Les Oscillations Acoustiques Baryoniques (BAO) en radio

Forum Pre-SKA R. Ansari 9 Octobre 2009

- Les Oscillations Acoustiques Baryoniques et l'énergie noire
- BAO en radio
 - Observation des galaxies
 - Cartographie 3D de l'émission H21
- Projet BAORadio : R&D en France
 - Développement de la chaîne électronique
 - Tests à Nançay et à Pittsburgh

BAO: Oscillations Acoustiques Baryoniques

- Empreintes laissées par les oscillations du fluide baryons-photons dans la distribution de la matière ordinaire (lumineuse) au cours de la formation des structures
- Modulation de la distribution de matière baryonique, qui suit essentiellement la matière sombre, dans des structures formées par croissance des fluctuation de densité et effondrement gravitationnel
- Sonde cosmologique de type règle standard avec une mesure @ z 1100 en prime (anisotropies du fond diffus micro-ondes)

Distance de diamètre angulaire $d_A(z)$ Taux d'expansion Ho / H(z) (BAO radial/LOS)

Biais et effets systématiques

- Effets exotiques changeant l'horizon acoustique
- P(k) et le régime non linéaire (élargit/déplace le pic de corrélation)
- Biais : traceurs (galaxies) / matière noire, effets d'évolution
- Distorsion dans l'espace des redshifts
- Biais de sélection
- Géométrie du relevé,
- Autres biais/erreurs induits par les observations (photo-z ...)
- Avant-plans en radio

Régime non linéaire et effet sur les BAO A.G.Sanchez et al astro-ph/0804.0233

Incertitudes statistiques sur l'estimation de P(k)

- L'incertitude intrinsèque, donnée par le nombre de modes observées ou mesurés
- Shot noise (bruit de grenaille) du à l'échantillonnage de Poisson du champ de densité par les objets traceurs (galaxies) $\sigma_P = \sqrt{\frac{4\pi^2}{\delta k V_{surv}}} \left[P + \frac{1}{n_{gal}} \right]$

$$\frac{1}{n_{gal}} = P_{shotnoise}$$

- n_{gal}: Galaxy number density
 Bruit en mode imagerie radio (cartographie de l'intensité d'émission H21
- Avant-plans en radio

BAO en radio

A la manière des relevés optiques :

■Identification des sources d'émissions HI (21 cm), détermination de la position angulaire et du décalage vers le rouge - Détermination de la fonction de corrélation à deux points ou le spectre P(k) à partir du catalogue des objets identifiés

A la manière des observations du fond diffus :

= Cartographie à trois dimensions de l'émission HI (21 cm) $T_{21}(\alpha, \delta, z) - Estimation et soustraction des avant-plans,$ détermination du spectre P(k, z) sur les données du cube 3D

BAO en radio avec les galaxies					
$S_{21}^{Jy} \simeq 0.021 10^{-6} \text{Jy} \frac{M_{H_I}}{M_{\odot}} \times \left(\frac{1 \text{Mpc}}{D_L}\right)^2 \times \frac{200 \text{km/s}}{\sigma_v}$					
$S_{lim} = \frac{2 k T_{sys}}{A \sqrt{2t_{integ} \Delta \nu}}$					
S_{lim} en μ Jy pour $t_{integ} = 86400$ s , $\nu = 1$ MHz S_{21} en μ Jy pour $M_{H_I} = 10^{10} M_{\odot}$					
A (m^2)	Tsys (K)	Slim (µJy)		Z.	S21 (µJy)
5000	50	66		0.25	140
5000	25	22		0.50	27
,000	2)	55		I.O	4.8
100000	50	3.5		I.5	I.74
100000	25	I.7		2.0	0.85

R.Ansari - Octobre 2009

http://www.atnf.csiro.au/projects/askap/newdocs/fastmemo.pdf

BAORadio-CRT: Concept de l'instrument

- Cartographie de la distribution de masse HI par mesure d'intensité à 21 cm (Pas de détection de source)
- Instrument de type synthèse-de-lobe/interféromètre à grand champ (10-100 deg^2)
 - ⇒ ≥ 1000 lobes simultanés → Système numérique
- Récepteurs large bande (200-250 MHz) numériques
- Corrélateur/beamformer numérique : flux TO/s
- Antennes (réflecteurs) à bas coût cylindriques fixes (ou petites paraboles)
- Résolution 5-10 arcmin, Surface \ge 10 000 m²
 - Antennes réparties sur ~ 200 m × 200 m

BAO avec une cartographie T21(α, δ, z)

✓ Ne nécessite qu'une résolution angulaire de 10-15 arcmin

Bruit instrumental

Difficulté de soustraction des avant plans et des sources radio

http://lambda.gsfc.nasa.gov/

T₂₁ < **mK** !

R.Ansari - Jan 2008

Spectre P(k) H21 en température

 $T_{21}(z) \simeq 0.57 \,\mathrm{mK} \times \frac{(1+z)^2}{\sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda}} \left(\frac{h_{100}}{0.7}\right) \left(\frac{\Omega_B}{0.04}\right) \left(\frac{f_{H_I}(z)}{0.1}\right)$

 $P(\mathbf{k})_{Temp} = P(k)_{masse} \times [T_{21}(z)]^{2}$ Variance(P(k)) = $\sigma_{P(k)}^{2}$ $\sigma_{P(k)} = P(k) \times \sqrt{\frac{4\pi^{2}}{\delta k V_{surv}}}$

 $f_{H_I}(z)$: fraction des baryons sous forme $H_I \sim 0.02$ $\delta k \sim 0.01 \rightarrow D \sim 5m$

$$PNoise = \kappa \times T_{sys} \times T_{sys} \times \frac{v_{pix}}{t_{int} \, \delta \nu}$$

$$\kappa = \left(\frac{1}{\text{FillFactor}}\right)^2$$
Resolution $\simeq 5 \operatorname{arcmin} \quad (@z \sim 0.5)$

$$v_{pix} \simeq 3Mpc \times 3Mpc \times 4Mpc \sim 36Mpc^3$$

$$\delta nu = 1Mhz$$

BAO - Radio R&D en cours

Prototype CRT-BAORadio

- Construction de deux réflecteurs cylindriques longxlarg ~ 25m × 10m
 résolution ~ 1 deg terminée (CMU-Pittsburgh) 64 cartes x 4
 récepteurs (dipôles) / carte = 256 dipôles, 128 / cylindre
- Etude et construction d'un prototype électronique 32 voies (70k€) : LAL + DAPNIA (filtrage, numérisation @ 500 MHz, FFT, transfert et traitement sur PC)
- Tests auprès du radiotélescope de Nançay
- Tests sur les réflecteurs cylindrique de Pittsburgh
- Equipement du proto FAN
- Faisabilité validation de la technique reconstruction multilobe par traitement numérique. Evaluation réaliste des coûts

Tests à Pittsburgh, Juin 2009

SKA : < 100 MHz ... 20 GHz , < 1 arcsec resolution

Conclusion

- Complémentarité des projets optiques / radio
- Nouvelle approche : Cartographie de l'émission de l'hydrogène neutre
- Développements techniques (électronique, FAN ...) en France, complémentaire de l'effort SKA

P(k), PNoise - mK², Setup-1 z=0.5

22

E

000

S

へく

60

20

ys=50

PNoise

II N

D

Inside the focal carriage

1450 MHz • 1250 Rapport S/N

Sensibilité BAORadio

S ~ 10000 m^2

• DE : $p = w(z) \varrho$

•
$$w(z) = w_0 + w_a z/(I+z)$$

- - $k \perp$, Acoustic horizon : as
- $k/(z) \sim c / H(z) / as$
- $k_{\perp}(z) \sim a_s / D_A(z)$
 - 8 slices $0 \le z \le 1.6$
 - Fisher matrix error analysis
 - σ(w₀) ~ 0.05, σ(w_a) ~ 0.05
 for an H21-radio survey

R.Ansari - Jan 2008