

SKA & ALMA

4、1997年1月1日的1月

Françoise Combes **Observatoire de Paris** 16 Juin 2009

Capacities of ALMA

 \rightarrow 50 x 12m, bases from 200m to 14km, 3mm to 0.3mm (factor ~6 in surface with respect to IRAM-PdB) \rightarrow 4 frequency bands at the beginning 84-116 GHz, 211-275 GHz, 275-370 GHz, 602-720 GHz Large bandwidth of 8GHz/polar

Spatial resolution, up to 10mas, Spectral resolution up to $R=10^8$ Dynamical range from 128x128 to 8192x8192 pixels

Small field of view: from 1 arcmin (3mm) to 6 arsec (0.3mm) Possibility of mosaics

Early Science? Debated **In 2012-3:** Full Operation

Synergy on the 5 Key Projects

→ KP-1 Cradle of life (search for Earth-like planets, astrochemistry/biology) → KP-2 Strong-field tests of gravity

→ KP-3 Origin and evolution of cosmic magnetism (Faraday rotation, Zeeman effect)

Synergy on the 5 Key Projects

→ KP-4 Galaxy evolution and cosmology (surveys in HI at z up to 2, CO and continuum)

→ KP-5 Probing the dark ages (Epoch of Reionisation) (HI in emission/absorption, CO, continuum)

reionization

Main privilege of the mm/submm domain

Negative K-correction: example of Arp 220

Detecting galaxies at high redshift with ALMA // SKA

→For high z galaxies, go to low frequencies z=6 CO(7-6) at 3mm

At 3mm (115GHz), field of 1 arcmin x 1 arcmin Most frequently $300x 300 = 90\ 000\ \text{pixels/spectra}$

Bandwidth 2x 8GHz ~ 16%, or ~50 000km/s Possibility to have several lines from the Rotational ladder of CO, or other molecules..

@z =6, the spacing between CO lines is of 16 GHz.
With 2 tunings, one obtains a « redshift-machine »

Star formation rate in LBGs

SFE ~140 Mo/Lo

LCO & gas mass 7 times higher than cB58

z=2.73

8 o'clock arc Allam et al 2007

SMGs: Submillimeter Galaxies Star formation efficiency L_{IR}/L'_{CO} vs z

Greve et al 2005

6 SMGs not detected in CO

40- 200 Myr SB phase SFR ~700 Mo/yr More efficient than ULIRGs

Mergers without bulges?

Total masses ~0.6 M_{*}

Z=3 ULIRGs easy to detect with ALMA

 $M(H_2) = 6 \ 10^{10} Mo, N(H_2) = 3.5 \ 10^{24} \text{ cm}^{-2}, CO/H_2 \sim 10^{-4}$

Predictions for LBG at z~3: ALMA 24h, 0.1"

Greve & Sommer-Larsen 2008

rms=10 μ Jy/beam (2-3 σ)

Low efficiency of star formation

In BzK galaxies, much more CO emission detected than expected Massive galaxies, CO sizes 10kpc? L(FIR) ~10¹² Lo Normal SFR, M(H2) ~ 2 10¹⁰ Mo τ ~2 Gyr Much larger population of gas rich galaxies at high z

Daddi et al 2008

Excitation in high-z starbursts

Weiss et al 2007

z> 7 sources: ALMA CO discovery space

Walter & Carilli 2007

Other lines CII 158m, CI, NII...

10 times less than locally

CII detected in J1148 QSO at IRAM

Molecular surveys

TODAY

TOMOROW

ALMA J1148 24 hours

ALMA prediction

Molecular Absorptions (mm & cm)

Up to now, only 5 systems: PKS1413, B3 1504 (self-abs) B0218, PKS1830, PMN J0134 (OH): gravit lenses + local: CenA, 3C293 (0.045), 4C 31.04 (0.06)

Chemistry @highz Variations of cst

~ 30-100 times more sources with ALMA?

Combes & Wiklind 1998

Conclusions

•ALMA deep field in continuum: N(S), SFR (z) and SFH

the CO lines will be intensively observed at high z with ALMA
efficiency of star formation (z), and the kinematics, Mdyn

→ If CO not excited, either CII, or go to GBT, EVLA and SKA precursors to detect the low-J CO lines