Getting started with GDL

This document will: Give you the quick-n-dirty introduction to GDL so you can start being productive.

This document will not: teach you programming. There's lots of good books about that out there.

(1) Basics:

- Get GDL through gnudatalanguage.sourceforge.net

- install it

- (compile/build gotchas here?)

- make sure the . /src/pro directory is copied somewhere accessible
- type "gd!I" to enter GDL

(2) Variables:
GDL - GNU Data Language, Version 0.9

For basic information type HELP,/INFO
GDL>

2.1) Scalars:

Variables do not have to be declared. They are "typed as appropriate". The "print" command in GDL is
"print", but all tokens are separated by a comma - even from the print command itself.

GDL> a = 5

GDL> print,a
5

Note the "print comma a". More info on variables comes from the "help" command:

GDL> help,a
A INT = 5

Again: "help comma a". Here "a" is an INT because that's all that's needed to hold the number 5
INTegers are 16-bit! by default - they range out at 32768:

GDL> f = 5000
GDL> help, £

F INT = 5000
GDL> help,£f*10
<Expression> INT = -15536

Here I'm using "f*10" instead of a variable. An expression can go almost anywhere there can be a variable,
as long as it is in parentheses:

GDL> a = (b = (c = 0))

GDL> print, (b = b+10)
10

GDL> print, (b
20

GDL> print, (b = b+10)
30

b+10)

If you need 32-bit integers, you'll have to mark your numbers as "long" (or "ulong" for unsigned numbers):

GDL> f = 4000
GDL> help, f

F INT = 4000
GDL> help, (£f=£*1000ulL)
F ULONG = 4000000

By the way: you don't need any of the spaces around the "=" sign and the "u" or the "L" can be upper or
lower case. On 64-bit machines there may also be "L64" or "UL64" data types.

By itself GDL will not promote INTs to FLOATSs but perform integer arithmetic. In the 2nd example below,
note the "2." which indicates that the "2" here is a float:

GDL> f = 5/2
GDL> help, f
F INT = 2
GDL> f = 5/2.

GDL> help, f

F FLOAT

2.50000
2.2) Arrays
GDLs power lies very much in its array handling:

GDL> a = [1,4,2,3]
GDL> help,a
A INT = Array[4]
GDL> print,a

1 4 2 3
GDL> b = a"2
GDL> print,b

1 16 4 9

Arrays behave like expected from math.
GDL> c¢ = atb

GDL> print,c
2 20 6 12

Matrix product is written as "#":

GDL> print, a#c

2 8 4 6
20 80 40 60
6 24 12 18
12 48 24 36
GDL> print, (a#c)#b
454 1816 908 1362

Arrays can also be created like this:

GDL> s = intarr(100)
GDL> t fltarr(50)
GDL> g lonarr(200,/nozero)

Where the "/nozero" means the array is not initialized and its contents are undefined. They may be zeros.

Another powerful way to initialize an array is with the "index generator”, which returns an array of the given
type, filled with the (zero-based) indices of the elements:

GDL> a = indgen(10)
GDL> print,a

0 1 2 3 4 5 6 7 8
9

Individual elements or ranges in an array can be subscripted using round or square parentheses, the latter
are strongly preferred, though (because round ones are for function calls):

GDL> print,a[4]

4
GDL> print,a[4:6]
4 5 6

GDL> a[0:3] = a[5:*]
GDL> print,a

5 6 7 8 4 5 6 7 8
9

Here the "*" means "however many more elements are needed". Multi-dimansional arrays work basically the
same. Note that slicing rows or columns produces row- or column-verctors:

GDL> b = findgen(4,4)
GDL> print,b

0.00000 1.00000 2.00000 3.00000
4.00000 5.00000 6.00000 7.00000
8.00000 9.00000 10.0000 11.0000
12.0000 13.0000 14.0000 15.0000
GDL> print,b[2:%,3]
14.0000 15.0000
GDL> print,b[3,2:%*]
11.0000
15.0000

("f"'indgen for floats, "d"indgen for double precision,
strings...)

indgen for long ints, "b"indgen for bytes, "s"indgen for

(3) Plotting

GDL> plot,sin(findgen(200)/100*!pi)

Here findgen(200)/100 gives a vector ranging from {0..2}. The !pi is a system variable which unsurprisingly
equals 3.141... (There is also a !dpi which has a double-precision version of that). All system variables start

with a "I".

If plot has only one array as an argument, that array represents the y-values. If there are two arrays, then
they are x and y respectively:

GDL> x=findgen(150)/50
GDL> plot,x,sqrt(x)

The 'plot' command takes a metric gazillion of keywords - help,/lib will list some of them. You can also plot
into an already-established plot-frame by using "oplot" (as in "overplot"):

GDL> plot,x,cos(x),ytitle='cos(x)',xrange=[.5,.9],yrange=[.5,1]
GDL> oplot,x,sin(x),color="1ff'x

The expression 'ddd'x is simply an easy way to express hex numbers. Can be used wherever decimals can
be used. 'dddd'o makes it octal. Note that that can sometimes lead to confusion when a string is specified
somewhere that starts with a zero.

You plot into a file like this:

GDL> set plot, 'ps'

GDL> plot,x,cos(3*x)*exp(-x),xtitle="'x"',title='dampened cosine'

GDL> device,/close

GDL> set plot, 'x'

As of this writing, the generated postscript file is always prefixed by an empty page - a minor bug, |
suppose. If you have gv on your system, you could now preview your plot like this:

GDL> $gv gdl.ps

where the "$" executes your linux shell command.
Slightly fancier:

GDL> s = sin(findgen(100,100)/1000)

GDL> for 3j=0,99 do s[j,*] = s[],*]1*cos(j/16.)
GDL> surface,s

Note the for-loop in there: for var=index1,index2[,stepsize] do {command}
(this will become more powerful a few sections down). Labeling can be done like this:

GDL> plot,[0,1]
GDL> xyouts, .3,.6,"data!™"

By default, data points are drawn as dimensionless points, connected by lines. Other things are possible:

GDL> s=randomn(seed, 10)
GDL> plot,s,psym=4
GDL> oplot,s,color=50000

Randomn makes normally distributed random numbers, mean=0, sigma=1. There is also randomu which
makes uniformly distributed ones (in the interval {0..1}).

A special number to use for "psym" is 10, which draws the points as horizontal lines and connects them for
a histogram-like plot:

GDL> s=randomn(seed, 10000)
GDL> t = histogram(s,binsize=.25,omin=omin)

GDL> plot,findgen(100)*.25+omin,t,psym=10,xrange=[omin,max(s)]

There's a lot of new functionality in these three lines, have a play at it.

(4) File access
Not yet mentioned is the "format" parameter to the 'print' statement. It works pretty much like FORTRAN:

GDL> f = 99.3
GDL> print,f, format="'(i)"

99
GDL> print,f, format='(i5)"
99
GDL> print,f, format='(i5.5)"
00099
GDL> print,f, format='(£8.2)"
99.30
GDL> print,f,format="'(e8.2)"
9.93e+01

Etc. "Z" is hex-output. Files can be read or written to using this kind of formatting, default formatting or
unformatted (binary) I/O. Files are opened with "openw" (for writing) or "openr" (for reading only).

GDL> openw,unit,'testfile.dat',/get_lun
GDL> print,unit
64
GDL> printf,unit,indgen(6)*3+9
GDL> free lun,unit
GDL> S$cat testfile.dat
9 12 15 18 21 24

Could use "format" there to format these in specified columns or such.

GDL> openr,unit, 'testfile.dat',/get lun
GDL> readf,unit,d

GDL> free_ lun,unit

GDL> print,d

9.00000 12.0000
15.0000 18.0000
21.0000 24.0000

Writing/reading unformatted (binary) data uses "readu” and "writeu". l.e. if "unit" is open for writing one
could do something like this:

GDL> writeu,unit,'12345678'x
GDL> free lun,unit

GDL> $od -Ax -x testfile.dat
000000 5678 1234

000004

Several statements can be appended to each other with the "&" sign so they can be re-run together with the
"arrow up" function:

GDL> print,f & print,(f = £*5)
99
495

The "@" will read lines of input from a file and execute it:

GDL> S$echo "print,primes(10)" > testfile.dat

GDL> Qtestfile.dat

% Compiled module: PRIMES.
2 3 5 7 11 13
17 19 23 29

This can be used for some simple scripting, but for anything longer than a few lines the section on programs
should be studied.

(5) Strings
Should be mentioned somewhere, so I'll do it here: most of the time " and ' are fairly interchangable.
GDL> k = 'test' + " something"

GDL> print,k
test something

Length need not be specified when making string arrays:

GDL> s = strarr(5)
GDL> s[3]="hello"

etc.
string(5) is " 5" with default formatting, but string() accepts formats:
GDL> s = string(92,format='(z4)"')

GDL> print,s
5¢

Converting a byte-array into a string means the ascii characters of the string will be the bytes in the array:
GDL> b = bindgen(5)+49b

GDL> print,string(b)
12345

Note the use of "49b": if this were just "49" it would be an int and the whole array would be ints:
GDL> b = bindgen(5)+49

GDL> print,string(b)
49 50 51 52 53

The format code for a string is (A). The format code "$" means "no newline". E.g.:
GDL> for i=0L,le6 do print,i,string(byte(13)),format='($,1i,(A))"

Note the "OL" as otherwise this would only be able to count to 32768

(6) Programs

The "@" facility is nice, but as each line is read and executed individually, one cannot use it to produce
code that spans lines. For that, there are programs:

In the simplest case, an IDL/GDL program is a text file ending in ".pro". It contains lines somewhat like
above, the last line must be "end", comments start at a semicolon. In a ".pro" file, loops and conditionals
can be expanded into blocks, by replacing any one statement with a begin...end pair.

In this simplest case, this file is executed by typing ".run filename][.pro]".

For example put this into a file and call it "test.pro":

; true-color image:
img=fltarr(3,300,300)

for i=0,299 do begin ; "begin" replaces the command that would go here
img[2,1i,*]=300*abs(sin(i/150.*!pi))
img[0,*,1]=300*abs(sin(i/100.*!pi))
for j=0,299 do begin ; again
img[1l,i,j]=300*abs(sin(i/300.*!pi*cos(j/75.*!pi)))
endfor
endfor

window,xsize=300,ysize=300
tv,img, /true
end

You can then run this routine from the command-line with ".run test". It will read the file, compile it and run it.
The way this is done here, it will retain all the variables after it finishes, so you could work with them from
here on in:

GDL> print,i

300
GDL> img[O0,*,*]=transpose(img[0,*,*])
GDL> tvscl,img,/true

Etc. This also shows the way you turn a single-line statement into a block statement by replacing the
command in the for... statement with a "begin {any amount of code} end" pair. GDL allows but does not
require to name the "end" appropriate for the given loop -- in this case "endfor". It would be allowed to just
say "end" here. It is recommended to use "endfor", "endif", "endwhile" etc, though, since that'll generate an
error if you use the wrong one, which is quite helpful in debugging.

Thus an if-statement reads
if condition then command [else other-command]
but in a program it could expand to
if condition then begin
command(s)
endif [else begin
other-command(s)

endelse]

etc.

In the next step, our routine can be encapsulated by prefixing the ".pro" file with the line

pro routinename, varl, var2

which now makes it into a routine that can be called by name and have parameters passed to it.
Here's a trivial one that subtracts one from a variable (I'm sure you can find a better example):

pro dec, x

Xx =x -1
return
end

called like this:

GDL> i=5
GDL> dec, i
% Compiled module: DEC.
GDL> print,i
4

This means parameters are handed down and back in IDL.

Finally there's a type of program that returns a value. l.e. a function. Works like in all other languages:

function factorial, x
if n _elements(x) ne 1 then stop, "Need a scalar input here!l"
return,product (l+indgen(x))

end

produces this:

GDL> print,factorial(7)
% Compiled module: FACTORIAL.
5040.0000

Note that these are only compiled the first time you call them. If you find your function lacking and you
change it and want to use the new version, you'll have to issue a ".compile fname" by hand to force GDL to
recompile.

(7) Control structures
GDL understands the following:

if (condition) then (command) [else (command)]

Numerical comparators are "It", "gt", "eq". Expressions are true if their LSB is set (i.e. if they are odd) if
integer. Floats are true if nonzero, strings if non-empty. AND, OR, NOT work as expected.

for (var)=(start), (end), (step) do (command)
If var doesn't have enough range to go all the way to (end), you're hosed.

while (condition) do (command)
repeat (command) until (condition)

Should be self-explanatory. "command" can always be expanded into a begin...end pair.

case (var) of

(choice-1): (command-1)

[(choice-2): (command-2) [...]]
[else: (command-else)]
endcase

The case..endcase pair can also be called switch..endswitch - in that case all the commands beginning with
the matching one will be executed (as opposed to just the matching one).

break

will exit the current (innermost) loop, case etc.
continue

will immediately start the next iteration of the curent loop.
label:

goto label

catch

on error
on lioerror

do what you expect.

(8) Array power

Most operations that require loops can be avoided in GDL by operating directly with the arrays over which
one would loop in other languages. This speeds up operation dramatically: whenever you think IDL/GDL is
slow, you should see where you can compress any for-loop .

For example if one wanted to set all numbers less than -.5 in an array of random numbers to zero, on could
do something like

for i=01,n_elements(arr)-1 do if arr[i] 1t -0.5 then a[i]=0
but a much faster option is
a[where(a 1t -0.5)] = 0

"where" alone can probably eliminate 75% of all cases where other languages use loops. Note the loop-
less implementation of a factorial up in section (5). Other powerful functions are

v=sort(arr) returns a vector v of indices such that arr[v] is sorted.
v=total (arr) sum of all elements
v=uniqg(arr) remove duplicate elements

An array containing the numbers from 0 to 5000 in random order would be obtained by
arr=sort(randomn(seed,5000))

If 'names' and 'dates' are two arrays to be sorted by date, one would

s = sort(dates)

dates=dates|[s]

names=names|[s]

There is a histogram function, that counts the number of instances of the individual elements in an array. It
can be used for many things other than scientific graphs. For example a file could be read into a bytarr,
histogram(b_arr) computed and the value in the 10th element of the result would be the number of linefeeds
(i.e. the number of lines) in the file.

The most powerful aspect of histogram() is probably the reverse_indices parameter. Check it out.

(9) ... (more to come) ...

