

Abstract

# Late stages of stellar evolution 

Kevin Marvel<br>American Astronomical Society, 2000 Florida Avenue, NW, Suite 400, Washington, DC 20009, USA


#### Abstract

The square kilometer array (SKA) will have the sensitivity, spatial resolution, and frequency resolution to provide new scientific knowledge of evolved stars. Four basic areas of scientific exploration are enhanced by the construction of the SKA: (1) detection and imaging of photospheric radio continuum emission and position correlation with maser distributions, (2) imaging of thermal dust emission around evolved stars and the detailed structures of their circumstellar winds (again, including comparison with maser distributions), (3) study of cm-wavelength molecular line transitions and the circumstellar chemistry around both O-rich and C-rich evolved stars and (4) the possible observation of polarized emission due to the influence of the magnetic fields of AGB stars. Since this short chapter is not meant to be a review article, a comprehensive reference list has not been generated. I have selected just one or perhaps two references for citations where appropriate.


© 2004 Published by Elsevier B.V.

## 1. Introduction

Although much can be learned by studying stellar nurseries and the fascinating process of stellar birth, we have much yet to learn in the field of stellar geriatrics. Stars that do not proceed to explosive ends, the low- and intermediate-mass stars, undergo a period of mass loss, often extreme, in which $50 \%$ or more of the star's initial mass is transferred back to the ISM. The rates of this mass

[^0]loss vary widely from $10^{-6} M_{\odot}$ per year to as much as $10^{-4} M_{\odot}$ per year.

Such prodigious mass loss and the large number of low- and intermediate-mass stars results in the fact that most of the interstellar medium - perhaps as much as $80-90 \%$ - has been cycled through a star and ejected via this process. Flash-in-the-pan supernovae do have a significant impact, especially enriching the heavier metals in the ISM, but the bulk of the material is provided by the aging process of common stars similar to the Sun. Understanding how the mass loss process proceeds and its implications on the chemical modification of the ISM in our own galaxy has obvious implica-
tions for the study of more distant galaxies as well as being of interest itself.

The mass loss process proceeds from the formation of dust in the upper atmospheres of evolved stars, a few stellar radii from the optical photosphere. This process has long been thought to be driven by the pulsations inherent in these kinds of stars, but it now appears likely that it is driven by dramatic temperature fluctuations caused by the formation of TiO in the stellar atmosphere, which changes the physical conditions in the dust formation region (Reid and Goldston, 2002).

Although the details of dust formation remain an unknown factor, we know roughly that when the temperature and density conditions are appropriate, nucleation can occur, leading to the formation of dust. This dust, exposed to the radiation field of the evolved star, absorbs outward momentum and begins to accelerate. Gas not incorporated into dust grains is carried along with the dust through momentum coupling. As conditions allow, molecules can form from the gas that is carried along with the outward-moving dust. Using existing centimeter and millimeter wave interferometers, studies of the molecules formed in these winds have been completed showing more or less spherically symmetric mass loss (Rieu and Bieging, 1990) with some interesting results such as rotation (Bieging and Rieu, 1996) and perfect spherical symmetry of an apparently single ejection event (Olofsson et al., 1998).

Certain molecules are capable of maser emission (e.g. $\mathrm{SiO}, \mathrm{H}_{2} \mathrm{O}$ and OH ). When such masers are found in the winds of evolved O-rich stars, they are powerful probes of the mass loss kinematics. Some C-rich stars do exhibit HCN masers at high frequencies, but the O-dominated species are absent. However, they can provide only rough information about the physical conditions of the wind itself, provided by the physical conditions required for maser emission. Using VLBI techniques, which provide resolutions as fine as $100 \mu$ as, the motions of masing gas can be tracked with high accuracy and the kinematics of the wind modelled. In practice, this has proven to be a challenging undertaking. The non-linear emission process and apparently complex distributions of the masers make modelling difficult. Only rough models have
yet been made placing the masers in ellipsoidal distributions undergoing a variety of kinematic motions. The maser observations do indicate more-or-less spherically or elliptically symmetric mass loss with acceleration occurring to the outermost regions of the wind where acceleration ceases due to decoupling of the gas from the dust. A mild controversy about the relative angular scales of the OH and $\mathrm{H}_{2} \mathrm{O}$ maser distributions (e.g. the OH masers, although predicted to be at large radii, appear at about the same angular scale as the $\mathrm{H}_{2} \mathrm{O}$ masers) is likely due to beaming effects. Water masers are preferentially tangentially beamed as they reside in an accelerating portion of the wind while the OH masers are radially beamed as they reside in a constant velocity region of the wind (Reid, 2002). As difficult as the physics and geometries are, our current understanding is limited due to lack of adequate modelling in my opinion. Other results indicate non-negligible rotation (Boboltz and Marvel, 2000) of the envelopes and the influence of magnetic fields on the shape of the shell (Murakawa et al., 2003).

We have yet to understand the dust formation process in these objects. Although infrared interferometric observations (Monnier et al., 2004) hint at a very clumpy and dynamic process, we have few tools available to probe this process in detail. We have only a very rough picture of the structure of the extended photosphere and wind of evolved stars. The role of magnetic fields in AGB stars has not been explored in any detail, though they must impact the dust formation process, the wind itself and obviously provide information on the star itself.

Although detailed studies have been made using millimeter interferometers of the chemical structure of the nearest and largest evolved stars, much of the chemical structure in these objects remains a mystery. ALMA will help here but will miss the low-frequency line transitions. A detailed understanding of the structure of these objects awaits the square kilometer array (SKA).

The SKA, with its high resolution, sensitivity to a range of emission mechanisms and low-frequency observing capability will allow studies of evolved stars that have not been possible before and provide complementary observations to those
provided by ALMA and other instruments. I discuss the anticipated observations SKA can provide in the sections below.

## 2. Imaging the surfaces of AGB stars

### 2.1. Fluctuations first

It has been shown (Petit and Nicholson, 1933) that certain AGB stars, the Mira variables, undergo temperature changes of $30 \%$ and luminosity changes of a factor of two during their visual fluctuation period ( $L=\sigma T_{e}^{4} \pi R^{2}$ ). As shown in Reid and Goldston (2002), these changes should result in stellar radius fluctuations of about $40 \%$. Such dramatic fluctuations would lead to both dramatic shock waves that propagate from the star into its extended photosphere and also measurable changes in light curves at radio, infrared and optical wavelengths. The visual light curve fluctuates dramatically (extreme cases show fluctuations of 8 magnitudes) while the infrared light curves rarely
fluctuate by more than a magnitude and the radio 156 light curves fluctuate only by a few percent at 157 most. 158

Observed light curves do not match those pre- 159 dicted by the radial fluctuations implied by the 160 temperature and luminosity fluctuations (Reid 161 and Goldston, 2002). Fig. 1 shows the model from 162 (Reid and Goldston (2002)) that (to first order) 163 reproduces the radio, infrared and visual light 164 curves. The model predicts that TiO is formed in 165 the upper atmosphere as the star approaches min- 166 imum light and this additional opacity source can 167 greatly decrease the observed light at visual wave- 168 lengths while having less impact at infrared wave- 169 lengths and almost no impact at radio 170 wavelengths. This new discovery shows that much remains to be learned about evolved stars. After all, Mira variables are one of the oldest astronomical phenomena studied and only now has an adequate first-order model been developed to explain their fluctuations.

The SKA will allow further testing of these models at far greater sensitivity. Observations of


Fig. 1. A schematic depiction of the change in visual appearance of a Mira variable star at maximum (left-hand panel) and minimum (right-hand panel) light. The star, shown in red, is smaller and hotter at maximum light than at minimum light. At maximum light, the extended atmosphere of the star (shown as yellow) is partially transparent at visual wavelengths, and one sees almost down to the stellar surface (indicated with arrows). Near minimum light, the temperature of the star has declined and metallic oxides, such as TiO (shown as green), form throughout the extended atmosphere. The fraction of Ti in $\mathrm{TiO}, f(\mathrm{TiO})$, as a function of radius is plotted in blue. Near minimum light, TiO forms with sufficient density at a radius of $\approx 1.8 R_{*}$ to become opaque to visible light. At this radius, the temperature can be very low, and almost all radiation is in the infrared. Since little visible light emerges, the star can almost disappear to the human eye. Figure and caption text taken from Reid and Goldston (2002).
the flux from the photospheres of AGB stars are exceedingly difficult. Typical fluxes are on the order of $200 \mu \mathrm{Jy}$ and require special calibration techniques with current interferometers. The SKA, with a sensitivity of about $0.1 \mu \mathrm{Jy}$ at 20 GHz will provide the most accurate AGB star light curves across all wavelengths. Such measurements will allow improved modelling of the opacity source fluctuations in the star.

The discovery of particularly large extrasolar planets orbiting close to their host star opens up the possibility for the observation of eclipses using the SKA, as has been observed in the star HD 209458. However, the eclipse type that is potentially observable would be an active radio-emitting planet similar to Jupiter being eclipsed by its host star rather than the more typical eclipse. As pointed out in Taylor and Braun (1999), Jupiterlike planets will produce detectable radio emission out to distances of 10 pc . The passage of a planet of this type behind its host AGB star would be detectable, since the emission from the planet would be of order $10 \mu \mathrm{Jy}$, compared to the photospheric flux of $200 \mu \mathrm{Jy}$.

### 2.2. Imaging second

The diameter of the radio photosphere of a typical AGB star is of order 5 AU . At 1 kpc , such a source would have a maximum angular diameter of 6 mas. At 22 GHz and with 1000 km baselines, the SKA will have a resolution of roughly 3 mas. This resolution corresponds to linear resolution of 3 AU at 1 kpc . For AGB star diameters of 35 AU, they can be moderately resolved with SKA. Thus, for only the nearest AGB stars will any degree of imaging be possible. The number of AGB stars closer than 1 kpc is limited. Without a substantial increase in the highest frequency observed by the SKA or the maximum baselines, imaging of only the nearest AGB stars will be possible.

That said, some very interesting imaging projects can be undertaken for large AGB stars not further than 1 kpc from the Earth. For example, the well-known and nearby ( 150 pc ) carbon star IRC +10216 has a photospheric size of 35 mas and an extended envelope diameter of nearly $1^{\prime}$.

With a resolution element of 3 mas, the surface of the star would be imaged well and the overall envelope, especially in spectral lines (see below) would be highly resolved. The imaging design goal of $0.1^{\prime \prime}$ resolution at 1.4 GHz over a $1^{\circ}$ field (and scaled with frequency) is sufficient to provide high spatial dynamic range imaging at high sensitivity for objects of this type. The science the SKA will allow is the direct imaging of the dust formation process and connection with stellar pulsation for the nearest and largest AGB stars.

## 3. Observations of masers and their host stars

Maser emission from gas in the outflowing winds of AGB stars is a common phenomenon in O-rich AGB stars. Masers are regions of gas in the stellar wind that have sufficient velocity coherence to amplify background photons via amplified emission of radiation. Such amplification is possible due to a population inversion of the molecular species in question and a fortuitous alignment of molecular rotational, vibrational or ro-vibrational energy levels. Several species are found. SiO masers are located close to the star (within a few stellar radii and below the dust formation zone). $\mathrm{H}_{2} \mathrm{O}$ masers are located at intermediate distances from a few tens of stellar radii to a few hundred. The remote OH masers are located up to several thousand stellar radii from the host star.

In addition to knowing the location of the various maser species, we have a good understanding of the overall shell structure around these stars (Reid, 2002). Fig. 2 shows graphically our current understanding of the circumstellar region around an AGB star. The star itself is from between 1 and 5 AU in size. Above this surface is a chromospheric region followed by a molecular photosphere ending between 1 and 2 AU above the optical photosphere. The radio photosphere (about 0.5-1 AU in thickness) is located near the SiO maser formation region. Beyond this zone, wind acceleration begins as dust forms in a region from roughly 5 to 10 AU (depending on the properties of the star and pulsation phase). The $\mathrm{H}_{2} \mathrm{O}$ and OH masers begin to appear at radii of 15 AU or more and the OH masers are found further out


Fig. 2. A schematic showing our current understanding of the circumstellar region around an AGB star (Reid, 2002).

270 from the water maser shell. The exact sizes of the 271 various regions, their exact locations and how they 272 interact remain rough measurements.

Masers are imaged using VLBI techniques and typically have resolved sizes of a milliarcsecond or so, but observations with MERLIN show that
a weak diffuse emission can also be present ( Ri chards et al., 1999). Depending on the upper frequency cutoff for the SKA, the $\mathrm{OH}(1.6 \mathrm{GHz})$, methanol ( 6.7 GHz ) and water masers ( 22 GHz ) could be observable. However, it is not the detection of maser emission with the SKA that is of greatest interest (though the sensitivity of the instrument would allow detection of extragalactic masers to a much greater distance than currently available). It is the sensitivity to both the stellar photospheric emission and the dust continuum in the wind combined with the VLBI observations that will be of prime interest.

VLBI imaging techniques are sensitive only to very high brightness temperatures and the smallest angular sizes ( $1-5 \mathrm{mas}$ ) and therefore only the maser spots themselves and not the environment in which they are located can be imaged. With the


Fig. 3. This figure shows the locations of water masers detected with MERLIN (note beamsize of 40 mas in lower left-hand corner of figure) overlaid on infrared emission at $3.08 \mu \mathrm{~m}$. The infrared emission was imaged using an interferometric masking technique on the Keck 10 m telescope. Although registration of the images is a challenge technically, the image shows the power of such combination observations. Multi-epoch observations of both the water masers and the infrared emission shows changes over time and there is some hope of making time-lapse movies of these sources in the future. Figure courtesy of J. Monnier. (Monnier et al., 1999; Richards et al., 1998).
angular resolution of the SKA at $1.4 \mathrm{GHz}\left(0.1^{\prime \prime}\right)$, the thermal emission across a typical OH maser distribution $1-2^{\prime \prime}$ in diameter could be mapped with sufficient resolution and sensitivity to allow alignment of the VLBI maser observations with the overall dust distribution and star itself. Combined with infrared interferometric observations, which are now beginning to show the details of the dust distribution at high angular resolutions (see Fig. 3) (Monnier et al., 2004) ( $\approx 10$ mas, but over limited fields of view), the SKA will play a critical role in providing information on the largest scales.

Outstanding problems to be addressed include the details of dust formation, such as whether the process proceeds uniformly as a function of pulsation cycle or at particular times, the degree of clumpiness of the dust formation and the exact physical conditions that lead to dust formation. The transition of AGB stars from roughly spherically symmetric mass-losing objects to the asymmetric planetary nebulae has yet to be understood completely and the combination of the kinematic information provided by VLBI maser observations and the dust distribution will hopefully shed new light on this area.

## 4. Molecular gas

In the frequency range of the SKA are 634 molecular line transitions, many of which have not been well-studied, only detected, and some of which have still not been identified (Lovas, 2002). For convenience, these transitions are provided in Table 1.

Many of these species are expected to be present in the winds of evolved stars. As pointed out by Zijlstra (2003), both the dust and gas created in the stellar winds of AGB stars survive in the ISM. The dust, as indicated by reddening and particles found in meteorites or as micrometeoroid particulates in our own upper atmosphere (Messenger et al., 2003), survives in interstellar space. The presence of the diffuse interstellar bands are the main piece of evidence for the existence of rather complex molecules in interstellar space. As yet, we do not know if the molecules were formed

Table 1
Molecular line transitions in the frequency range 700 MHz to 30 GHz detected at least once in the interstellar environment Lovas, 2002

| Frequency (MHz) | Formula | Quantum numbers |
| :---: | :---: | :---: |
| 701.679 | CH | 23/2 $J=3 / 2 F=2-2$ |
| 704.175 | CH | $23 / 2 J=3 / 2 F=2+-1-$ |
| 722.303 | CH | $23 / 2 J=3 / 2 F=1+-2-$ |
| 724.791 | CH | $23 / 2 J=3 / 2 F=1-1$ |
| 834.285 | $\mathrm{CH}_{3} \mathrm{OH}$ | 1(1,0)-1(1,1) A-+ |
| 1065.076 | $\mathrm{CH}_{3} \mathrm{CHO}$ | 1(1,0)-1(1,1) A-+ |
| 1371.722 | $\mathrm{CH}_{2} \mathrm{CHCN}$ | 2(1,1)-2(1,2) $F=1-1$ |
| 1371.797 | $\mathrm{CH}_{2} \mathrm{CHCN}$ | 2(1,1)-2(1,2) $F=3-3$ |
| 1371.934 | $\mathrm{CH}_{2} \mathrm{CHCN}$ | 2(1,1)-2(1,2) $F=2-2$ |
| 1538.108 | $\mathrm{NH}_{2} \mathrm{CHO}$ | 1(1,0)-1(1,1) $F=1-1$ |
| 1538.676 | $\mathrm{NH}_{2} \mathrm{CHO}$ | 1(1,0)-1(1,1) $F=1-2$ |
| 1539.264 | $\mathrm{NH}_{2} \mathrm{CHO}$ | 1(1,0)-1(1,1) $F=2-1$ |
| 1539.527 | $\mathrm{NH}_{2} \mathrm{CHO}$ | 1(1,0)-1(1,1) $F=1-0$ |
| 1539.832 | $\mathrm{NH}_{2} \mathrm{CHO}$ | 1(1,0)-1(1,1) $F=2-2$ |
| 1540.998 | $\mathrm{NH}_{2} \mathrm{CHO}$ | 1(1,0)-1(1,1) $F=0-1$ |
| 1570.805 | $\mathrm{NH}_{2}{ }^{13} \mathrm{CHO}$ | 1(1,0)-1(1,1) $F=2-2$ |
| 1584.274 | ${ }^{18} \mathrm{OH}$ | $23 / 2 J=3 / 2 F=1-2$ |
| 1610.247 | $\mathrm{CH}_{3} \mathrm{OCHO}$ | 1(1,0)-1(1,1) A |
| 1610.900 | $\mathrm{CH}_{3} \mathrm{OCHO}$ | 1(1,0)-1(1,1) E |
| 1612.2310 | OH | $23 / 2 J=3 / 2 \quad F=1-2$ |
| 1624.518 | ${ }^{17} \mathrm{OH}$ | $23 / 2 J=3 / 2 \quad F, F 1=7 / 2,4-7 / 2,4$ |
| 1626.161 | ${ }^{17} \mathrm{OH}$ | 23/2 $J=3 / 2 \quad F, F 1=9 / 2,4-9 / 2,4$ |
| 1637.564 | ${ }^{18} \mathrm{OH}$ | $23 / 2 J=3 / 2 F=1-1$ |
| 1638.805 | HCOOH | 1(1,0)-1(1,1) |
| 1639.503 | ${ }^{18} \mathrm{OH}$ | $23 / 2 J=3 / 2 F=2-2$ |
| 1665.4018 | OH | $23 / 2 J=3 / 2 F=1-1$ |
| 1667.3590 | OH | $23 / 2 J=3 / 2 F=2-2$ |
| 1692.795 | ${ }^{18} \mathrm{OH}$ | $23 / 2 J=3 / 2 F=2-1$ |
| 1720.5300 | OH | $23 / 2 J=3 / 2 F=2-1$ |
| 2661.61 | $\mathrm{HC}_{5} \mathrm{~N}$ | $1-0 F=1-1$ |
| 2662.87 | $\mathrm{HC}_{5} \mathrm{~N}$ | $1-0 F=2-1$ |
| 2664.76 | $\mathrm{HC}_{5} \mathrm{~N}$ | $1-0 F=0-1$ |
| 3139.404 | $\mathrm{H}_{2} \mathrm{CS}$ | 2(1,1)-2(1,2) |
| 3195.162 | $\mathrm{CH}_{3} \mathrm{CHO}$ | 2(1,1) - 2 1,2 ) A-+ |
| 3263.794 | CH | $21 / 2 J=1 / 2 \quad F=0-1$ |
| 3335.481 | CH | $21 / 2 J=1 / 2 F=1-1$ |
| 3349.193 | CH | $21 / 2 J=1 / 2 F=1-0$ |
| 4388.7786 | $\mathrm{H}_{2} \mathrm{C}^{18} \mathrm{O}$ | 1(1,0)-1(1,1) F $=1-0$ |
| 4388.7960 | $\mathrm{H}_{2} \mathrm{C}^{18} \mathrm{O}$ | 1(1,0)-1(1,1) $F=0-1$ |
| 4388.7963 | $\mathrm{H}_{2} \mathrm{C}^{18} \mathrm{O}$ | 1(1,0)-1(1,1) $F=2-2$ |
| 4388.8011 | $\mathrm{H}_{2} \mathrm{C}^{18} \mathrm{O}$ | 1(1,0)-1(1,1) $F=2-1$ |
| 4388.8035 | $\mathrm{H}_{2} \mathrm{C}^{18} \mathrm{O}$ | 1(1,0)-1(1,1) $F=1-2$ |
| 4388.8084 | $\mathrm{H}_{2} \mathrm{C}^{18} \mathrm{O}$ | $1(1,0)-1(1,1) F=1-1$ |
| 4592.9563 | $\mathrm{H}_{2}{ }^{13} \mathrm{CO}$ | 1(1,0)-1(1,1)1/2,1/2-1/2,3/2 |
| 4592.9738 | $\mathrm{H}_{2}{ }^{13} \mathrm{CO}$ | 1(1,0)-1(1,1)1/2,1/2-3/2,3/2 |
| 4592.9759 | $\mathrm{H}_{2}{ }^{13} \mathrm{CO}$ | 1(1,0)-1(1,1)3/2,1/2-1/2,3/2 |
| 4592.9857 | $\mathrm{H}_{2}{ }^{13} \mathrm{CO}$ | 1(1,0)-1(1,1)3/2,1/2-5/2,3/2 |
| 4592.9934 | $\mathrm{H}_{2}{ }^{13} \mathrm{CO}$ | 1(1,0)-1(1,1)3/2,1/2-3/2,3/2 |
| 4593.0494 | $\mathrm{H}_{2}{ }^{13} \mathrm{CO}$ | 1(1,0)-1(1,1)1/2,1/2-1/2,1/2 |
| 4593.0690 | $\mathrm{H}_{2}{ }^{13} \mathrm{CO}$ | 1(1,0)-1(1,1)3/2,1/2-1/2,1/2 |

Table 1 (continued)

| 4593.0800 | $\mathrm{H}_{2}{ }^{13} \mathrm{CO}$ | 1(1,0)-1(1,1)1/2,1/2-3/2,1/2 |
| :---: | :---: | :---: |
| 4593.0812 | $\mathrm{H}_{2}{ }^{13} \mathrm{CO}$ | $1(1,0)-1(1,1) 1 / 2,3 / 2-1 / 2,3 / 2$ |
| 4593.0864 | $\mathrm{H}_{2}{ }^{13} \mathrm{CO}$ | $1(1,0)-1(1,1) 3 / 2,3 / 2-1 / 2,3 / 2$ |
| 4593.0865 | $\mathrm{H}_{2}{ }^{13} \mathrm{CO}$ | $1(1,0)-1(1,1) 5 / 2,3 / 2-5 / 2,3 / 2$ |
| 4593.0942 | $\mathrm{H}_{2}{ }^{13} \mathrm{CO}$ | $1(1,0)-1(1,1) 5 / 2,3 / 2-3 / 2,3 / 2$ |
| 4593.0961 | $\mathrm{H}_{2}{ }^{13} \mathrm{CO}$ | $1(1,0)-1(1,1) 3 / 2,3 / 2-5 / 2,3 / 2$ |
| 4593.0985 | $\mathrm{H}_{2}{ }^{13} \mathrm{CO}$ | $1(1,0)-1(1,1) 1 / 2,3 / 2-3 / 2,3 / 2$ |
| 4593.0994 | $\mathrm{H}_{2}{ }^{13} \mathrm{CO}$ | $1(1,0)-1(1,1) 3 / 2,1 / 2-3 / 2,1 / 2$ |
| 4593.1039 | $\mathrm{H}_{2}{ }^{13} \mathrm{CO}$ | $1(1,0)-1(1,1) 3 / 2,3 / 2-3 / 2,3 / 2$ |
| 4593.1741 | $\mathrm{H}_{2}{ }^{13} \mathrm{CO}$ | $1(1,0)-1(1,1) 1 / 2,3 / 2-1 / 2,1 / 2$ |
| 4593.1795 | $\mathrm{H}_{2}{ }^{13} \mathrm{CO}$ | $1(1,0)-1(1,1) 3 / 2,3 / 2-1 / 2,1 / 2$ |
| 4593.2003 | $\mathrm{H}_{2}{ }^{13} \mathrm{CO}$ | $1(1,0)-1(1,1) 5 / 2,3 / 2-3 / 2,1 / 2$ |
| 4593.2046 | $\mathrm{H}_{2}{ }^{13} \mathrm{CO}$ | $1(1,0)-1(1,1) 1 / 2,3 / 2-3 / 2,1 / 2$ |
| 4593.2099 | $\mathrm{H}_{2}{ }^{13} \mathrm{CO}$ | $1(1,0)-1(1,1) 3 / 2,3 / 2-3 / 2,1 / 2$ |
| 4617.121 | $\mathrm{NH}_{2} \mathrm{CHO}$ | $2(1,1)-2(1,2) F=2-2$ |
| 4618.967 | $\mathrm{NH}_{2} \mathrm{CHO}$ | 2(1,1)-2(1,2) $F=3-3$ |
| 4619.993 | $\mathrm{NH}_{2} \mathrm{CHO}$ | 2(1,1)-2(1,2) $F=1-1$ |
| 4660.242 | OH | $21 / 2 J=1 / 2 \quad F=0-1$ |
| 4750.656 | OH | $21 / 2 J=1 / 2 F=1-1$ |
| 4765.562 | OH | $21 / 2 J=1 / 2 F=1-0$ |
| 4829.6412 | $\mathrm{H}_{2} \mathrm{CO}$ | 1(1,0)-1(1,1) $F=1-0$ |
| 4829.6587 | $\mathrm{H}_{2} \mathrm{CO}$ | $1(1,0)-1(1,1) F=0-1$ |
| 4829.6594 | $\mathrm{H}_{2} \mathrm{CO}$ | 1(1,0)-1(1,1) $F=2-2$ |
| 4829.6639 | $\mathrm{H}_{2} \mathrm{CO}$ | 1(1,0)-1(1,1) $F=2-1$ |
| 4829.6664 | $\mathrm{H}_{2} \mathrm{CO}$ | 1(1,0)-1(1,1) $F=1-2$ |
| 4829.6710 | $\mathrm{H}_{2} \mathrm{CO}$ | 1(1,0)-1(1,1) $F=1-1$ |
| 4916.312 | HCOOH | 2(1,1)-2(1,2) |
| 5005.3208 | $\mathrm{CH}_{3} \mathrm{OH}$ | 3(1,2)-3(1,3) A-+ |
| 5289.015 | $\mathrm{CH}_{2} \mathrm{NH}$ | 1(1,0)-1(1,1) $F=0-1$ |
| 5289.678 | $\mathrm{CH}_{2} \mathrm{NH}$ | 1(1,0)-1(1,1) $F=1-0$ |
| 5289.813 | $\mathrm{CH}_{2} \mathrm{NH}$ | 1(1,0)-1(1,1) $F=2-2$ |
| 5290.614 | $\mathrm{CH}_{2} \mathrm{NH}$ | 1(1,0)-1(1,1) $F=2-1$ |
| 5290.879 | $\mathrm{CH}_{2} \mathrm{NH}$ | 1(1,0)-1(1,1) $F=1-2$ |
| 5291.680 | $\mathrm{CH}_{2} \mathrm{NH}$ | $1(1,0)-1(1,1) F=1-1$ |
| 5324.058 | $\mathrm{HC}_{5} \mathrm{~N}$ | $2-1 F=2-2$ |
| 5324.270 | $\mathrm{HC}_{5} \mathrm{~N}$ | $2-1 F=1-0$ |
| 5325.330 | $\mathrm{HC}_{5} \mathrm{~N}$ | 2-1 $F=2-1$ |
| 5325.421 | $\mathrm{HC}_{5} \mathrm{~N}$ | 2-1 $F=3-2$ |
| 5327.451 | $\mathrm{HC}_{5} \mathrm{~N}$ | 2-1 $F=1-1$ |
| 6016.746 | OH | $23 / 2 J=5 / 2 F=2-3$ |
| 6030.747 | OH | $23 / 2 J=5 / 2 \quad F=2-2$ |
| 6035.092 | OH | 23/2 $J=5 / 2 \quad F=3-3$ |
| 6049.084 | OH | $23 / 2 J=5 / 2 F=3-2$ |
| 6278.628 | $\mathrm{H}_{2} \mathrm{CS}$ | 3(1,2)-3(1,3) |
| 6389.933 | $\mathrm{CH}_{3} \mathrm{CHO}$ | 3(1,2)-3(1,3) A-+ |
| 6668.5192 | $\mathrm{CH}_{3} \mathrm{OH}$ | 5(1,6)-6(0,6) A++ |
| 7761.747 | OH | $21 / 2 J=3 / 2 F=1-1$ |
| 7820.125 | OH | $21 / 2 J=3 / 2 \quad F=2-2$ |
| 7895.989 | $\mathrm{HC}_{7} \mathrm{~N}$ | 7-6F $=6-5$ |
| 7896.010 | $\mathrm{HC}_{7} \mathrm{~N}$ | 7-6F=7-6 |
| 7896.023 | $\mathrm{HC}_{7} \mathrm{~N}$ | $7-6 F=8-7$ |
| 7987.782 | $\mathrm{HC}_{5} \mathrm{~N}$ | 3-2 $F=2-1$ |
| 7987.994 | $\mathrm{HC}_{5} \mathrm{~N}$ | $3-2 F=3-2$ |
| 7988.044 | $\mathrm{HC}_{5} \mathrm{~N}$ | 3-2 $F=4-3$ |

Table 1 (continued)

| Frequency <br> (MHz) | Formula | Quantum numbers |
| :---: | :---: | :---: |
| 8135.870 | OH | $21 / 2 J=5 / 2 \quad F=2-2$ |
| 8189.587 | OH | $21 / 2 J=5 / 2 F=3-3$ |
| 8775.088 | $\mathrm{CH}_{3} \mathrm{NH}_{2}$ | $2(0,2)-1(0,1) F=1-0$ Aa |
| 8777.442 | $\mathrm{CH}_{3} \mathrm{NH}_{2}$ | $2(0,2)-1(0,1) \quad F=3-2 \mathrm{Aa}$ |
| 8778.200 | $\mathrm{CH}_{3} \mathrm{NH}_{2}$ | $2(0,2)-1(0,1) \quad F=2-2 \mathrm{Aa}$ |
| 8778.260 | $\mathrm{CH}_{3} \mathrm{NH}_{2}$ | $2(0,2)-1(0,1) F=1-1 \mathrm{Aa}$ |
| 8779.496 | $\mathrm{CH}_{3} \mathrm{NH}_{2}$ | $2(0,2)-1(0,1) F=2-1 \mathrm{Aa}$ |
| 8815.814 | $\mathrm{H}^{13} \mathrm{CCCN}$ | $1-0 F=1-1$ |
| 8817.096 | $\mathrm{H}^{13} \mathrm{CCCN}$ | $1-0 F=2-1$ |
| 8819.019 | $\mathrm{H}^{13} \mathrm{CCCN}$ | $1-0 F=0-1$ |
| 9024.009 | $\mathrm{HC}_{7} \mathrm{~N}$ | 8-7 |
| 9058.447 | $\mathrm{HC}^{13} \mathrm{CCN}$ | $1-0 F=1-1$ |
| 9059.318 | $\mathrm{HCC}^{13} \mathrm{CN}$ | $1-0 F=1-1$ |
| 9059.736 | $\mathrm{HC}^{13} \mathrm{CCN}$ | $1-0 F=2-1$ |
| 9060.6080 | $\mathrm{HCC}^{13} \mathrm{CN}$ | $1-0 F=2-1$ |
| 9097.0346 | HCCCN | $1-0 F=1-1$ |
| 9098.3321 | HCCCN | $1-0 F=2-1$ |
| 9100.2727 | HCCCN | $1-0 F=0-1$ |
| 9118.823 | $\mathrm{CH}_{3} \mathrm{OCH}_{3}$ | 2(0,2)-1(1,1) AA |
| 9119.671 | $\mathrm{CH}_{3} \mathrm{OCH}_{3}$ | 2(0,2)-1(1,1) EE |
| 9120.509 | $\mathrm{CH}_{3} \mathrm{OCH}_{3}$ | 2(0,2)-1(1,1) AE |
| 9120.527 | $\mathrm{CH}_{3} \mathrm{OCH}_{3}$ | 2(0,2)-1(1,1) EA |
| 9235.119 | $\mathrm{NH}_{2} \mathrm{CHO}$ | $3(1,2)-3(1,3) F=3-3$ |
| 9237.034 | $\mathrm{NH}_{2} \mathrm{CHO}$ | $3(1,2)-3(1,3) F=4-4$ |
| 9237.704 | $\mathrm{NH}_{2} \mathrm{CHO}$ | $3(1,2)-3(1,3) F=2-2$ |
| 9486.71 | Unidentified |  |
| 9493.061 | $\mathrm{C}_{4} \mathrm{H}$ | $3 / 2-1 / 2 \quad F=1-0$ |
| 9496.4 | Unidentified |  |
| 9497.616 | $\mathrm{C}_{4} \mathrm{H}$ | 3/2-1/2 $F=2-1$ |
| 9508.005 | $\mathrm{C}_{4} \mathrm{H}$ | $3 / 2-1 / 2 F=1-1$ |
| 9547.953 | $\mathrm{C}_{4} \mathrm{H}$ | $1 / 2-1 / 2 F=1-0$ |
| 9551.717 | $\mathrm{C}_{4} \mathrm{H}$ | $1 / 2-1 / 2 \quad F=0-1$ |
| 9562.904 | $\mathrm{C}_{4} \mathrm{H}$ | $1 / 2-1 / 2 \quad F=1-1$ |
| 9703.508 | $\mathrm{C}_{6} \mathrm{H}$ | $23 / 2 J=3.5-2.5 F=4-3 \mathrm{e}$ |
| 9703.600 | $\mathrm{C}_{6} \mathrm{H}$ | $23 / 2 J=3.5-2.5 F=3-2 \mathrm{e}$ |
| 9703.835 | $\mathrm{C}_{6} \mathrm{H}$ | $23 / 2 J=3.5-2.5 F=4-3 \mathrm{f}$ |
| 9703.936 | $\mathrm{C}_{6} \mathrm{H}$ | $23 / 2 J=3.5-2.5 F=3-2 \mathrm{f}$ |
| 9877.606 | $\mathrm{HC}_{9} \mathrm{~N}$ | 17-16 |
| 9885.89 | CCCN | $1-0 J=3 / 2-1 / 2 \quad F=5 / 2-3 / 2$ |
| 9936.202 | $\mathrm{CH}_{3} \mathrm{OH}$ | $9(-1,9)-8(-2,7) \mathrm{E}$ |
| 9978.686 | $\mathrm{CH}_{3} \mathrm{OH}$ | $4(3,2)-5(2,3) \mathrm{E}$ |
| 10058.257 | $\mathrm{CH}_{3} \mathrm{OH}$ | 4(3,1)-5(2,4) E |
| 10152.008 | $\mathrm{HC}_{7} \mathrm{~N}$ | 9-8 |
| 10278.246 | HDO | 2(2,0)-2(2,1) |
| 10458.639 | $\mathrm{HC}_{9} \mathrm{~N}$ | 18-17 |
| 10463.962 | $\mathrm{H}_{2} \mathrm{CS}$ | 4(1,3)-4(1,4) |
| 10648.419 | $\mathrm{CH}_{3} \mathrm{CHO}$ | 4(1,3)-4(1,4) A-+ |
| 10650.563 | $\mathrm{HC}_{5} \mathrm{~N}$ | 4-3F=3-2 |
| 10650.654 | $\mathrm{HC}_{5} \mathrm{~N}$ | $4-3 F=4-3$ |
| 10650.686 | $\mathrm{HC}_{5} \mathrm{~N}$ | $4-3 F=5-4$ |
| 11119.445 | CCS | 1,0-0,1 |
| 11280.006 | $\mathrm{HC}_{7} \mathrm{~N}$ | 10-9 |
| 11561.513 | CCCS | 2-1 |

Table 1 (continued)

| 12162.979 | OCS | 1-0 |
| :---: | :---: | :---: |
| 12178.593 | $\mathrm{CH}_{3} \mathrm{OH}$ | 2(0,2)-3(-1,3) E |
| 12408.003 | $\mathrm{HC}_{7} \mathrm{~N}$ | 11-10 |
| 12782.769 | $\mathrm{HC}_{9} \mathrm{~N}$ | 22-21 |
| 12848.48 | Unidentified |  |
| 12848.731 | $\mathrm{HC}^{11} \mathrm{~N}$ | 38-37 |
| 13043.814 | SO | 1(2)-1(1) |
| 13116.451 | Unidentified |  |
| 13116.569 | Unidentified |  |
| 13186.46 | Unidentified |  |
| 13186.853 | $\mathrm{HC}^{11} \mathrm{~N}$ | 39-38 |
| 13186.98 | Unidentified |  |
| 13313.312 | $\mathrm{HC}_{5} \mathrm{~N}$ | 5-4 |
| 13363.801 | $\mathrm{HC}_{9} \mathrm{~N}$ | 23-22 |
| 13434.596 | OH | $23 / 2 J=7 / 2 F=3-3$ |
| 13441.4173 | OH | $23 / 2 J=7 / 2 F=4-4$ |
| 13535.998 | $\mathrm{HC}_{7} \mathrm{~N}$ | 12-11 |
| 13778.804 | $\mathrm{H}_{2}{ }^{13} \mathrm{CO}$ | 2(1,1)-2(1,2) |
| 13880.54 | Unidentified |  |
| 13944.832 | $\mathrm{HC}_{9} \mathrm{~N}$ | 24-23 |
| 14488.4589 | $\mathrm{H}_{2} \mathrm{CO}$ | 2(1,1)-2(1,2) $F=1-1$ |
| 14488.4712 | $\mathrm{H}_{2} \mathrm{CO}$ | 2(1,1)-2(1,2) $F=1-2$ |
| 14488.4801 | $\mathrm{H}_{2} \mathrm{CO}$ | 2(1,1)-2(1,2) $F=3-3$ |
| 14488.4899 | $\mathrm{H}_{2} \mathrm{CO}$ | 2(1,1)-2(1,2) $F=2-2$ |
| 14525.862 | $\mathrm{HC}_{9} \mathrm{~N}$ | 25-24 |
| 14663.993 | $\mathrm{HC}_{7} \mathrm{~N}$ | 13-12 |
| 14782.212 | ${ }^{13} \mathrm{CH}_{3} \mathrm{OH}$ | 2(0,2)-3(-1,3) E |
| 14812.002 | $c-\mathrm{C}_{3} \mathrm{H}$ | $\begin{aligned} & 1(1,0)-1(1,1) \\ & J=3 / 2-1 / 2 \quad F=2-1 \end{aligned}$ |
| 14877.671 | $c-\mathrm{C}_{3} \mathrm{H}$ | $\begin{aligned} & 1(1,0)-1(1,1) \\ & J=3 / 2-3 / 2 \quad F=2-1 \end{aligned}$ |
| 14893.050 | $c-\mathrm{C}_{3} \mathrm{H}$ | $\begin{aligned} & 1(1,0)-1(1,1) \\ & J=3 / 2-3 / 2 \quad F=2-2 \end{aligned}$ |
| 14895.243 | $c-\mathrm{C}_{3} \mathrm{H}$ | $\begin{aligned} & 1(1,0)-1(1,1) \\ & J=3 / 2-3 / 2 \quad F=1-1 \end{aligned}$ |
| 15106.892 | $\mathrm{HC}_{9} \mathrm{~N}$ | 26-25 |
| 15248.225 | $\mathrm{C}_{6} \mathrm{H}$ | $23 / 2 J=11 / 2-9 / 2 F=6-5 \mathrm{f}$ |
| 15248.359 | $\mathrm{C}_{6} \mathrm{H}$ | $23 / 2 J=11 / 2-9 / 2 F=5-4 \mathrm{f}$ |
| 15249.064 | $\mathrm{C}_{6} \mathrm{H}$ | $23 / 2 J=11 / 2-9 / 2 F=6-5 \mathrm{e}$ |
| 15249.198 | $\mathrm{C}_{6} \mathrm{H}$ | $23 / 2 J=11 / 2-9 / 2 \quad F=5-4 \mathrm{e}$ |
| 15687.921 | $\mathrm{HC}_{9} \mathrm{~N}$ | 27-26 |
| 15791.986 | $\mathrm{HC}_{7} \mathrm{~N}$ | 14-13 |
| 15975.966 | $\mathrm{HC}_{5} \mathrm{~N}$ | 6-5 |
| 16268.950 | $\mathrm{HC}_{9} \mathrm{~N}$ | 28-27 |
| 16849.979 | $\mathrm{HC}_{9} \mathrm{~N}$ | 29-28 |
| 16886.312 | DCCCN | 2-1 $F=2-1$ |
| 16886.405 | $\mathrm{DC}_{3} \mathrm{~N}$ | 2-1 $F=3-2$ |
| 16919.979 | $\mathrm{HC}_{7} \mathrm{~N}$ | 15-14 |
| 17091.742 | $\mathrm{CH}_{3} \mathrm{CCH}$ | $1(0)-0(0)$ |
| 17342.256 | CCCS | 3-2 |
| 17431.006 | $\mathrm{HC}_{9} \mathrm{~N}$ | 30-59 |
| 17632.685 | $\mathrm{H}^{13} \mathrm{CCCN}$ | 2-1 $F=2-2$ |
| 17633.844 | $\mathrm{H}^{13} \mathrm{CCCN}$ | 2-1 $F=3-2$ |
| 17647.479 | $\mathrm{C}_{4} \mathrm{D}$ | $5 / 2-3 / 2 \quad F=5 / 2-3 / 2$ |
| 17647.526 | $\mathrm{C}_{4} \mathrm{D}$ | $5 / 2-3 / 2 \quad F=3 / 2-1 / 2$ |
| 17647.716 | $\mathrm{C}_{4} \mathrm{D}$ | $5 / 2-3 / 2 \quad F=7 / 2-5 / 2$ |

Table 1 (continued)

| 17666.995 | $\mathrm{HCCC}^{15} \mathrm{~N}$ | 2-1 |
| :---: | :---: | :---: |
| 17683.961 | $\mathrm{C}_{4} \mathrm{D}$ | $3 / 2-1 / 2 \quad F=5 / 2-3 / 2$ |
| 17684.662 | $\mathrm{C}_{4} \mathrm{D}$ | $3 / 2-1 / 2 \quad F=3 / 2-1 / 2$ |
| 17736.75 | Unidentified |  |
| 17788.570 | $\mathrm{H}_{2} \mathrm{CCCC}$ | 2(1,2)-1(1,1) |
| 17863.803 | $\mathrm{H}_{2} \mathrm{CCCC}$ | 2(0,2)-1(0,1) |
| 17937.956 | $\mathrm{H}_{2} \mathrm{CCCC}$ | 2(1,1)-1(1,0) |
| 17945.85 | Unidentified |  |
| 17951.95 | Unidentified |  |
| 17965.09 | Unidentified |  |
| 17974.01 | Unidentified |  |
| 18012.033 | $\mathrm{HC}_{9} \mathrm{~N}$ | 31-30 |
| 18012.46 | Unidentified |  |
| 18017.337 | $\mathrm{NH}_{3}$ | 7(3)-7(3) |
| 18020.574 | $\mathrm{C}_{6} \mathrm{H}$ | $23 / 2 J=6.5-5.5 \quad F=7-6 \mathrm{e}$ |
| 18020.644 | $\mathrm{C}_{6} \mathrm{H}$ | $23 / 2 J=6.5-5.5 \quad F=6-5 \mathrm{e}$ |
| 18021.752 | $\mathrm{C}_{6} \mathrm{H}$ | $23 / 2 J=6.5-5.5 F=7-6 \mathrm{f}$ |
| 18021.818 | $\mathrm{C}_{6} \mathrm{H}$ | $23 / 2 J=6.5-5.5 F=6-5 \mathrm{f}$ |
| 18021.86 | Unidentified |  |
| 18047.969 | $\mathrm{HC}_{7} \mathrm{~N}$ | 16-15 |
| 18119.029 | $\mathrm{HC}^{13} \mathrm{CCN}$ | $2-1 F=2-1$ |
| 18120.773 | $\mathrm{HCC}^{13} \mathrm{CN}$ | $2-1 F=2-1$ |
| 18120.865 | $\mathrm{HCC}^{13} \mathrm{CN}$ | $2-1 F=3-2$ |
| 18154.884 | SiS | 1-0 |
| 18186.652 | $\mathrm{C}_{8} \mathrm{H}$ | 23/2 15.5-15.5 e |
| 18186.782 | $\mathrm{C}_{8} \mathrm{H}$ | 23/2 15.5-15.5 f |
| 18194.9206 | HCCCN | 2-1 $F=2-2$ |
| 18195.3176 | HCCCN | 2-1 $F=1-0$ |
| 18196.2183 | HCCCN | 2-1 $F=2-1$ |
| 18196.3119 | HCCCN | 2-1 $F=3-2$ |
| 18197.078 | HCCCN | 2-1 $F=1-2$ |
| 18198.3756 | HCCCN | $2-1 F=1-1$ |
| 18222.65 | Unidentified |  |
| 18285.434 | $\mathrm{NH}_{3}$ | 10(7)-10(7) |
| 18294.20 | Unidentified |  |
| 18299.5 | Unidentified |  |
| 18306.3 | Unidentified |  |
| 18320.7 | Unidentified |  |
| 18343.144 | $c-\mathrm{C}_{3} \mathrm{H}_{2}$ | $1(1,0)-1(0,1)$ |
| 18360.50 | Unidentified |  |
| 18363.045 | Unidentified |  |
| 18363.142 | Unidentified |  |
| 18363.306 | Unidentified |  |
| 18363.406 | Unidentified |  |
| 18368.0 | Unidentified |  |
| 18379.6 | Unidentified |  |
| 18383.3 | Unidentified |  |
| 18391.562 | $\mathrm{NH}_{3}$ | 6(1)-6(1) |
| 18396.7252 | $\mathrm{CH}_{3} \mathrm{CN}$ | 1(0)-0(0) $F=1-1$ |
| 18397.9965 | $\mathrm{CH}_{3} \mathrm{CN}$ | 1(0) $-0(0) F=2-1$ |
| 18399.8924 | $\mathrm{CH}_{3} \mathrm{CN}$ | 1(0)-0(0) $F=0-1$ |
| 18413.822 | $c-\mathrm{H}^{13} \mathrm{CCCH}$ | $1(1,0)-1(0,1)$ |
| 18422.00 | Unidentified |  |
| 18485.07 | Unidentified |  |
| 18494.1 | $\mathrm{CH}_{3} \mathrm{SH}$ | 18(2)-17(3) A+ |
| 18499.390 | $\mathrm{NH}_{3}$ | 9(6)-9(6) |

Table 1 (continued)

| 18513.316 | $\mathrm{CH}_{2} \mathrm{CHCN}$ | $2(1,2)-1(1,1) F=3-2$ |
| :---: | :---: | :---: |
| 18586.06 | Unidentified |  |
| 18593.060 | $\mathrm{HC}_{9} \mathrm{~N}$ | 32-31 |
| 18638.616 | $\mathrm{HC}_{5} \mathrm{~N}$ | 7-6 |
| 18650.308 | HCCCHO | $2(0,2)-1(0,1)$ |
| 18673.312 | HNCCC | 2-1 |
| 18698.16 | Unidentified |  |
| 18729.12 | Unidentified |  |
| 18793.92 | Unidentified |  |
| 18802.235 | $\mathrm{H}_{2} \mathrm{CCCCCC}$ | 7(1,7)-6(1,6) |
| 18807.888 | $\mathrm{NH}_{2} \mathrm{D}$ | $3(1,3)-3(0,3)$ |
| 18808.507 | $\mathrm{NH}_{3}$ | $8(5)-8(5)$ |
| 18817.66 | Unidentified |  |
| 18864.65 | Unidentified |  |
| 18884.695 | $\mathrm{NH}_{3}$ | $6(2)-6(2)$ |
| 18907.54 | Unidentified |  |
| 18918.50 | Unidentified |  |
| 18961.79 | Unidentified |  |
| 18965.588 | $\mathrm{CH}_{2} \mathrm{CHCN}$ | $2(0,2)-1(0,1) F=1-0$ |
| 18966.535 | $\mathrm{CH}_{2} \mathrm{CHCN}$ | $2(0,2)-1(0,1) F=2-1$ |
| 18966.616 | $\mathrm{CH}_{2} \mathrm{CHCN}$ | $2(0,2)-1(0,1) F=3-2$ |
| 18968.48 | Unidentified |  |
| 18986.20 | Unidentified |  |
| 19014.7204 | $\mathrm{C}_{4} \mathrm{H}$ | $5 / 2-3 / 2 \quad F=2-1$ |
| 19015.1435 | $\mathrm{C}_{4} \mathrm{H}$ | $5 / 2-3 / 2 \quad F=3-2$ |
| 19025.107 | $\mathrm{C}_{4} \mathrm{H}$ | $5 / 2-3 / 2 \quad F=2-2$ |
| 19039.50 | Unidentified |  |
| 19043.0 | Unidentified |  |
| 19044.760 | $\mathrm{C}_{4} \mathrm{H}$ | $3 / 2-1 / 2 \quad F=1-1$ |
| 19054.4762 | $\mathrm{C}_{4} \mathrm{H}$ | $3 / 2-1 / 2 \quad F=2-1$ |
| 19055.9468 | $\mathrm{C}_{4} \mathrm{H}$ | $3 / 2-1 / 2 \quad F=1-0$ |
| 19099.656 | $\mathrm{C}_{4} \mathrm{H}$ | $3 / 2-3 / 2 \quad F=1-1$ |
| 19119.764 | $\mathrm{C}_{4} \mathrm{H}$ | $J=3 / 2-3 / 2 \quad F=2-2$ |
| 19174.086 | $\mathrm{HC}_{9} \mathrm{~N}$ | 33-32 |
| 19175.958 | $\mathrm{HC}_{7} \mathrm{~N}$ | 17-16 |
| 19218.465 | $\mathrm{NH}_{3}$ | 7(4)-7(4) |
| 19243.521 | CCCO | 2-1 |
| 19262.140 | $\mathrm{CH}_{3} \mathrm{CHO}$ | $1(0,1)-0(0,0) \mathrm{E}$ |
| 19265.137 | $\mathrm{CH}_{3} \mathrm{CHO}$ | $1(0,1)-0(0,0) \mathrm{A}++$ |
| 19316.70 | Unidentified |  |
| 19325.20 | Unidentified |  |
| 19336.10 | Unidentified |  |
| 19361.50 | Unidentified |  |
| 19418.661 | $c-\mathrm{C}_{3} \mathrm{HD}$ | $1(1,0)-1(0,1) F=1-1$ |
| 19418.686 | $c-\mathrm{C}_{3} \mathrm{HD}$ | $1(1,0)-1(0,1) F=2-1$ |
| 19418.712 | $c-\mathrm{C}_{3} \mathrm{HD}$ | $1(1,0)-1(0,1) F=1-2$ |
| 19418.724 | $c-\mathrm{C}_{3} \mathrm{HD}$ | $1(1,0)-1(0,1) F=0-1$ |
| 19418.740 | $c-\mathrm{C}_{3} \mathrm{HD}$ | $1(1,0)-1(0,1) F=2-2$ |
| 19418.796 | $c-\mathrm{C}_{3} \mathrm{HD}$ | $1(1,0)-1(0,1) F=1-0$ |
| 19426.679 | $\mathrm{CH}_{2} \mathrm{CHCN}$ | $2(1,1)-1(1,0) F=2-1$ |
| 19427.851 | $\mathrm{CH}_{2} \mathrm{CHCN}$ | $2(1,1)-1(1,0) F=3-2$ |
| 19429.098 | $\mathrm{CH}_{2} \mathrm{CHCN}$ | $2(1,1)-1(1,0) F=1-0$ |
| 19430.85 | Unidentified |  |
| 19609.78 | Unidentified |  |
| 19682.50 | Unidentified |  |
|  |  | ntinued on next page) |

Table 1 (continued)

| Frequency <br> (MHz) | Formula | Quantum numbers |
| :---: | :---: | :---: |
| 19692.50 | Unidentified |  |
| 19755.111 | $\mathrm{HC}_{9} \mathrm{~N}$ | 34-33 |
| 19757.538 | $\mathrm{NH}_{3}$ | 6(3)-6(3) |
| 19771.50 | Unidentified |  |
| 19780.800 | CCCN | $2-1 J=5 / 2-3 / 2 \quad F=5 / 2-3 / 2$ |
| 19780.826 | CCCN | $2-1 J=5 / 2-3 / 2 \quad F=3 / 2-1 / 2$ |
| 19781.094 | CCCN | $2-1 J=5 / 2-3 / 2 \quad F=7 / 2-5 / 2$ |
| 19799.951 | CCCN | $2-1 J=5 / 2-3 / 2 \quad F=3 / 2-1 / 2$ |
| 19800.121 | CCCN | $2-1 J=5 / 2-3 / 2 \quad F=5 / 2-3 / 2$ |
| 19838.346 | $\mathrm{NH}_{3}$ | 5(1)-5(1) |
| 19871.344 | HCCNC | 2-1 |
| 19967.396 | $\mathrm{CH}_{3} \mathrm{OH}$ | $2(1,1)-3(0,3) \mathrm{E}$ |
| 19974.50 | Unidentified |  |
| 20064.21 | Unidentified |  |
| 20109.547 | $\mathrm{CH}_{2} \mathrm{CN}$ | 1-0 3/2-1/2 5/2-3/2 5/2-5/2 |
| 20115.77 | $\mathrm{CH}_{2} \mathrm{CN}$ | 1-0 1/2-1/2 3/2-3/2 5/2-5/2 |
| 20117.43 | $\mathrm{CH}_{2} \mathrm{CN}$ | $1-03 / 2-1 / 25 / 2-3 / 23 / 2-1 / 2$ |
| 20118.014 | $\mathrm{CH}_{2} \mathrm{CN}$ | $1-03 / 2-1 / 25 / 2-3 / 25 / 2-3 / 2$ |
| 20118.16 | $\mathrm{CH}_{2} \mathrm{CN}$ | $1-03 / 2-1 / 21 / 2-1 / 23 / 2-3 / 2$ |
| 20119.606 | $\mathrm{CH}_{2} \mathrm{CN}$ | 1-0 3/2-1/2 5/3-3/2 7/2-5/2 |
| 20121.61 | $\mathrm{CH}_{2} \mathrm{CN}$ | $1-03 / 2-1 / 23 / 2-3 / 23 / 2-3 / 2$ |
| 20123.96 | $\mathrm{CH}_{2} \mathrm{CN}$ | 1-0 3/2-1/2 1/2-1/2 3/2-3/2 |
| 20124.22 | $\mathrm{CH}_{2} \mathrm{CN}$ | $1-01 / 2-1 / 23 / 2-1 / 23 / 2-1 / 2$ |
| 20124.22 | $\mathrm{CH}_{2} \mathrm{CN}$ | 1-0 3/2-1/2 3/2-3/2 1/2-1/2 |
| 20124.45 | $\mathrm{CH}_{2} \mathrm{CN}$ | $1-03 / 2-1 / 23 / 2-1 / 23 / 2-3 / 2$ |
| 20124.49 | $\mathrm{CH}_{2} \mathrm{CN}$ | $1-01 / 2-1 / 23 / 2-3 / 25 / 2-3 / 2$ |
| 20126.031 | $\mathrm{CH}_{2} \mathrm{CN}$ | $1-03 / 2-1 / 23 / 2-3 / 23 / 2-1 / 2$ |
| 20128.770 | $\mathrm{CH}_{2} \mathrm{CN}$ | $1-01 / 2-1 / 23 / 2-1 / 23 / 2-3 / 2$ |
| 20139.76 | $\mathrm{CH}_{2} \mathrm{CN}$ | 1-0 1/2-1/2 1/2-3/2 3/2-5/2 |
| 20168.48 | Unidentified |  |
| 20171.089 | $\mathrm{CH}_{3} \mathrm{OH}$ | 11(1,11)-10(2,8) A+ |
| 20203.31 | Unidentified |  |
| 20209.209 | $\mathrm{CH}_{2} \mathrm{CO}$ | $1(0,1)-0(0,0)$ |
| 20281.00 | Unidentified |  |
| 20303.946 | $\mathrm{HC}_{7} \mathrm{~N}$ | 18-17 |
| 20336.135 | $\mathrm{HC}_{9} \mathrm{~N}$ | 35-34 |
| 20357.226 | $\mathrm{CH}_{3} \mathrm{C}_{4} \mathrm{H}$ | 5(1)-4(1) |
| 20357.423 | $\mathrm{CH}_{3} \mathrm{C}_{4} \mathrm{H}$ | 5(0)-4(0) |
| 20371.45 | $\mathrm{NH}_{3}$ | 5(2)-5(2) |
| 20460.01 | HDO | 3(2,1)-4(1,4) |
| 20501.5 | Unidentified |  |
| 20533.235 | Unidentified |  |
| 20533.289 | $\mathrm{C}_{8} \mathrm{H}$ | 23/2 17.5-16.5 |
| 20723.5 | Unidentified |  |
| 20728.67 | Unidentified |  |
| 20735.452 | $\mathrm{NH}_{3}$ | 9(7)-9(7) |
| 20765.80 | Unidentified |  |
| 20790.00 | Unidentified |  |
| 20792.563 | $\mathrm{H}_{2} \mathrm{CCC}$ | 1(0,1)-0(0,0) |
| 20792.872 | $\mathrm{C}_{6} \mathrm{H}$ | $23 / 2 J=15 / 2-13 / 2 \quad F=8-7 \mathrm{e}$ |
| 20792.945 | $\mathrm{C}_{6} \mathrm{H}$ | $23 / 2 J=15 / 2-13 / 2 \quad F=7-6 \mathrm{e}$ |
| 20794.444 | $\mathrm{C}_{6} \mathrm{H}$ | $23 / 2 J=15 / 2-13 / 2 F=8-7 \mathrm{f}$ |
| 20794.512 | $\mathrm{C}_{6} \mathrm{H}$ | $23 / 2 J=15 / 2-13 / 2 F=7-6 \mathrm{f}$ |

Table 1 (continued)

| 20804.830 | $\mathrm{NH}_{3}$ | 7(5)-7(5) |
| :---: | :---: | :---: |
| 20838.20 | Unidentified |  |
| 20847.50 | Unidentified |  |
| 20852.527 | $\mathrm{NH}_{3}$ | 10(8)-10(8) |
| 20878.00 | Unidentified |  |
| 20908.848 | $\mathrm{CH}_{3} \mathrm{OH}$ | 16(-4,13)-15(-5,10) E |
| 20917.157 | $\mathrm{HC}_{9} \mathrm{~N}$ | 36-35 |
| 20970.658 | $\mathrm{CH}_{3} \mathrm{OH}$ | 10(1,10)-11(,9) A+t=1 |
| 20994.617 | $\mathrm{NH}_{3}$ | 6(4)-6(4) |
| 20999.79 | Unidentified |  |
| 21070.739 | $\mathrm{NH}_{3}$ | 11(9)-11(9) |
| 21134.311 | $\mathrm{NH}_{3}$ | 4(1)-4(1) |
| 21143.18 | Unidentified |  |
| 21231.00 | Unidentified |  |
| 21285.275 | $\mathrm{NH}_{3}$ | 5(3)-5(3) |
| 21301.261 | $\mathrm{HC}_{5} \mathrm{~N}$ | 8-7 |
| 21322.50 | Unidentified |  |
| 21431.932 | $\mathrm{HC}_{7} \mathrm{~N}$ | 19-18 |
| 21447.8 | Unidentified |  |
| 21453.93 | Unidentified |  |
| 21470.4 | Unidentified |  |
| 21480.809 | $\mathrm{C}_{5} \mathrm{H}$ | 21/2 $J=9 / 2-7 / 2 \quad F=5-4 \mathrm{e}$ |
| 21481.299 | $\mathrm{C}_{5} \mathrm{H}$ | 21/2 $J=9 / 2-7 / 2 F=4-3$ e |
| 21484.695 | $\mathrm{C}_{5} \mathrm{H}$ | 21/2 $J=9 / 2-7 / 2 F=5-4 \mathrm{f}$ |
| 21485.248 | $\mathrm{C}_{5} \mathrm{H}$ | $21 / 2 J=9 / 2-7 / 2 F=4-3 \mathrm{f}$ |
| 21488.255 | $\mathrm{H}_{2} \mathrm{CCCCCC}$ | 8(1,8)-7(1,7) |
| 21498.182 | $\mathrm{HC}_{9} \mathrm{~N}$ | 37-36 |
| 21546.94 | Unidentified |  |
| 21550.342 | $\mathrm{CH}_{3} \mathrm{OH}$ | 12(2,11)-11(1,11) $\mathrm{A}+t=1$ |
| 21569.5 | Unidentified |  |
| 21576.5 | Unidentified |  |
| 21582.6 | Unidentified |  |
| 21587.400 | $c-\mathrm{C}_{3} \mathrm{H}_{2}$ | 2(2,0)-2(1,1) |
| 21592.1 | Unidentified |  |
| 21595.8 | Unidentified |  |
| 21598.4 | Unidentified |  |
| 21606.30 | Unidentified |  |
| 21615.5 | Unidentified |  |
| 21703.3580 | $\mathrm{NH}_{3}$ | 4(2)-4(2) |
| 21715.8 | Unidentified |  |
| 21930.476 | $\mathrm{CC}^{34} \mathrm{~S}$ | 2,1-1,0 |
| 21980.5453 | HNCO | $1(0,1)-0(0,0) F=0-1$ |
| 21981.4706 | HNCO | $1(0,1)-0(0,0) F=2-1$ |
| 21982.0854 | HNCO | $1(0,1)-0(0,0) F=1-1$ |
| 22079.204 | $\mathrm{HC}_{9} \mathrm{~N}$ | 38-37 |
| 22235.044 | $\mathrm{H}_{2} \mathrm{O}$ | 6(1,6)-5(2,3) $F=7-6$ |
| 22235.077 | $\mathrm{H}_{2} \mathrm{O}$ | 6(1,6)-5(2,3) F=6-5 |
| 22235.120 | $\mathrm{H}_{2} \mathrm{O}$ | 6(1,6)-5(2,3) $F=5-4$ |
| 22235.253 | $\mathrm{H}_{2} \mathrm{O}$ | $6(1,6)-5(2,3) F=6-6$ |
| 22235.298 | $\mathrm{H}_{2} \mathrm{O}$ | 6(1,6)-5(2,3) F=5-5 |
| 22258.173 | CCO | 2,1-1,0 |
| 22307.670 | HDO | 5(3,2)-5(3,3) |
| 22344.030 | CCS | 2,1-1,0 |
| 22471.180 | HCOOH | $1(0,1)-0(0,0)$ |
| 22559.915 | $\mathrm{HC}_{7} \mathrm{~N}$ | 20-19 |
|  |  | (continued on next page) |

Table 1 (continued)

| 22624.8892 | ${ }^{15} \mathrm{NH}_{3}$ | 1(1)-1(1) $F, F 1=1.5,1-1.3,1$ |
| :---: | :---: | :---: |
| 22624.9331 | ${ }^{15} \mathrm{NH}_{3}$ | 1(1)-1(1) $F, F 1=1.5,1-0.8,1$ |
| 22624.9410 | ${ }^{15} \mathrm{NH}_{3}$ | 1(1)-1(1) $F, F 1=0.5,1-0.8,1$ |
| 22624.9469 | ${ }^{15} \mathrm{NH}_{3}$ | 1(1)-1(1) $F, F 1=1.5,2-1.5,2$ |
| 22639.3 | Unidentified |  |
| 22644.3 | Unidentified |  |
| 22649.843 | ${ }^{15} \mathrm{NH}_{3}$ | 2(2)-2(2) |
| 22653.022 | $\mathrm{NH}_{3}$ | 5(4)-5(4) |
| 22660.225 | $\mathrm{HC}_{9} \mathrm{~N}$ | 39-38 |
| 22678.6 | Unidentified |  |
| 22688.312 | $\mathrm{NH}_{3}$ | 4(3)-4(3) |
| 22732.429 | $\mathrm{NH}_{3}$ | 6(5)-6(5) |
| 22789.421 | ${ }^{15} \mathrm{NH}_{3}$ | 3(3)-3(3) |
| 22827.741 | $\mathrm{CH}_{3} \mathrm{OCHO}$ | 2(1,2)-1(1,1) E |
| 22828.134 | $\mathrm{CH}_{3} \mathrm{OCHO}$ | 2(1,2)-1(1,1) A |
| 22834.1851 | $\mathrm{NH}_{3}$ | 3(2)-3(2) |
| 22878.949 | DC5N | 9-8 |
| 22924.940 | $\mathrm{NH}_{3}$ | 7(6)-7(6) |
| 23046.0158 | ${ }^{15} \mathrm{NH}_{3}$ | 4(4)-4(4) |
| 23098.8190 | $\mathrm{NH}_{3}$ | 2(1)-2(1) |
| 23121.024 | $\mathrm{CH}_{3} \mathrm{OH}$ | 9(2,7)-10(1,10) A+ |
| 23122.983 | CCCS | 4-3 |
| 23142.2 | Unidentified |  |
| 23228.0 | Unidentified |  |
| 23232.238 | $\mathrm{NH}_{3}$ | 8(7)-8(7) |
| 23241.246 | $\mathrm{HC}_{9} \mathrm{~N}$ | 40-39 |
| 23421.9823 | ${ }^{15} \mathrm{NH}_{3}$ | 5(5)-5(5) |
| 23444.778 | $\mathrm{CH}_{3} \mathrm{OH}$ | 10(1,9)-9(2,8) A- |
| 23565.160 | $\mathrm{C}_{6} \mathrm{H}$ | $23 / 2 J=17 / 2-15 / 2 F=9-8 \mathrm{e}$ |
| 23565.226 | $\mathrm{C}_{6} \mathrm{H}$ | $23 / 2 J=17 / 2-15 / 2 \quad F=8-7 \mathrm{e}$ |
| 23567.169 | $\mathrm{C}_{6} \mathrm{H}$ | $23 / 2 J=17 / 2-15 / 2 F=9-8 \mathrm{f}$ |
| 23567.238 | $\mathrm{C}_{6} \mathrm{H}$ | $23 / 2 J=17 / 2-15 / 2 F=8-7 \mathrm{f}$ |
| 23600.242 | $\mathrm{SiC}_{2}$ | $1(0,1)-0(0,0)$ |
| 23657.471 | $\mathrm{NH}_{3}$ | 9(8)-9(8) |
| 23687.898 | $\mathrm{HC}_{7} \mathrm{~N}$ | 21-20 |
| 23692.9265 | $\mathrm{NH}_{3}$ | 1(1)-1(1) $F, F 1=1 / 2,1-1 / 2,0$ |
| 23692.9688 | $\mathrm{NH}_{3}$ | 1(1)-1(1) $F, F 1=3 / 2,1-1 / 2,0$ |
| 23693.8722 | $\mathrm{NH}_{3}$ | 1(1)-1(1) $F, F 1=1 / 2,1-3 / 2,2$ |
| 23693.9051 | $\mathrm{NH}_{3}$ | 1(1)-1(1) $F, F 1=3 / 2,1-5 / 2,2$ |
| 23693.9145 | $\mathrm{NH}_{3}$ | 1(1)-1(1) $F, F 1=3 / 2,1-3 / 2,2$ |
| 23694.4591 | $\mathrm{NH}_{3}$ | 1(1)-1(1) $F, F 1=1 / 2,1-1 / 2,1$ |
| 23694.4700 | $\mathrm{NH}_{3}$ | 1(1)-1(1) $F, F 1=1 / 2,1-3 / 2,1$ |
| 23694.4709 | $\mathrm{NH}_{3}$ | 1(1)-1(1) $F, F 1=3 / 2,2-5 / 2,2$ |
| 23694.4803 | $\mathrm{NH}_{3}$ | 1(1)-1(1) $F, F 1=3 / 2,2-3 / 2,2$ |
| 23694.5014 | $\mathrm{NH}_{3}$ | 1(1)-1(1) $F, F 1=3 / 2,1-1 / 2,1$ |
| 23694.5060 | $\mathrm{NH}_{3}$ | 1(1)-1(1) $F, F 1=5 / 2,2-5 / 2,2$ |
| 23694.5123 | $\mathrm{NH}_{3}$ | 1(1)-1(1) $F, F 1=3 / 2,1-3 / 2,1$ |
| 23694.5153 | $\mathrm{NH}_{3}$ | 1(1)-1(1) $F, F 1=5 / 2,2-3 / 2,2$ |
| 23695.0672 | $\mathrm{NH}_{3}$ | 1(1)-1(1) $F, F 1=3 / 2,2-3 / 2,1$ |
| 23695.0782 | $\mathrm{NH}_{3}$ | 1(1)-1(1) $F, F 1=3 / 2,2-3 / 2,1$ |
| 23695.1132 | $\mathrm{NH}_{3}$ | 1(1)-1(1) $F, F 1=5 / 2,2-3 / 2,1$ |
| 23696.0297 | $\mathrm{NH}_{3}$ | 1(1)-1(1) $F, F 1=1 / 2,0-1 / 2,1$ |
| 23696.0406 | $\mathrm{NH}_{3}$ | 1(1)-1(1) $F, F 1=1 / 2,0-3 / 2,1$ |
| 23697.9 | Unidentified |  |
| 23718.325 | $\mathrm{HC}^{13} \mathrm{CCCCN}$ | 9-8 |

Table 1 (continued)

| 23720.575 | $\mathrm{NH}_{3}$ | 2(2)-2(2) F1 = 1-2 |
| :---: | :---: | :---: |
| 23721.336 | $\mathrm{NH}_{3}$ | 2(2)-2(2) F1 = 3-2 |
| 23722.6323 | $\mathrm{NH}_{3}$ | 2(2)-2(2) F1 = 2-2 |
| 23722.6336 | $\mathrm{NH}_{3}$ | 2(2)-2(2) F1 = 3-3 |
| 23722.6344 | $\mathrm{NH}_{3}$ | 2(2)-2(2) $F 1=1-1$ |
| 23723.929 | $\mathrm{NH}_{3}$ | 2(2)-2(2) F1 $=2-3$ |
| 23724.691 | $\mathrm{NH}_{3}$ | 2(2)-2(2) F1 = 2-1 |
| 23727.162 | $\mathrm{HCCCC}^{13} \mathrm{CN}$ | 9-8 |
| 23804.5 | Unidentified |  |
| 23811.0 | Unidentified |  |
| 23817.6153 | OH | $23 / 2 J=9 / 2 F=4-4$ |
| 23822.265 | $\mathrm{HC}_{9} \mathrm{~N}$ | 41-40 |
| 23826.6211 | OH | $23 / 2 J=9 / 2 F=5-5$ |
| 23867.805 | $\mathrm{NH}_{3}$ | 3(3)-3(3) F1 = 2-3 |
| 23868.450 | $\mathrm{NH}_{3}$ | 3(3)-3(3) F1 = 4-3 |
| 23870.1279 | $\mathrm{NH}_{3}$ | 3(3)-3(3) F1 = 3-3 |
| 23870.1296 | $\mathrm{NH}_{3}$ | 3(3)-3(3) F1 $=4-4$ |
| 23870.1302 | $\mathrm{NH}_{3}$ | 3(3)-3(3) F1 = 2-2 |
| 23871.807 | $\mathrm{NH}_{3}$ | 3(3)-3(3) F1 = 3-4 |
| 23872.453 | $\mathrm{NH}_{3}$ | 3(3)-3(3) F1 = 3-2 |
| 23922.3132 | ${ }^{15} \mathrm{NH}_{3}$ | 6(6)-6(6) |
| 23939.089 | $\mathrm{HCC}^{13} \mathrm{CCCN}$ | 9-8 |
| 23941.99 | $\mathrm{HCCC}^{13} \mathrm{CCN}$ | 9-8 |
| 23959.5 | Unidentified |  |
| 23963.901 | $\mathrm{HC}_{5} \mathrm{~N}$ | 9-8 |
| 23987.5 | Unidentified |  |
| 23990.2 | Unidentified |  |
| 23996.7 | Unidentified |  |
| 24004.5 | Unidentified |  |
| 24023.2 | Unidentified |  |
| 24037.1 | Unidentified |  |
| 24048.5 | Unidentified |  |
| 24139.4169 | $\mathrm{NH}_{3}$ | 4(4)-4(4) |
| 24205.287 | $\mathrm{NH}_{3}$ | 10(9)-10(9) |
| 24296.491 | $\mathrm{CH}_{3} \mathrm{OCHO}$ | $2(0,2)-1(0,1) \mathrm{E}$ |
| 24298.481 | $\mathrm{CH}_{3} \mathrm{OCHO}$ | $2(0,2)-1(0,1) \mathrm{A}$ |
| 24325.927 | OCS | 2-1 |
| 24375.2 | Unidentified |  |
| 24428.652 | $\mathrm{CH}_{3} \mathrm{C}_{4} \mathrm{H}$ | 6(1)-5(1) |
| 24428.886 | $\mathrm{CH}_{3} \mathrm{C}_{4} \mathrm{H}$ | $6(0)-5(0)$ |
| 24532.9887 | $\mathrm{NH}_{3}$ | 5(5)-5(5) |
| 24788.541 | $\mathrm{CH}_{3} \mathrm{CCCN}$ | 6(1)-5(1) |
| 24788.780 | $\mathrm{CH}_{3} \mathrm{CCCN}$ | $6(0)-5(0)$ |
| 24815.878 | $\mathrm{HC}_{7} \mathrm{~N}$ | 22-21 |
| 24928.715 | $\mathrm{CH}_{3} \mathrm{OH}$ | 3(2,1)-3(1,2) E |
| 24933.468 | $\mathrm{CH}_{3} \mathrm{OH}$ | 4(2,2)-4(1,3) E |
| 24934.382 | $\mathrm{CH}_{3} \mathrm{OH}$ | 2(2,0)-2(1,1) E |
| 24959.079 | $\mathrm{CH}_{3} \mathrm{OH}$ | $5(2,3)-5(1,4) \mathrm{E}$ |
| 24984.302 | $\mathrm{HC}_{9} \mathrm{~N}$ | 43-42 |
| 24991.19 | SiC 2 | 8(2,6)-8(2,7) |
| 25018.123 | $\mathrm{CH}_{3} \mathrm{OH}$ | 6(2,4)-6(1,5) E |
| 25023.792 | $\mathrm{NH}_{2} \mathrm{D}$ | 4(1,4)-4(0,4) |
| 25056.025 | $\mathrm{NH}_{3}$ | 6(6)-6(6) |
| 25124.872 | $\mathrm{CH}_{3} \mathrm{OH}$ | 7(2,5)-7(1,6) E |
| 25249.938 | C5N | $21 / 2 N=9-8 J=9.5$ |

Table 1 (continued)

| Frequency (MHz) | Formula | Quantum numbers |
| :---: | :---: | :---: |
| 25260.649 | C5N | $21 / 2 N=9-8 J=8.5-7.5$ |
| 25294.417 | $\mathrm{CH}_{3} \mathrm{OH}$ | 8(2,6)-8(1,7) E |
| 25329.441 | $\mathrm{DC}_{3} \mathrm{~N}$ | 3-2 |
| 25421.036 | DC5N | 10-9 |
| 25541.398 | $\mathrm{CH}_{3} \mathrm{OH}$ | 9(2,7)-9(1,8) E |
| 25715.182 | $\mathrm{NH}_{3}$ | 7(7)-7(7) |
| 25878.266 | $\mathrm{CH}_{3} \mathrm{OH}$ | 10(2,8)-10(1,9) E |
| 25911.017 | CCS | 2,2-1,1 |
| 25943.855 | $\mathrm{HC}_{7} \mathrm{~N}$ | 23-22 |
| 26337.414 | $\mathrm{C}_{6} \mathrm{H}$ | $\begin{aligned} & 23 / 2 J=19 / 2-17 / 2 \\ & F=10-9 \mathrm{f} \end{aligned}$ |
| 26337.463 | $\mathrm{C}_{6} \mathrm{H}$ | $\begin{aligned} & 23 / 2 J=19 / 2-17 / 2 \\ & F=9-8 \mathrm{f} \end{aligned}$ |
| 26339.924 | $\mathrm{C}_{6} \mathrm{H}$ | $\begin{aligned} & 23 / 2 J=19 / 2-17 / 2 \\ & F=10-9 \mathrm{e} \end{aligned}$ |
| 26339.973 | $\mathrm{C}_{6} \mathrm{H}$ | $\begin{aligned} & 23 / 2 J=19 / 2-17 / 2 \\ & F=9-8 \mathrm{e} \end{aligned}$ |
| 26363.491 | $\mathrm{HCCCC}^{13} \mathrm{CN}$ | 10-9 |
| 26450.598 | $\mathrm{H}^{13} \mathrm{CCCN}$ | 3-2 |
| 26500.462 | $\mathrm{HCCC}^{15} \mathrm{~N}$ | 3-2 |
| 26518.981 | $\mathrm{NH}_{3}$ | 8(8)-8(8) |
| 26602.181 | $\mathrm{HCCC}^{13} \mathrm{CCN}$ | 10-9 |
| 26626.533 | $\mathrm{HC}_{5} \mathrm{~N}$ | 10-9 |
| 26682.814 | $\mathrm{H}_{2} \mathrm{CCCC}$ | 3(1,3)-2(1,2) |
| 26795.635 | $\mathrm{H}_{2} \mathrm{CCCC}$ | 3(0,3)-2(0,2) |
| 26847.205 | $\mathrm{CH}_{3} \mathrm{OH}$ | 12(2,10)-12(1,11) E |
| 26906.891 | $\mathrm{H}_{2} \mathrm{CCCC}$ | $3(1,2)-2(1,1)$ |
| 27071.824 | $\mathrm{HC}_{7} \mathrm{~N}$ | 24-23 |
| 27084.348 | $c-\mathrm{C}_{3} \mathrm{H}_{2}$ | $3(3,0)-3(2,1)$ |
| 27178.511 | $\mathrm{HC}^{13} \mathrm{CCN}$ | 3-2 |
| 27181.127 | $\mathrm{HCC}^{13} \mathrm{CN}$ | 3-2 |
| 27292.903 | HCCCN | 3-2 $F=3-3$ |
| 27294.078 | HCCCN | $3-2 F=2-1$ |
| 27294.295 | HCCCN | 3-2 $F=3-2$ |
| 27294.347 | HCCCN | $3-2 F=4-3$ |
| 27296.235 | HCCCN | $3-2 F=2-2$ |
| 27472.501 | $\mathrm{CH}_{3} \mathrm{OH}$ | 13(2,11)-13(1,12) E |
| 27477.943 | $\mathrm{NH}_{3}$ | 9(9)-9(9) |
| 28009.975 | HNCCC | 3-2 |
| 28169.437 | $\mathrm{CH}_{3} \mathrm{OH}$ | 14(2,12)-14(1,13) E |
| 28199.804 | $\mathrm{HC}_{7} \mathrm{~N}$ | 25-24 |
| 28199.805 | $\mathrm{HC}_{7} \mathrm{~N}$ | 25-24 |
| 28316.031 | $\mathrm{CH}_{3} \mathrm{OH}$ | 4(0,4)-3(1,2) E |
| 28440.980 | $\mathrm{CH}_{2} \mathrm{CHCN}$ | 3(0,3)-2(0,2) |
| 28470.391 | $\mathrm{HC}_{9} \mathrm{~N}$ | 49-48 |
| 28532.31 | $\mathrm{C}_{4} \mathrm{H}$ | 7/2-5/2 F = 3-2 |
| 28532.46 | $\mathrm{C}_{4} \mathrm{H}$ | 7/2-5/2 F = 4-3 |
| 28542.284 | $\mathrm{C}_{4} \mathrm{H}$ | $J=5 / 2-5 / 2 \quad F=3-3$ |
| 28571.37 | $\mathrm{C}_{4} \mathrm{H}$ | $5 / 2-3 / 2 F=3-2$ |
| 28571.53 | $\mathrm{C}_{4} \mathrm{H}$ | $5 / 2-3 / 2 \quad F=2-1$ |
| 28604.737 | $\mathrm{NH}_{3}$ | 10(10)-10(10) |
| 28903.688 | CCCS | 5-4 |
| 28905.787 | $\mathrm{CH}_{3} \mathrm{OH}$ | 15(2,13)-12(1,14) E |

Table 1 (continued)

| 28919.931 | $\mathrm{CH}_{3} \mathrm{CCCN}$ | 7(1)-6(1) |
| :---: | :---: | :---: |
| 28920.209 | $\mathrm{CH}_{3} \mathrm{CCCN}$ | 7(0)-6(0) |
| 28969.954 | $\mathrm{CH}_{3} \mathrm{OH}$ | 8(2,7)-9(1,8) A- |
| 28974.781 | $\mathrm{H}_{2} \mathrm{CO}$ | $3(1,2)-3(1,3) F=2-2$ |
| 28974.804 | $\mathrm{H}_{2} \mathrm{CO}$ | $3(1,2)-3(1,3) F=4-4$ |
| 28974.814 | $\mathrm{H}_{2} \mathrm{CO}$ | $3(1,2)-3(1,3) F=3-3$ |
| 28999.814 | $\mathrm{HCCCC}^{13} \mathrm{CN}$ | 11-10 |
| 29051.403 | $\mathrm{HC}_{9} \mathrm{~N}$ | 50-49 |
| 29109.644 | $\mathrm{C}_{6} \mathrm{H}$ | $\begin{aligned} & 23 / 2 J=21 / 2-19 / 2 \\ & F=11-10 \mathrm{f} \end{aligned}$ |
| 29109.66 | $\mathrm{C}_{6} \mathrm{H}$ | $23 / 2 J=21 / 2-19 / 2 \mathrm{f}$ |
| 29109.686 | $\mathrm{C}_{6} \mathrm{H}$ | $\begin{aligned} & 23 / 2 J=21 / 2-19 / 2 \\ & F=10-9 \mathrm{f} \end{aligned}$ |
| 29112.709 | $\mathrm{C}_{6} \mathrm{H}$ | $\begin{aligned} & 23 / 2 J=21 / 2-19 / 2 \\ & F=11-10 \mathrm{f} \end{aligned}$ |
| 29112.73 | $\mathrm{C}_{6} \mathrm{H}$ | $23 / 2 J=21 / 2-19 / 2 \mathrm{e}$ |
| 29112.750 | $\mathrm{C}_{6} \mathrm{H}$ | $\begin{aligned} & 23 / 2 J=21 / 2-19 / 2 \\ & F=10-9 \mathrm{f} \end{aligned}$ |
| 29138.877 | $\mathrm{CH}_{2} \mathrm{CHCN}$ | 3(1,2)-2(1,1) $F=3-2$ |
| 29139.215 | $\mathrm{CH}_{2} \mathrm{CHCN}$ | 3(1,2)-2(1,1) $F=4-3,2-1$ |
| 29258.834 | $\mathrm{HCC}^{13} \mathrm{CCCN}$ | 11-10 |
| 29289.159 | $\mathrm{HC}_{5} \mathrm{~N}$ | 11-10 |
| 29304.09 | $\mathrm{C}_{6} \mathrm{H}$ | $21 / 2 J=21 / 2-19 / 2 \mathrm{e}$ |
| 29310.5 | Unidentified |  |
| 29327.776 | $\mathrm{HC}_{7} \mathrm{~N}$ | 26-25 |
| 29332.45 | $\mathrm{C}_{6} \mathrm{H}$ | $21 / 2 J=21 / 2-19 / 2 \mathrm{f}$ |
| 29333.3 | Unidentified |  |
| 29337.57 | $\mathrm{HC}_{5} \mathrm{~N}$ | $11-10$ v $11=1=1 \mathrm{c}$ |
| 29342.0 | Unidentified |  |
| 29353.8 | Unidentified |  |
| 29363.15 | $\mathrm{HC}_{5} \mathrm{~N}$ | $11-10 v 11=1=1 \mathrm{~d}$ |
| 29365.0 | Unidentified |  |
| 29477.704 | CCS | 2,3-1,2 |
| 29632.406 | $\mathrm{HC}_{9} \mathrm{~N}$ | 51-50 |
| 29632.413 | $\mathrm{HC}_{9} \mathrm{~N}$ | 51-50 |
| 29636.920 | $\mathrm{CH}_{3} \mathrm{OH}$ | 16(2,14)-12(1,15) E |
| 29676.14 | CCCN | $3-2 J=7 / 2-5 / 2 \quad F=7 / 2-5 / 2$ |
| 29676.28 | CCCN | $3-2 J=7 / 2-5 / 2 \quad F=9 / 2-7 / 2$ |
| 29678.882 | ${ }^{34} \mathrm{SO}$ | 1(0)-0(1) |
| 29694.99 | CCCN | $3-2 J=5 / 2-3 / 2 \quad F=3 / 2-1 / 2$ |
| 29695.14 | CCCN | $3-2 J=5 / 2-3 / 2 \quad F=7 / 2-5 / 2$ |
| 29806.963 | HCCNC | 3-2 |
| 29914.486 | $\mathrm{NH}_{3}$ | 11(11)-11(11) |

within an envelope of an AGB star and survived
ejection into interstellar space or if they were incorporated onto dust grains and later evaporated from their surfaces upon exposure to interstellar UV radiation. It is likely that the true situation will be a mixture of both of these cases.

A number of molecules with transitions in the frequency range of the SKA are of particular interest for astrobiology. These include the building
block molecule for simple sugars such as ribose and deoxyribose, Furan $\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}\right.$; e.g. with a transition at 10.6 GHz ) (Dickens et al., 2001). The same authors detected $c-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$, one of the few cyclic molecules in space. They note that the presence of these molecular species in cold dark clouds suggests that rather complex organic molecules may have been present in the solar system before the planets formed, a first step toward explaining the origin of life on the early Earth.

## 5. Magnetic fields

Magnetic fields of AGB stars are now thought to be fairly strong from observations of SiO masers (Kemball and Diamond, 1997). Depending on the exact models used, the field strengths seem to be between 5 and 10 G at radii of 3 AU or so. Such strong magnetic fields will have obvious impacts on both the molecular gas (Zeeman splitting for a number of species such as CCS and SO) and possibly produce circularly polarized radio emission from the star itself (analogous to the emission observed from the Sun). Although requiring careful instrumental polarization characterization, observations of these effects will provide confirmation of the magnetic field strength implied by the SiO maser polarization observations and further constraints on AGB stars themselves. Potential movies of regions of magnetic field enhancements on the surfaces of nearby AGB stars could be tracked with time, testing maser observations of rotation.

## 6. Molecular line transitions available to the SKA

See Table 1.
Uncited reference ..... 380
Reid and Menten (1997). ..... 381
References ..... 382
Bieging, J.H., Rieu, N.Q., 1996. AJ 112, 706. ..... 383
Boboltz, D.A., Marvel, K.B., 2000. AJ 545, 149. ..... 384
Dickens, J.E., Irvine, W.M., Nummelin, A., Mollendal, H., ..... 385
Saito, S., Thorwith, S., Hjalmarsoni, A., Ohishi, M., 2001. ..... 386
Spectrochim. Acta Part A 57, 643 ..... 387
Kemball, A.J., Diamond, P.J., 1997. AJ 481L, 111. ..... 388
F.J. Lovas, NIST Recommended Rest Frequencies for ..... 389
Observed Interstellar Molecular Microwave Transitions: ..... 390
2002 Revision, (2002). ..... 391
Messenger, S., Keller, L.P., Stadermann, F.J., Walker, R.M., ..... 392
Zinner, E., 2003. Science 300, 105. ..... 393
Monnier, J.D., Millan-Gabet, R., Tuthill, P.G., Traub, W.A., ..... 394
Carleton, N.P., Coudé du Foresto, V., Danchi, W.C., ..... 395
Lacasse, M.G., Morel, S., Perrin, G., Porro, I.L., Schloerb, ..... 396
C.H., Townes, C.H., 2004. AJ 605, 436. ..... 397
Monnier, J.D., Tuthill, P.G., Lopez, B., Cruzalebes, P., Danchi, ..... 398C.A., Haniff, C.A., 1999. AJ 512, 351.
Murakawa, K., Yates, J.A., Richards, A.M.S., Cohen, R.J., ..... 400
Mon. Not. R. Astron. Soc. 344, 1. ..... 401
Olofsson, H., Bergman, P., Lucas, R., Eriksson, K., Gustafs- ..... 402son, B., Bieging, J.H., 1998. AstAp 330, L1.
Petit, E., Nicholson, S.B., 1933. AJ 78, 320. ..... 404403Reid, M.J., Menten, K.M., 1997. AJ 456, 327.
Reid, M.J., Goldston, J.E., 2002. AJ 568, 931. ..... 05
Reid, M.J., 2002. Cosmic Masers: From Protostars to Black- ..... 407
holes. Astronomical Society of the Pacific. ..... 408
Richards, A.M.S., Yates, J.A., Cohen, R.J., 1999. Mon. Not. ..... 409
R. Astron. Soc. 306, 954. ..... 410
Richards, A.M.S., Yates, J.A., Cohen, R.J., 1998. Mon. Not. ..... 411R. Astron. Soc. 299, 319.412
Rieu, N.Q., Bieging, J.H., 1990. AJ 359, 131. ..... 413
Taylor, A.R., Braun, R., 1999. Science with the Square ..... 414
Kilometer Array. ..... 415
Zijlstra A.A., 2003. In: Kramer, Rawlings (Eds.). The Scientific ..... 416
Promise of the SKA: SKA Workshop Oxford. Available ..... 417
from: http://www.skatelescope.org/documents/Workshop_ ..... 418
Oxford2002.pdf. ..... 419


[^0]:    E-mail address: marvel@aas.org.

