
Space Missions: long term preservation of
IDL-based softwares using GDL

Alain Coulais1 Marc Schellens∗ Sylwester Arabas2

Maxime Lenoir3,1 Léa Noreskal1 Stéphane Érard3

1LERMA CNRS and Paris Observatory, France

∗GDL project leader

2Faculty of Physics, University of Warsaw, Poland

3LESIA CNRS and Paris Observatory, Section de Meudon, France

ADASS XXI – November 9, 2011

sorry for my English

Coulais, GDL, ADASS 2011



What is GDL ? Motivations

GDL : http://gnudatalanguage.sourceforge.net/

Free clone of IDL
under GNU GPL v2 or later
fully syntax compliant with IDL 7 version
few IDL 8 new syntax features (negative index ...)

Motivations:

• smart language and accessible for Scientists

• large amount of existing codes, pipelines, libraries in IDL syntax

• perennity ; mid term and long term existence of IDL (which OS ?)

• to get rid of licensing and pricing and jetons on the
web/cloud/cluster (ha, firewalls and jetons ! ha, summer (students)
time and jetons)

We think the IDL users community in Astronomy is (still) wider than the
Python one.

Coulais, GDL, ADASS 2011

http://gnudatalanguage.sourceforge.net/


Figure: Mandatory and optional dependencies for GDL (fig. by Sylwester)

Coulais, GDL, ADASS 2011



OS: Unix; packets vs compilation

Tested on: OSX (most recent flavours), Gentoo, Debian, Ubuntu,
CentOS, FC, SL, Mandriva, Mageia, various *BSD flavours, SunOS ...

No plans at all for M$ systems (but who used that in XXI century ?)

Despite good support from packagers, packets are often in late. We are
in GDL 0.9.2 today !

Two ways for compilation: configure OR CMake (less than 5 minutes
compilation on multicores machines)

• ∼ 120 000 lines in C++

• ∼ 10 downloads per day (TGZ, not packets)

Coulais, GDL, ADASS 2011



Performances : thanks to OpenMP and Marc !
TIME TEST3 on Debian 16 cores (idl-8; Xeon L5520 @ 2.27 GHz) and
CentOS 8 cores (idl-7; Xeon X5450 @ 3.0 GHz) [output with TIME COMPARE]

Time GDL 16c GDL 8c idl7 8c idl8 16c
0.03 124* 112 118* 100ˆ Empty For loop, 2000000 times
0.01 138* 100ˆ 119* 151* Call empty procedure (1 param) 1000
0.01 150* 147* 100ˆ 198* Add 200000 integer scalars and stor
0.01 154* 134* 100ˆ 181* 50000 scalar loops each of 5 ops, 2
0.00 130* 100ˆ 318* 436* Mult 512 by 512 byte by constant an
0.01 126* 100ˆ 124* 164* Shift 512 by 512 byte and store, 30
0.01 127* 100ˆ 252* 303* Add constant to 512x512 byte array,
0.01 141* 100ˆ 234* 154* Add two 512 by 512 byte arrays and
0.00 100ˆ 116* 433* 320* Mult 512 by 512 floating by constan
0.01 128* 119* 100ˆ 107 Shift 512 x 512 array, 60 times
0.00 100ˆ 138* 650* 330* Add two 512 by 512 floating images,
0.01 149* 100ˆ 118* 128* Generate 1000000 random numbers
0.01 238* 182* 100ˆ 125* Invert a 192ˆ 2 random matrix
0.02 265* 158* 100ˆ 162* Transpose 384ˆ 2 byte, FOR loops
0.01 166* 100ˆ 143* 168* Transpose 384ˆ 2 byte, row and colum
0.04 102 104 101 100ˆ Transpose 384ˆ 2 byte, TRANSPOSE fun
0.02 217* 144* 100ˆ 105 Log of 100000 numbers, FOR loop
0.00 100ˆ 147* 515* 196* Log of 100000 numbers, vector ops 1
0.01 158* 100ˆ 160* 171* 131072 point forward plus inverse F
0.03 741* 513* 100ˆ 116* Smooth 512 by 512 byte array, 5x5 b
0.01 694* 600* 100ˆ 127* Smooth 512 by 512 floating array, 5
0.02 103 146* 356* 100ˆ Write and read 512 by 512 byte arra
0.39 173* 135* 101 100ˆ Total Time
0.01 118* 100ˆ 118* 118* Geometric mean

ˆ = fastest. * = Slower by 15% or more.
Coulais, GDL, ADASS 2011



Completeness of GDL vs IDL intrinsic

Visualization of IDL intrinsic Pro/Func recoded in GDL
http://michaelgalloy.com/page/10

from http://aramis.obspm.fr/~coulais/IDL_et_GDL/Matrice_

IDLvsGDL_intrinsic.html

Theoretical percentage of completeness for intrinsic Pro/Func
color code syntax number %
green recode in C++ 214 52.6 %
orange recode in GDL syntax 32 7.9 %
green + orange (total recoded ) 246 60.4 %
gray still missing 161 39.6 %

total 407 100.0 %
BUT, as a 20 years old IDL coder (processing data or simulations with the following
instrument or satellites : NRH, PdBi, ALMA, ISO, Spitzer, AstroF, Planck ...), today,
in my whole IDL codes, I miss TWO: USERSYM and the famous WMENU !
Do you know/use: BLAS AXPY, FILE READLINK, QHULL, XDXF ?!

The real problem is more on the keyword side, and especially the graphical keywords.

Contributions welcome !

Coulais, GDL, ADASS 2011

http://michaelgalloy.com/page/10
 http://aramis.obspm.fr/~coulais/IDL_et_GDL/Matrice_IDLvsGDL_intrinsic.html
 http://aramis.obspm.fr/~coulais/IDL_et_GDL/Matrice_IDLvsGDL_intrinsic.html


Preparing your code for GDL

Please distinguish pipeline/computation vs preparing camera ready output

• compiling the last GDL version : we delivered GDL 0.9.2 today !

• collecting the needed dependencies (IDL Lib., AstronLib, CMSVlib
(XDR files)) in the GDL PATH

• preparing a basic end-to-end pipeline

• do you have a way to check that the reading of data is OK ?

• do you have a way to check that the final result is OK ?

• which null test can you do ?

• test-and-trial procedure to locate missing functionalities

• real audit (missing pro/func, missing keywords ...)

• building a deterministic test suite

Two examples: Virtis/PDS and HEALPix

Coulais, GDL, ADASS 2011



Virtis/PDS

Adaptation of the Virtis/PDS LecturePDS (reading PDS) library
(http://pds.nasa.gov/)
About one month of work for a student (Maxime)
Main problems:

• few bugs in STRING-related procedures

• missing transparent support for GZIP files

• big/small endian tricks

• were missing DIALOG PICKFILE and FILE SEARCH

• few code cleaning in Virtis/PDS lib.

and that was all ! All examples (big data files) were processed identically
by IDL and GDL.

Thanks to Léa, Maxime and Stéphane

Coulais, GDL, ADASS 2011

http://pds.nasa.gov/


HEALPix
Can the HEALPix library (http://healpix.jpl.nasa.gov) been used
within GDL ? See test healpix.pro in testsuite/.

• Yes for the computations

• Yes for most of the graphical outputs (PNG and PS), except one PS
output

Figure: Reading FITS file and display CMB
map

Figure: Simulation (large
computations) then Cl plotting

Thanks to Éric Hivon
Coulais, GDL, ADASS 2011

http://healpix.jpl.nasa.gov


What you can do for GDL ?

• Testing GDL on your box (make check). We are facing problems
related to Plplot and ImageMagick tricks. Wider base welcome.

• Testing your code with last GDL version.

• Report bugs (if any) (please report on SF bug tracker)

• Report missing Pro/Func and keywords you really need.

• Providing code (in C++ or in GDL syntax). Due to the simple API
it is quite easy to add to GDL your Pro/Func coded in C++.

• Packaging !

• We are ready to consider collaborations.
• We may help you (at least during audit)
• Very good subjects for stagiaires/students.

When coming with adequate test code, each progress is irreversible !

Coulais, GDL, ADASS 2011



Conclusion

GDL is a mature free clone of IDL:

• syntax OK

• good performances

• most of the key procedures/functions are available

• efficient regression test suite

but still

• few useful pro/func are missing (e.g. STRMATCH, LUDC, ...)

• some keywords are missing, especially in graphical functions

• may have un-expected bugs

If your concern is mainly preserving IDL based pipelines, it is easy to
check whether you can live with the subset we provide !
Some large libraries in IDL syntax can be used now in GDL, e.g.:
PDS/Virtis, ULySS, HEALpix, TexToIDL, MPfit, AstroLib, Cappellari’
lib. ...
Sci. Refereed papers are written now using GDL.

Coulais, GDL, ADASS 2011


