

Big-Bang

Recombinaison 3 10⁵an

Age Sombre

Pourquoi les premières galaxies?

Comment se forment-elles?

1^{éres} étoiles, QSO 0.510⁹an

Réionisation de l'Univers

Renaissance Cosmique

Faible métallicité,

Fin de l'âge sombre Fin de la reionisation 10⁹an

Evolution des Galaxies

Système solaire 9 10⁹an

Aujourd'hui 13.7 10⁹an

Mesure de l'âge sombre de l'univers

Ligne de visée devant un quasar

Spectre en absorption

Forêt Lyman-alpha

ou absorption continue totale

Technique de selection par couleur Z=3

Réionisation

Percolation progressive des zones ionisées

Réionisation: vue de SKA

Surface: un million de m² 3000km de ligne de base

Projet mondial ondes m/cm → verra le HI-21cm redshifté durant la réionisation

Galaxies à z~4, 5, 6 (B, V, i-dropouts) Fonctions de Luminosité UV

Rest frame UV 1600 Å

Bouwens, Illingworth, Franx, and Ford 2007

Fonction de Luminosité à z=7,8

Galaxies à z=7, 8

Sélection par couleurs Et disparition du flux dans le bleu, par absorption du milieu intergalactique

Telescope Spatial Hubble

Moyens d'observations performants

Hubble telescope WFC3 wider field More sensitivity in IR More resolution in IR

Wide FOV 8x8' Sensitivity 27 mag Ultra-wide field VISTA

Quelle est la première galaxie?

Z=10 candidate

LIDFI-39546284 (H = 28.9. J-H > 2.0) <1 1.05 1.25 1.6 μm

Drops below $\lambda = 1.4$ microns

Very difficult observations, at the limit of telescopes →JWST 6.5m, 2018

Detected in each sub-grouping of the observations

Les sursauts Gamma (GRB)

Objets les plus lumineux Pendant 1-10 secondes

(dilatation du temps de (1+z)

Effondrement d'une super-étoile Ou bien fusion de deux objets compacts (étoiles à neutrons)

GRB

L'objet le plus lointain un GRB à z=9.4 (z photométrique)

Bang

~500 Ma après le Big-Bang, ou 100 Ma après la recombinaison

X-ray, optical, z=8.2 190 Myrs after recomb

Histoire de la formation d'étoiles deMasse d'étoiles (t)I'Univers

Taux de formation: → Bleu: optique → Rouge IR, FIR obscurci par la poussière Quand se sont formées l'essentiel des étoiles dans la Voie Lactée et les galaxies proches?

Privilège du domaine mm/submm

Negative K-correction: example of Arp 220

Detections en continuum

30% Quasars @ z=6 detectés en continuum → HLIRG > 10¹³Lo Mdust ~ 10⁸ Mo, surprise, la poussière se forme très tôt dans L'Univers

18

Observations des raies CO

CO emission: ~70 sources at high z (2011)

Advantages: kinematics and mass

20

10

-500

0

Velocity offset (km s⁻¹)

Fux (mJy/beam)

1st historical detection: Faint IRAS source F10214+4724 à z=2.3 (Brown & van den Bout 92, Solomon et al 92)

0.005

Evolution cosmique du rapport H2/HI

L'évolution du gaz atomique HI est connue par les absorbants devant les QSO

Propriétés des galaxies à grand z

Iono et al 2009 Bonne correlation LFIR/LCO (même pour les QSO)

Molécules CO galaxies z > 4

Ζ

Pratiquement toutes amplifiées !

PSS J2322 +1944	QSO	4.12
BRI 1335 -0417	QSO	4.41
BRI 0952 -0115	QSO	4.43
BR 1202 -0725	QSO	4.69
TN J0924 -2201	QSO	5.19
SDSSJ1148+5251	QSO	6.419

CO(2-1): VLA45 GHZ PSS J2322 +1944

+ 6 z=6 QSO (Wang et al 2010)

Fan et al 2003, White et al 2003 $M_{dust} \sim 10^8 Mo$ (Bertoldi et al 2003) $M_{BH} = 1.5 \ 10^9 Mo$ (Willot et al 2003) No HCN detected CII, Walter et al 2009 1kpc scale starburst, 1000Mo/yr/kpc²

Le quasar trèfle à quatre feuilles

Gaz de très haute densité

HCN trace le gaz dense Mieux correlé à la formation d'étoiles que le CO

Haute densité à grand z

HCN detecté à grand z, trace $nH_2 \sim 10^5 \text{ cm}^{-3}$ Cloverleaf z=2.56: dominé par un starburst

CO, HCN, HCO+ trace le gaz dense et chaud formant des étoiles Le quasar n'est pas visible

Dans APM08279+5255, excitation radiative + collisionnelle
→ Trou noir (z=3.91)

HCN (green) on optical

Gaz Moléculaire à l'échelle du kpc

Fusions de galaxies, 1.4 Ga après le Big-Bang

 $MH_{2} = 9.2 \ 10^{10}Mo$ Mdyn = 1.0 \ 10^{11} /sin^{2}iMo Mbh = 6 \ 10^{9}Mo (Edd limit)

Gaz Moléculaire dans un anneau d'Einstein

Galaxies en interactions?

z=4.12, 5kpc extent BH offset $MH_2 = 1.7 \ 10^{10} Mo$ $Mdyn = 4.4 \ 10^{10} / sin^2 iMo$ $Mbh = 1.5 \ 10^9 Mo$ (Edd limit)

8.5 kpc

VLA, CO(2-1), SFR= 680 Mo/yr Riechers et al 2008 Mbulge = 30 Mbh Too high BH masse²⁸!

Formation d'étoiles limitée par la pression de radiation

Taux * Modéré: « Cosmic eye »

z=3.07 IRAM interferomètre CO(3-2) MH2 = $2.4 \ 10^9$ Mo M* = $6 \ 10^9$ Mo (Spitzer)

SFR = 60Mo/yr durée de vie =40Myr Galaxie lumineuse

Amplification d'un facteur **28** 2 composantes UV, 3kpc séparation

Masse dynamique ~10¹⁰ Mo Mais inclinaison incertaine HST ACS

Taux de formation d'étoiles plus faible

SFE ~140 Mo/Lo

LCO \rightarrow masse de gaz

z=2.73

8 o'clock arc Allam et al 2007

SMGs: Submillimeter Galaxies Efficacité de formation d'étoiles L_{IR}/L'_{CO} vs z

6 SMGs non detectées en CO

> 40- 200 Myr phase starburst SFR ~700 Mo/yr Plus efficace que les ULIRGs

Fusions sans bulbes?

Masses de gaz ~0.6 M*

Efficacité de formation d'étoiles versus z

Suit l'histoire de formation d'étoiles En amplitude relative

Galaxies à faible efficacité de formation d'étoiles

Dans ces galaxies, plus de gaz détecté que prévu
Galaxies massives, tailles 10kpc? L(FIR) ~10¹² Lo
Taux SF normal, M(H2) ~ 2 10 ¹⁰ Mo τ ~2 Gyr
→ Il existe une population de galaxies riches en gaz à grand z

Faible excitation, comme la Voie Lactée

Niveaux de rotation de la molécule CO

Galaxies z=1-2

19 galaxies observées à IRAM, 10 à z~2.3 et 9 à z~1.2

Galaxies à formation d'étoiles « Normale » Contenu en gaz ~34% et 44% en moyenne à z=1.2 et 2.3 resp. 5% dans la Voie Lactée

Avec aussi une plus grande efficacité de formation stellaire
→ Accrétion de gaz continue par les galaxies

Galaxies de fond amplifiées détectées par Herschel

Au-dessus de100mJy, les sources sont des galaxies + lentilles 6 sources détectées en 14 deg²

Extrapolation > 100 galaxies en 550 deg²

Observations en NIR → Révèle la lentille

Sources détectées en CO

Redshifts découverts avec les raies de CC Entre z=1.5 et z=3

Negrello et al 2010

Recherche du redshift avec les raies de CO

Recherche avec le GBT Z-spec CO(1-0) line

Une galaxie ultra-lumineuse

Recherche de redshift avec IRAM-30m CO(6-5) et (4-3)

S=30mJy à 1.2mm avec MAMBO. Recherche près d'un disque de débris → Découverte par hasard! Lestrade, Combes, Salome et al 2010

MM18423+5938 2 raie CI, CO(7-6)

Lestrade, Combes, Salome et al 2010

Amas de galaxies comme télescope gravitationnel

Formation d'étoiles: galaxie à z=2.33

Swinbank et al 2010

Résoudre les nuages à z=2.33?

Swinbank et al 2010

Une galaxie hyper-lumineuse, 1 Ga après le Big-Bang

Z=5.24

Source détectée par Herschel en infrarouge, puis le redshift déterminé avec un scan de l' IRAM 30m Combes et al 2012

Est-ce que les SMG tracent les halos massifs?

Dans les champs profonds, amas de SMG à z=1.99
La plus forte association de SMG (*Chapman et al 2009*)
Surdensité de 10. Mais seulement 2 en galaxies UV
→ Seulement faible surdensité, avec forts starbursts

Périodes de fusions actives dans des structures de masse modeste

→Biais de fusion

Herschel et ALMA vont Cartographier divers environnements

SMG dans les filaments d'objets Lyman- α

SSA22 Protocluster region z=3.1

Filament colour from LAE

SMG 1,1mm from AzTEC on ASTE

S > 2.7 mJySize \propto flux

Un proto-amas massif à z=5.3

COSMOS-Aztec3 MH2= 5 10^{10} Mo 70% gas, cD? Capak et al 2011

Carilli et al 2011: GN20 z=4.05

Protocluster region
▶13 Mpc
▶Includes QSO
▶SMG COSMOS
Aztec-3
Total > 4 10¹¹ Mo

Co-habitation trou noir - Galaxie

Qu'en est-il au début de l'Univers?

MBH – Masse bulbe (ou σ)

→ ALMA pourra donner la morphologie, et les inclinaisons

Quasars faibles à z=6

Wang, Wagg, Carilli et al 2011

Luminosité tous quasars

Dash ----LFIR ~Lbol ^{0.45} Submm detected z=2-6 Dots

LFIR ~Lbol ^{0.62} All high-z QSO

Quasars sont aussi des starbursts avec qq 100 Mo/yr

Wang, Wagg, Carilli et al 2011

Masse du trou noir et masse du bulbe

Les deux masses sont proportionnelles ~1/700

Parfois, on arrive un peu au-dessus, dans les amas de galaxies

Galaxies cannibales au centre

Avalent le gaz chaud avant la formation d'étoiles?

Perspectives avec ALMA, JWST, hypertélescopes..

Morphologie détaillée, IR, optique dans le réf au repos Composant stellaire, cinématique
Le gaz moléculaire sera déterminé à grand z avec ALMA
efficacité de formation stellaire (z), cinématique, Mdyn, MBH

Détermination de la formation des premières étoiles

\rightarrow SFH + MH2 \rightarrow SFE