A DYNAMICAL VIEW OF THE BRIGHT CUT-OFF OF THE PNLF IN ANDROMEDA'S BULGE

ANNE-LAURE MELCHIOR (LERMA, OBSERVATOIRE DE PARIS)

OUTLINE

- Detection of Planetary Nebulae
- Luminosity function bright cut-off
- Kinematics
- Rotation of the two components
- Comparison with the gas and stellar rotation
- Line ratios
- Conclusion: evidence of two stellar components in the bulge

SITELLE SURVEY ON ANDROMEDA’S BULGE

SITELLE = imaging Fourier transform spectrometer attached to the Canada-France-Hawaii telescope

Observation of a red ($647-685 \mathrm{~nm}$) data cube of the central region (11 arcmin $\times 11$ arcmin) of M 31
\rightarrow Detection of 800 emission-line point-like sources (Martin, Melchior, Drissen 2018)

Extension to a blue (482-513 nm) data cube of the same region.

DETECTION OF PLANETARY NEBULAE IN THE BULGE

587 PNe candidates detected with 5σ in [OIII] and at less than $500 \mathrm{~km} / \mathrm{s}$ from the systemic velocity 318 are matching Merrett et al. (2006) catalogue

Luminosity function

Bright cut-off : $\mathrm{M}_{5007}=-4.47$ (Ciardullo et al. 2010)

Age of the progenitors?

Expected ≈ 1 Gyr old with an initial mass of about $2.5-3.0 \mathrm{M}_{\text {sol }}$

Marigo et al. (2004)

Planetary nebulae luminosity function
Invariance of the bright cut-off Ciardullo et al. (2010)

129 Pne (22%) with $\mathrm{m}_{5007}<22$ $-450 \mathrm{~km} / \mathrm{s}<\mathrm{V}_{\text {rad }}-\mathrm{V}_{\text {sys }}<434 \mathrm{~km} / \mathrm{s}$

458 PNe (78%) with $\mathrm{m}_{5007}>22$ $-487 \mathrm{~km} / \mathrm{s}<\mathrm{V}_{\text {rad }}-\mathrm{V}_{\text {sys }}<408 \mathrm{~km} / \mathrm{s}$

Symmetrisation and smoothing of the velocity field Coccato et al. (2009)

Same kernel for both components ($\mathrm{A}=1.1 \mathrm{~B}=65$)

But the smoothing is reducing the velocity gradient, but the same way in both distribution...

How to compare with the stellar and gas rotations?

- Beside the kernel, the smoothing is sensitive to the number of points
- Simulate fake PN with velocities drawn from the gas and stellar velocity fields ; with same number of points
- Iterate 100 times (bootstrap)
- Smooth with the same kernel both distributions
- Compare Position Velocity along the major axis ($\mathrm{PA}=55 \mathrm{deg}$) with PNe

Preliminary SITELLE velocity fields

Gas velocity ([OIII])

Stellar velocity (SN2)

The bright component is compatible with the gas rotation

The faint component is compatible with the stellar rotation

