAP OBJECTIVES

MISSION OBJECTIVES

Systematic effects are dominant .. =>need simulation + instrument optimisation to identify and control all effects ... Faire

Supernova	Lensing
standardisation	Theoretical uncertainties on power spectrum
Contamination	Shear calibration
Selection bias	photoZ biases
Evolution/dust	Psf stability
Photometric calibration	Shape correlation

PNC,

2 avril 2008

SN IN SNAP-L

• SNs see the time evolution of the universe

Ground surveys well advanced and already systematic limited (SNLS)
Local sample needed for reference (SNfactory)

WL NEEDS = REDSHIFTS

Needs excellent photometry, for photometric redshifts

<u>Requires NIR + UV</u>

Need calibration

=> Need spectroscopic redshifts

Requires NIR spectroscopy

the DETF considers this to be the option that guarantees results

Anne

SNAP surveys

Survey	Area(sq.deg)	Depth(AB mag)	n _{gal} (arcmin ⁻²)	N _{gal}
Deep/SNe	15	30.3	250	10 ⁷
Wide	4000	27.8	100	10 ^{8.5}
Extended	7000-10000	26.7	40-50	10 ⁹

* and SNAP is in 9 colors!

In numbers...

- One billion of photometric z (9 filters)
- Half a million of spectroscopic z 0<z<3 (current ground ~15000)
- 80 000 clusters (today ~5000)
- BAO on 24 Gpc³
- Correlation with ISW, SZ

Performances

Synergy of Supernovae + Weak Lensing

- Comprehensive: no external priors required!
- Huge improvement over future ground surveys
- Stand alone (no ground follow up)

	Uncertainties for scenario with	0 (<i>w</i> - _р)	<i>σ(w')</i> ≡ -σ(w _a)/2	Merit
SNAP alone	SN+WL	0.021	0.12	203
SNAP + Planck	SN+WL (no systematics)	0.010	0.05	1001
	SN+WL	0.016	0.09	371
	SN+WL + flat+gnd(WL+BAO)	0.014	0.07	555
SNAPExtended	SN+WL(extended+Plank +gnd(WL+BAO)	0.012	0.05	911
Comparison	space(WL+BAO)+gnd(WL)+Planck	0.019	0.12	231

This information is in the Public Domain. *http://snap.lbl.gov/pub/*

SNAP INTRUMENT

Three Mirror Anastigmat Telescope		
Field of View	1.37 square deg	
Resolution	< 0.06 arcsec FWHM blur	
Bandpass	0.4-1.7 µm	

Simple= Telescope 2 m class One cold focal plane at 140 K

L2 lagrange point

Anne Ealet PNC, 2 avril 2008

LA PARTICIPATION FRANÇAISE

Un leadership sur le spectrographe (LAM/CPPM/IPNL) • Responsabilité française

• Intégration forte dans le projet

• <u>démonstrateur (instrument complet)</u>

• pour la validation des performances (LAM/CPPM/IPNL)

• simulation/traitement des données

SNAP LE DEMONSTRATEUR

La contribution française

Le détecteur IR H2rG de SNAP reçu a l'IPNL En cours de test avec système de lecture de l'IPNL

Instrument de validation complet Conception et fabrication 2005/2007 LAM/CPPM tests visibles réalisés pendant l'été 2007 tests IR réalisés avec détecteur IR HgCdTe

Préparation des tests en cryogénie

<u>retour</u>

Publications en cours

NASA-DOE US. Department of Energy Joint Dark Energy Mission

Paul Hertz / NASA Robin Staffin / DOE

Endorsed by

Raymond L. Orbach Director of the Office of Science Department of Energy September 24, 2003 Edward J. Weiler Associate Administrator for Space Science NASA September 25, 2003

1

OF A BLACK HOLE?

WHAT IS DARK ENERGY?

18

National Aeronautics and Space Administration

STEIN: black holes

the universe

Department of Energy

"Come hell or high water, DOE will fund JDEM."

-- Dr. Raymond Orbach, Director, Office of Science, May 2004

JDEM

- Nov 2003 JDEM Announcement from DOE & NASA
- Feb 2005 Nat'l Academy Sciences: Cmt. on Astro. & Astrophys.
- Aug 2006 NASA selects advanced mission concept studies (ROSES). SNAP, ADEPT, DESTINY
- Sep 2007 Nat'l Academy Sciences: BEPAC chooses JDEM.

"The National Research Council's Beyond Einstein Program Assessment Committee has recommended that the Joint Dark Energy Mission (JDEM), jointly supported by the National Aeronautics and Space Administration and the Department of Energy, be the first of NASA's Beyond Einstein cosmology missions to be developed and launched with a start of mission in 2009...

JOINT DARK ENERGY MISSION : SCIENCE GOALS

- Beyond Einstein science
 - precisely measure the expansion history of the universe to determine whether the contribution of dark energy to the expansion rate varies with time

• Broader science

- investigate the formation and evolution of galaxies
- determine the rate of star formation and how that rate depends on environment

Beyond Einstein

Systematic uncertainties may limit JDEM to modest improvements over ground-based studies.

Broader Science

Because of the exquisite datasets that JDEM surveys will produce, there is little risk to the broader science impact.

UN SPECTROGRAPHE POUR JDEM

Le spectrographe francais bien identifié dans le rapport BEPAC

- Principe basse resolution repris par nos concurrents ce qui consolide notre proposition
- Soutien du CNES pour préparer la proposition
- L'avance, l'avantage et le concept innovateur slicer a consolider en 08 avec 2 risques identifiés

•TRL6 pour le sous-système slicer (LAM)

- Prototypage en cours
- Publications des résultats du démonstrateur + tests en vibration
- Mise en place de la validation par le CNES

•Management international (NASA/DOE/CNES)

• endossement CNES en préparation dès la sortie de l'AO


```
PARTICIPATION FRANÇAISE JDEM
```

mise en place d'une organisation française identifiée pour la proposition JDEM

- un steering committee (CNES, IN2P3, INSU..)
- un élargissement scientifique

expertise sur SN (IN2P3) expertise WL (INSU) expertise et leadership sur les clusters et autres science (APC+ INSU) expertise photoZ (LAM)

un 'science advisory group' en élaboration

CONCLUSION **SNAP** an advanced project ...self contained • A wide space imager working both in visible and IR • A low resolution spectrograph onboard in visible and IR Focus on a precise control of all measurements : spectro for SN psf and photoz for WL SNAP adresses first the dark energy problem adresses also many other sciences cases with its deep and wide surveys in 9 filters!

• SNAP a DOE /French project

JDEM AO expected this year !! SNAP ready to answer