3D-NTT (3D-4M) A new instrument for the NTT based on versatile Tunable Filter technology

Philippe Amram, P.I.: Michel Marcelin

(Observatoire Astronomique de Marseille Provence / Laboratoire d'Astrophysique de Marseille) on behalf of the 3D-NTT consortium:

Marseille (LAM): Amram, Balard, Boselli, Boulesteix, Buat, Cuby, Epinat, Gach, Joulié, Russeil Paris (GEPI): Balkowski, Flores, Garrido, Hammer, Jagourel, Jégouzo, Proust, Sayède Canada (LAE Montréal): Carignan, Chemin, Daigle, Denus Baillargeon, Hernandez Australia (AAO): Bland-Hawthorn, Jones Austria (Vienna): Zeilinger Brasil (Sao Paulo): Fuentes-Carrera, Mendes de Oliveira & (Santa Cruz): Plana Denmark (Copenhagen): Fynbo Finland (Ulu): Laurikainen France (CEA): Duc & (Strasbourg): Vollmer Germany (ESO): Pompei & (Bochum): Bomans, Dettmar Italy (Padova): Bettoni, Buson, Giro, Marziani, Mazzei, Rampazzo Spain (IAA, Granada): Masegosa, Verdes Montenegro, Vilchez & (IAC, Canarias): Cepa Sweden (Uppsala): Bergvall, Östlin, Marquart USA (Tuscaloosa, Alabama): Sulentic

What is the 3D-NTT?

A visitor instrument (visible spectro-imager) to be placed at the Nasmyth focus of the NTT

Focal reducer with two modes:

• Low resolution (100 – 5 000) Tunable Filter

High resolution
(5 000 – 40 000+)
Scanning Fabry-Perot

What is new with our Tunable Filter?

- Long excursion piezo-actuators (400 µm) cover of a wide range of interference orders Same device:
 - Tunable Filter
 - Scanning Fabry-Perot

 It will be placed in the focal plane

No phase shift across the field Can be used as an interference filter for the 2nd scanning Fabry-Perot (HR mode)

Optical concept of the 3D-NTT

Low order FP (Tunable Filter) High order FP

Instrument Planning

3D-NTT GEPI (optical design)

LAM + GEPI (mechanical design)
 Complete design ready: mid-2006

Making of the instrument : 2007 $\rightarrow\,$ ready to observe : end of 2008

REDUCTEUR FOCAL DU TELESCOPE POUR LA SOLUTION « GRAND CHAMP »

The Tunable Filter : a powerful tool for measuring line ratios

1st Scanning sequence

2nd scanning sequence (interleaved) with Tunable Filter adjusted

IOGA

Onized gas in star forming Galaxies through the Ages

A) Survey of 500 IR galaxies

- mapping the SFR and kinematics (HR mode)
- mapping the dust extinction, metal abundances and electron density for 50 LIRGS (LR mode)

provide a **reference sample** with high spectral and spatial resolution (sub-kpc)

comparison with distant objects on the VLT (GIRAFFE, SINFONI)

HCG31 velocity field (Amram et al. 2004)

observed with ESO 3.6m as seen at z~0.5

High Resolution mode: Virgo Cluster (Chemin et al, 2005)

NGC 4438 = Prototype of a galaxy interacting with ram pressure stripping and companion

Low Resolution Mode (Tunable Filter)

Example of metal abundance map obtained with a Tunable Filter

NGC1365 observed with the TTF on the AAT (Veilleux et al. 2003)

IOGA

B) Survey of a sample of 50 quasars at z ~2

- **?** Are there ELGs around distant and luminous quasars (Francis and Bland-Hawthorn, 2004).
- ? Powerful UV fields can suppress or delay widespread star formation in galaxies
 - \rightarrow constraints on cosmological models

Detection of ELGs around QSO at z=0.8 TTF, FOV = 7'x7' (Barr et al. 2004)

Ly α ionization cone (Weidinger et al. 2004)

Key-programs with 3D-NTT

In Tunable Filter mode : pre-selection of VLT targets

Survey of the SFR in galaxies at different redshifts (e.g. Jones et al. 2001 with AAT) →

Also :

Detection of redshifted Lyman Alpha of primeval galaxies

(to be confirmed by follow-up spectroscopy with the VLT)

Other possible programmes (from 3D-NTT Workshop, Marseille, June 16-17th 2005)

Follow up of other surveys at different wavelengths like:

- Line maps (SINGS/Spitzer & AMIGA)
- Accretion & galaxy evolution in poor groups

Nearby galaxies

- Low-z super-wind galaxies and of shocked gas
- Galactic winds of dwarf irregular galaxies
- Mapping the large scale potential wells of galaxies using PN
- Search for warm ionized gas around nearby radio galaxies
- Identification and Mapping of star forming galaxies

AGN

- Seyfert 2 and LINERS as well as filamentary ionized structures in clusters
- Study of ionization cones and unification models of AGN

Clusters

lonized gas in intracluster medium

Distant galaxies

Search for high-redshift gravitationally lensed galaxies

Data reduction and Data Base

Data from the 3D-NTT will be put in public access in that Data Base 1 year after the observations

Main characteristics of the 3D-NTT

	TUNABLE FILTER MODE	HIGH RESOLUTION MODE			
Field of view	20' x 20'	11' x 11' or 5.5' x 5.5'			
Wavelength range	350nm to 850nm (a)	500nm to 800nm (b)			
Interference order	tunable from 4 to 100 (at H α) (<i>indeed from 4 to 1200</i>)	tunable from 100 to 1 200 (at H α) (indeed from 4 to 1200)			
Detector	CCD (4k x 4k with 15µm pixels)	IPCS 25mm AsGa (1k x 1k with 17µm pixels)			
Scale	0.29"/pixel	0.52"/pixel or 0.34"/pixel dep. on FOV			

(a): range of a standard thin blue sensitive CCD (to reach the 3727 Å [OII] line)

(b): range limited by sensitivity of AsGa photocathode

Comparison with other TF instruments

TTF	AAT & WHT	1996 - 2003	3.9m	9'	50 nights/year
MMTF	Magellan	Dec. 2005	6.5m	27'	7 nights/year
OSIRIS	Grantecan	June 2006	10m	6.7'	100 nights/year (OTELO)
3D-NTT	NTT	End 2008	3.5m	20'	37 (IOGA)

3D-NTT can see the [OII] line at 3727Å (not the case for MMTF) *N.B. all of these TF suffer from phase shift effect (in the pupil)* **except 3D-NTT**

Conclusion

The 3D-NTT

• Large Programme (IOGA) - survey of 500 IR galaxies (LR and HR modes)

complementary of VLT observations at high z

- survey of 50 quasars (detections of ELGs and imaging DM halos)

 Other possible programmes (Follow-up of other surveys, nearby galaxies, AGN, clusters, distant galaxies...)

Spectro-imager with resolution ranging from 100 to 40 000 in the visible Perfect selection of the scanned line (both devices being scanned synchronously)

Powerful TF mode

- no phase shift effect
- blue sensitivity (down to 350 nm)
- large field of view (20 arcmin)