Master's degree internship presentation: Combining weak lensing and redshift-space distortions

Atelier Cosmologie et structuration de l'Univers

Joseph Allingham

Supervisor: Yann RASERA

Laboratoire de l'Univers et de ses Théories Observatoire de Paris-Meudon

19 june 2019

Several future surveys (Euclid, LSST, SKA) will collect data on billions of galaxies  $\implies$  constrain the dark sector.

- 1 Gravitational lensing  $\rightarrow$  probes of gravitational potentials between source and observer.
- 2 Redshift-space distortions (RSD, i.e. apparent asymmetry in the galaxies distribution, due to their own speed)  $\rightarrow$  probes of densities, velocities and potentials of the sources.

 $\rightarrow$  What are the crossed influence of gravitational lensing and RSD on the apparent distribution/properties of galaxies?  $\implies$  How can it help to probe the dark sector?

#### Context: gravitational lensing



Figure 1 – Weak lensing formalism. Credits: Bartelmann & Schneider 2001. Amplification matrix  $\mathcal{A}$ :

$$\begin{aligned} \mathcal{A}(\boldsymbol{\theta}) &= \frac{\partial \boldsymbol{\beta}}{\partial \boldsymbol{\theta}} \\ &= \begin{pmatrix} 1 - \kappa - \gamma_1 & -\gamma_2 + \omega \\ -\gamma_2 - \omega & 1 - \kappa + \gamma_1 \end{pmatrix} \end{aligned} \tag{1}$$

and  $\kappa$  convergence parameter:

$$\kappa = 1 - \frac{1}{2} \operatorname{Tr}(\mathcal{A}).$$
 (2)

### Weak lensing



Joseph Allingham

g weak lensing and redshift-space distortion:

#### Context: Redshift-space distortions

Presumably: redshift of a distant object  $\implies$  distance:

$$1+z=\frac{a_0}{a},\qquad (3)$$

but source has peculiar speed v:

$$1 + z = \frac{a_0}{a} \left[ 1 + \frac{\boldsymbol{v} \cdot \boldsymbol{n}}{c} \right]. \quad (4)$$

• Instance of possible blue- or red-shift not caused by the Hubble flow but by the Doppler effect.

Total relativistic RSD calculations:



Figure 2 – RSD in a nutshell.

$$\delta z = \frac{a_0}{a} \left[ \frac{\boldsymbol{v} \cdot \boldsymbol{n}}{c} - \frac{\psi - \psi_0}{c^2} + \frac{1}{2} \left( \frac{\boldsymbol{v}}{c} \right)^2 - \frac{1}{c^2} \int_{\eta}^{\eta_0} \frac{\partial(\phi + \psi)}{\partial \eta} \mathrm{d}\eta' \right].$$
(5)

 $\Rightarrow$  Overdensity  $\delta=\rho/\langle\rho\rangle-1$  in redshift space different from real space.

### Data: simulations and catalogs

⇒ Breton et al., 2019: "RayGalGroupSims": large N-body simulations & relativistic ray-tracing  $\implies$  for the first time unified treatment of relativistic RSD and weak-lensing in high-resolution simulation.

 $\Rightarrow$  Large halo catalog, taking all relativistic corrections into account.

 $\Rightarrow$  Analysis of  $\Lambda$ CDM simulations (WCDM just completed).



Figure 3 – We used the full sky catalogs.

The cross-power spectrum allows to look different modes in the correlation function of  $\Theta$  and  $\Xi$  (2 scalars), with comoving distance  $\mathcal{R}$ :

$$P_{\Theta\Xi}(k, \mathcal{R}_{\Theta}, \mathcal{R}_{\Xi}) = \frac{1}{(2\pi)^3} \langle \Theta^*(\boldsymbol{k}, \mathcal{R}_{\Theta}) \Xi(\boldsymbol{k}, \mathcal{R}_{\Xi}) \rangle, \tag{6}$$

we will use the cross-correlation coefficients  $D_l$  for our matter analysis:

$$D_l^{\Theta\Xi} = \frac{l(l+1)}{2\pi} C_l^{\Theta\Xi} = \frac{l(l+1)}{4\pi^3} \int \mathrm{d}^3 \boldsymbol{k} \, j_l(\boldsymbol{k}\mathcal{R}_{\Theta}) j_l(\boldsymbol{k}\mathcal{R}_{\Xi}) \, P_{\Theta\Xi}(\boldsymbol{k}), \quad (7)$$

where  $j_l$  is the spherical Bessel function.

Example:  $\Theta = \delta$  and  $\Xi = \kappa$ . We will analyse the cases  $\delta - \delta$ ,  $\delta - \kappa$  and  $\kappa - \kappa$ . Terminology:

**Comoving** angular positions are in a FLRW Universe, without gravitational lenses;

**Observed** angular positions are taking lensing into account;

redz0 refers to a redshift calculation without any corrections;

redz5 refers to a redshift which includes all relativistic perturbations.

Analysis tools:

Linear relativistic calculation & Halofit model (for the non-linear regime): Class (Blas, Lesgourges & Tram 2011);

Cross power spectrum estimator: Polspice (Chon et al., 2003).

### Results: Comoving non RSD

Remark: non-linear regime starts around I = 50 - 70



Figure 4 –  $D_l \delta$  -  $\delta$  cross-correlation.

Figure 5 –  $D_I \kappa$  -  $\kappa$  is quite accurate

In  $D_l \delta$  -  $\delta$ , there is shot noise  $\rightarrow$  in progress.

### Results: Comoving non RSD



 $D_l \delta - \kappa$  for matter (bias 1.00); Comoving at redz0; z<sub>1</sub> = 0.2250, dz<sub>1</sub> = 0.0450; z<sub>2</sub> = 0.4500, dz<sub>2</sub> = 0.0250; N<sub>side</sub> = 128; on CIC maps

Figure 6 –  $D_l \delta$  -  $\kappa$  cross-correlation.

Offsetting the shot noise would probably lead to  $D_I^{\delta\kappa} \sim 10\%$  smaller than expected for  $I > 100 \Rightarrow$  important discrepancy with Class predictions.

# Comparing several cases: $D_I^{\delta\delta}$ relativistic corrections



11/16

Joseph Allingham

## Comparing several cases: $D_l^{\delta\delta}$ relativistic corrections



Figure 8 –  $D_l^{\delta\delta}$  comparison with and without lensing (in the case redz0): we see the lensing effect.



Figure 9 – Comparison with and without RSD (in the case observed): we see the RSD effects.

 $\Rightarrow$  RSD more important role than lensing.

 $\Rightarrow$  Small discrepancy on RSD effects comparison between Class and the simulations, at very large *I*.

## Comparing several cases: $D_I^{\delta\kappa}$ relativistic corrections





Figure  $10 - D_l^{\delta\kappa}$  comparison with and without lensing (in the case redz0): we see the lensing effect.



 $\Rightarrow$  For  $D_l \delta$  -  $\kappa$ , lensing is more important than RSD (nought is mean value).

 $\Rightarrow$  Often neglected effect  $\rightarrow$  increasing importance with redshift, will be >10% in future surveys like Euclid (Ghosh et al., 2018).

 $D_l^{\delta\kappa}$  discrepancy still ongoing: any insight welcome! •Could it be Limber approximation?

$$j_l(k\mathcal{R}) \to \sqrt{\frac{\pi}{2l}} \delta_D(l-k\mathcal{R})$$
 (8)

•Could it be line of sight effect? In the Born approximation, with  $\Phi$  the newtonian potential and  $\mathcal{R}_S$  the comoving distance to the source:

$$\kappa(\theta) = \int_{0}^{\mathcal{R}_{S}} \mathrm{d}\mathcal{R} \frac{\mathcal{D}(\mathcal{R}_{S} - \mathcal{R})\mathcal{D}(\mathcal{R})}{\mathcal{D}(\mathcal{R}_{S})} \\ \left[ \frac{3H_{0}^{2}\Omega_{m}}{2c^{2}}(1+z)\delta(\mathcal{D}(\mathcal{R})) - \frac{1}{c^{2}}\frac{\partial^{2}}{\partial\xi_{3}^{2}}\Phi(\mathcal{D}(\mathcal{R})\theta,\mathcal{R}) \right] \qquad (9) \\ = \kappa_{\perp} + \kappa_{\parallel}.$$

 $\rightarrow \kappa_{\parallel}$  always neglected  $\Rightarrow$  could it be it?

### Test of Limber and line of sight approximation.



 $D_l \delta - \kappa$  for matter (bias 1.00); Comoving at redz0;  $z_1 = 0.2250, dz_1 = 0.0450; z_2 = 0.4500, dz_2 = 0.0250; N_{side} = 128;$  on CIC maps

Figure  $12 - D_l^{\delta \kappa}$  in different theories.

 $\implies$  On small I < 10,  $\kappa_{\parallel}$  is quite significant.

### Conclusion & open questions

We have managed to:

•Accurately reproduce  $D_l$  for  $\delta$  -  $\delta$  and  $\kappa$  -  $\kappa$ , and point out a discrepancy in  $D_l \delta$  -  $\kappa$ ,

 $\bullet Compute$  all the corrections (relativistic RSD & lensing) at once, and analyse the different cross contributions,

•Compute the usually neglected  $\kappa_{\parallel}$ .

Perspectives:

- Higher resolution  $\rightarrow$  larger /, provided to correct shot noise,
- Matter  $\rightarrow$  Haloes, subhaloes, galaxies,
- Observational effects (magnification bias and selection effects),
- Shear and reduced shear,
- The strong lensing effect and strong lensing connection.

Open question:

 $\star$  Why are the  $D_{I}^{\delta\kappa}$  from the simulations under the prediction?

# Thank you for your attention