Baryonic Acoustic Oscillations: BAO

Outline: → BAO: standard ruler

→ Present detections of BAO (SDSS, 2dF)

→ Simulations: predictions

 \rightarrow SKA: billion galaxies at 21cm, + WL \rightarrow DE

Françoise Combes SKA-PNC, 27 Octobre 2006

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

Linear power spectrum

Scale of the bend in P(k) is the size of the horizon at matter-radiation equality

60 000 yrs after Big-Bang

 $fv = \Omega v / \Omega dm = 1/3$

 $\Sigma mv = 3.7 ev$

Free-streaming reduces Small scale structure

Expected oscillations

Not in phase At small scale (velocities) And twice the Wavelength

Hütsi 2005

3

A single perturbation

Creates a depression

→ Sound wave at $c/\sqrt{3}$

Sound horizon at recombination R~150Mpc

380 000 yrs after BB

Galaxies form in peaks

→ baryon correlations

From Daniel Eisenstein

Random perturbations

Detections: SDSS

Eisenstein et al. (2005)

Comparaison with previous estimations for 2dF z < 0.3

Percival et al (01, 03) Tegmark et al 04

Cole et al. (2005)

Final= 221414 galaxies, grey-scale 1σ errors

BAO Surveys

Survey	Selection criteria	Area (deg ²)	No. galaxy redshifts	Status
CFRS	$I_{\rm AB} < 22.5$	~ 0.1	591	Released
CNOC-2	R < 21.5	1.5	6200	Released
COMBO17 (Photozs only)	R < 24	0.25	10 000	Released
SDSS DR3	r < 17.1	4188	374 767	Released
VVDS CDFS (Le Fevre et al. 2004)	$I_{AB} < 24$	$21 \times 21.6 \text{ arcmin}^2$	1599	Released
VVDS Deep	$I_{AB} < 24$	1.3	50 000	Ongoing
VVDS Wide	$I_{AB} < 22.5$	16	100 000	Ongoing
zCosmos	$I_{AB} < 23$	2	90 000	Ongoing
SDSS-2dF LRG	i < 19.5 plus colours for $0.4 < z < 0.8$	300	10,000	Ongoing
SDSS LRG	i < 19.2 plus colours for $0.15 < z < 0.4$	5000	75 000	Ongoing
SDSS-II	r < 17.1	10 000	$\sim 10^{6}$	Start 2005
DEEP2	$R_{AB} < 24.1$ plus colours for $z > 0.7^1$	3.5	65 000	Ongoing
KAOS	TBD	~ 1000	$\sim 10^{6}$	Proposed
SKA	TBD	~ 30000	$\sim \! 10^9$	Proposed

LAMOST WFMOS/Subaru HETDEX/Virus LSST etc... Blake & Bridle (2005)

Non linearities

Can mix scales and wash out structures

M. White 2005

Full line:linear prediction

Ratio with a smooth spectrum

Nonlinearities

A maximum wavenumber is set in each redshift bin to reduce the contamination of nonlinear evolution.

Seo & Eisenstein (2005)

Cosmological Simulations

Millenium Springel et al 2005

HORIZON

L=1 billion light-yrs T=1, 3 & 13 billion yers

Simulations Springel et al 2005

Power spectra of DM and galaxies in the BAO region (divided by a CDM linear power spect.)

Blue: scatter Black: mean

Testing models of gravity

Yamamoto et al 2006

Dvali-Gabadadze-Porrati DGP model

KP 4 - Galaxy evolution and cosmology

1- HI line surveys

All-sky survey would contain a billion galaxies out to z~1.5
→ Galaxy evolution studies using the most abundant element

2- 'Dark Energy-measuring-machine'

- acoustic peaks in baryons as function of z
- weak gravitational lensing in large fields
- \rightarrow Measure DE parameters w_0 and w_1 to 1% accuracy

Ultraluminous galaxy

Milky Way-like spiral (10⁹ M_{\odot} of HI³⁷ M83

Dark energy measuring machine: I-Wiggles

Map the acoustic oscillations, or wiggles, in the galaxy power spectrum P(k) as function of redshift: Only the SKA can get the required billion all-sky redshifts out to z=1.5

II- Weak Shear 10 billion galaxies, 10 nanoJy

But precision is not all! Bias $f_b = \Omega_b / \Omega_m$ assumed linear (Blake et al 2004)

SKA contour In red SDSS in blue

Worries about systematics, so that targeted experiments should certainly be cleaner.

Testing DE with wiggles

Note, still needs `priors' on Ω_m h² and h (with Planck and/or, e.g., SKA masers)

Conclusion

→ Baryon acoustic oscillations measure Rs (150 Mpc, CMB) and are used as a standard ruler to measure the distance D_A and H(z)

→ Bias measured by Alcock-Paczynski test

→SKA will be unique for large volume and high resolution 1 billion galaxies at 21cm, 10 billion for WL

→ Together with WL, determine DE parameters with 1% precision

 \rightarrow Non-linearities: to be simulated with cosmological simulations