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Bolometers are most often biased by Alternative Current (AC) in order to

get rid of low frequency noises that plague Direct Current (DC) amplification

systems. When stray capacitance is present, the responsivity of the bolometer

differs significantly from the expectations of the classical theories. We develop

an analytical model which facilitates the optimization of the AC readout elec-

tronics design and tuning. This model is applied to cases not far from the

bolometers in the Planck space mission. We study how the responsivity and

the NEP (Noise Equivalent Power) of an AC biased bolometer depend on

the essential parameters: bias current, heat sink temperature and background

power, modulation frequency of the bias, and stray capacitance. We show that

the optimal AC bias current in the bolometer is significantly different from

that of the DC case as soon as a stray capacitance is present due to the dif-

ference in the electro-thermal feedback. We also compare the performance of

square and sine bias currents and show a slight theoretical advantage for the

last one. This work resulted from the need to be able to predict the real be-

haviour of AC biased bolometers in an extended range of working parameters.

It proved to be applicable to optimize the tuning of the Planck High Frequency

Instrument (HFI) bolometers.
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1. Introduction

Bolometers are now the most sensitive receivers for astrophysical observations in the sub-

millimetre spectral range. After decades of improvement, they are able to operate with a

sensitivity limited by the photon noise of the observed source when operated outside of the

atmosphere [1]. The principle of a bolometer is that the heat deposited by the incoming

radiation is measured by a thermometer. The theory of bolometers has been developed in

founding papers [2] and refined later [3–5]. They have shown that their photometric respon-

sivity strongly depends on its interaction with the readout electronics, through the variation

of the electrical power deposited in the thermometer (the electro-thermal feedback). These

theories have been developed for a semiconductor thermometer element biased by a Direct

Current (DC) voltage through a load resistor. The readout electronics for bolometers experi-

enced a radical change more than a decade ago. Most of them are now using a modulated bias

current in order to get rid of low frequency noises that plague amplification systems [6–10].

The theory developed for a DC bias must be altered for Alternative Current (AC) biased

bolometers in the presence of stray capacitance in the circuit. This was evidenced in the

Planck-HFI instrument [11] in spite of the fact that the readout electronics had been de-

signed [9] to mimic, as far as possible, the operation of a DC bias. Very significant differences

were found in absolute responsivity and even in value of the optimal bias current for the

Planck bolometers. This was shown to be mostly due to the effect of parasitic capacitances

in the wiring, which cannot be neglected in many practical experimental setups. This ef-

fects have been studied in several papers dedicated to the characterization of bolometers

and calorimeters by measuring their effective impedance (e.g. [12]), but we are here essen-

tially interested in effective tools able to predict the responsivity and optimise the tuning of

bolometers in specific configurations. Brute force modelling based on numerical integration

of thermal and electrical equations of the bolometers proved to be feasible but computa-

tionally too heavy to be applied on wide ranges of the many parameters of the models. To

facilitate the computation, we have developed an analytical model of the responsivity of AC

biased semiconductor bolometers. This model was used as an aid to predict the behaviour of

the bolometer of Planck-HFI and to optimize their tuning. Its numerical application proved

to be flexible and fast enough to study the effects of all variable parameters.

This paper describes this analytical model and its application with a set of parameters

not too far from the realistic cases encountered in Planck-HFI. The next section is dedi-

cated to the differential equations driving the thermal and the electrical behaviour of the

electro-thermal system comprising the bolometer and its readout electronics. It focuses on

the derivation of an analytical solution giving the responsivity for both the DC and AC

biased cases. Section three addresses the various noises encountered and shows that the op-

timal bias currents are different in the two cases. In the fourth section the model is applied
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to analyze the effects of some essential parameters (cold stage temperature, modulation fre-

quency, value of the stray capacitance, optical background). Section five deals with the shape

of the periodic bias wave to cover the case of square bias current used in Planck-HFI.

2. The Theoretical Model

2.A. Bolometer Model

Let us consider a low temperature bolometer consisting of an absorber attached to a semi-

conductor thermometer. The bolometer is attached to a heat sink at temperature T0 through

a thermal link of thermal conductance Gs. The incoming optical power deposits energy in the

absorber and heats the whole bolometer including the thermometer. The absorbed optical

power will determine the equilibrium temperature Tb of the bolometer:

Gs(Tb − T0) = Wtot (1)

Where Wtot is the total power dissipated in the bolometer that is W = P +Q where Q is

the absorbed radiant power and P (t) = V (t)I(t) is the electrical power.

Gs can be well represented in many cases by:

Gs = Gs0(Tb/T0)
β

where Gs0 is the static thermal conductance at temperature T0 (100mK in the case we

investigate here).

The dominant electrical conduction mechanism in the thermometer is the variable range

hopping between localised sites and the resistance of the device varies with both applied

voltage and temperature.

The relation between the resistance and the temperature of the bolometer [13] is set by :

R(T,E) = R∗exp

(

(

Tg

T

)n

− eEL

KbT

)

(2)

where Tg is a characteristic parameter of the material, R∗ is a parameter depending on the

material and the geometry of the element, L is related to the average hopping distance and E

is the electric field across the device. In absence of electrical non-linearities and other effects

such as electron-phonon decoupling, the thermistor resistance depends only on temperature:

R(T ) = R∗exp
(

Tg

T

)n

(3)

The impedance changes induced by the temperature variations can be measured by an

appropriate readout circuit that we are going to detail and discuss hereafter.
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2.B. Readout Electronics

The Readout Electronics is designed to measure the impedance of the temperature sensitive

element of the bolometer. This is done by injecting a current, and therefore depositing power

in the bolometer, which changes its temperature. Consequently, the bolometer responsivity

and performance strongly depend on the design of the readout electronics.

The Responsivity ℜ is the derivative of the bolometer voltage with respect to the optical

absorbed power W :

ℜ =
dV

dW
(4)

It is a strong indicator of the coupling efficiency achieved by readout electronics for a given

bolometer.

We compare here after the responsivity obtained with a classical DC bias and a sine-shape

AC bias.

DC Responsivity : the bolometer is biased with a DC bias voltage through a load

resistance RL, and the voltage Vb is measured with an amplifier with an high input resistance

(Fig 1 left). The general equation of a DC biased circuit is :

V DC
b =

Rb

Rb +RL

V0 (5)

where RL and Rb are the impedances of the load and the bolometer. V0 is the total input

voltage.

The electrical responsivity ℜel can be written using the Zwerling formalism [14]

ℜel =
αϕDCRbIb

Ge
(6)

where :

ϕDC =
RL

Rb +RL

and Ge is the equivalent thermal conductance :

Ge = Gs0 − αRbI
2

b (2ϕDC − 1) (7)

α is the temperature coefficient of resistance of the bolometer :

dRb

dTb

= α · Rb (8)

The advantage of this DC setup is the use of a well established theory [2, 3]. The optical

power Wopt absorbed by the bolometer and the responsivity of the bolometer can be directly
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computed in the time domain. On the other hand, a DC bias current increases the level of

low frequency noise, like Flicker noise, making the detection of a faint and slowly varying

optical signal impossible. In addition, the Johnson noise produced by the load resistor forces

us to put this element on the coldest cryogenic stage.

AC Responsivity: Let us consider now an AC bias circuit as presented in Fig. 1 right.

The voltage at the ends of bolometer is:

V AC
b = V0 ·

RbZc

ZLZc +Rb(ZL + Zc)
(9)

If we assume that the AC bias frequency Fmod is much higher than the bolometer cut-off

frequency (Fmod >> Ge

2πC
), then we can consider only the average electrical power and a steady

state responsivity and neglect short term variations. We can derive a modified Zwerdling’s

formula for the responsivity by following the method used in the previous section for a DC

biased bolometer:

ℜel =
αϕACRbIb

GAC
e

(10)

where GAC the dynamic thermal conductance is equal to:

GAC
e = Gs +

dGs

dT
(T − T0)− αRbI

2

b (2ϕAC − 1) (11)

Here the ϕAC factor is:

ϕAC =
ZLZc

ZLZc +Rb(ZL + Zc)
(12)

where, if ZL is a resistor:

lim
Zc→∞

ϕAC = ϕDC

If we consider the module of the ϕ factor we can plot (Fig. 2) a responsivity versus bias

current for DC and AC currents (sine-shape) bolometer. We can conclude that in terms of

responsivity a DC electronics is preferable. For an AC bias the maximum in responsivity is

lower and is obtained with higher bias current in the bolometer. We show in the next section

that for slowly varying signals, AC bias has a decisive advantage in sensitivity.

3. Noise

The Noise Equivalent Power (NEP) is:

NEP (f) =
< ∆S2(f) >1/2

ℜ(f) (13)

where ∆S2 is the power spectral density of the noise and ℜ is the responsivity of the detector.

NEP is measured in [W/Hz1/2].
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In our model we take into account all the principal sources of noise in bolometric detection:

Johnson noise, phonon noise, photon noise, Flicker noise and the preamplifier noise. The

following is a review of the NEPs for the different sources of noise existing in literature (see

for instance [3, 15]) :

Johnson noise: Johnson noise is the electronic noise generated by the thermal agitation

of electrons inside a bolometer at equilibrium. It has a white noise spectrum. The NEP for

DC biased bolometers is [3]:

NEPjohn = (4kBTbRbI
2

b )
1/2 |Zb +Rb|

|Zb − Rb|
(14)

where Rb is the bolometer resistance and Zb is its dynamic impedance.

Let us notice with Mather [3] that Johnson noise does not depend on load impedance.

Let us assume here that it does not depend on stray capacitance in the case of AC biased

bolometers. Hereafter, we shall use Eq. 14 indifferently with a DC model or an AC Model.

Phonon noise: The parameters of the bolometer are strongly dependent on the tempera-

ture, so small variations in temperature inside the bolometer produce a voltage variation at

the ends of the detector.

It results [3]:

NEPphon = (4kBGT 2)1/2 (15)

This result is independent of the readout electronics.

Photon noise: The Photon noise comes from the fluctuations of the incident radiation

due to the Bose-Einstein distribution of the photon emission. The NEP is [15]:

NEPphot = 2
∫

∆ν
hνQνdν + (1 + P 2)

∫

∆ν
∆(ν)Q2

νdν (16)

Where Qν is the absorbed optical power per unit of frequency, ∆(ν) is the coherence spacial

factor (equal to the inverse of the number of modes; ∆(ν) = 1 if diffraction limited) and

P is the polarisation degree (0 non-polarised 1 polarised). This noise corresponds to the

limitation in sensitivity of any instrument because it does not depends on performances of

detectors and readout electronics.

Flicker noise: The Flicker noise depends on a distribution of time constants due to the

recombination and generation phenomena appearing in semiconductors.

This noise shows a spectrum directly proportional to the bias current and inversly pro-

portional to the frequency. To first order we have :

NEPfl = const
Ib√
freq

(17)

The Flicker noise is usually the dominant source of noise up to few Hertz. In the case of

AC electronics, we can choose the working modulation frequency in order to keep the Flicker

noise less then the photon noise (see Fig. 3 right).
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Preamplifier noise: results from the impossibility to amplify a signal without adding

noise, which is a consequence of the Heisenberg Uncertainty principle. It also depends on

the available components and on the design of the amplifier. We assume that the power

spectrum of signal fluctuation is constant and equal to:

< ∆S2 >1/2
pre= const = σPA[V/Hz1/2]

The NEPpre results from Eq. 13 as:

NEPpre =
σPA

ℜ (18)

The Total NEP of the instrument is:

NEPtot =
[

NEP 2

john +NEP 2

phon +NEP 2

phot +NEP 2

fl +NEP 2

pre

]1/2
(19)

Fig. 3 (left) presents the influence of the different contributions to the total NEP for an

AC readout electronics.

Fig. 3 (right) shows the advantage of using of an AC system instead of a DC solution at

low frequencies. It is clear that Flicker noise increases the DC total NEP at low frequencies

making the AC solution mandatory for the measurement of low and very low frequency

signals (less then few Hertz).

Optimization of the Bias Current : from Fig. 2 it is clear that in both cases (AC and

DC), the responsivity strongly depends on the bias current in the bolometer. The optimi-

sation of this parameter is therefore a key point. We want to present a general result, not

depending on the preamplifier noise level. Since our practice and all the simulations (see Fig.

3) show that the minimum NEP happens very near to the maximum responsivity (to better

than 1% in practical cases), we have chosen to use the responsivity to illustrate this point.

The amplitude and the position of the peak responsivity are different for the two types of

bias current. In the case presented in Fig. 2, the bias currents corresponding to the maximum

of the Responsivity are equal to IDC
best = 0.12 nA and IAC

best = 0.22 nA.

4. Variation of Responsivity with Readout Electronics and Environmental Pa-

rameters

We are now interested in establishing the performance of AC readout electronics biased with

a sine wave. We will derive the responsivity, the NEP and how the NEP depends on the

main parameters (stray capacitance, modulation frequency, optical background and plate

temperature) for three typical bolometers optimized to observe the sky between 0.3 and 3

mm cooled to a temperature of 100 mK. In order to obtain an analytical solution to this

problem, we developed a model in the frequency domain using the Fourier formalism. The

results could be also obtained in the case of a square AC model. The two methods are

detailed in the appendices A and B.
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4.A. Stray Capacitance

The first stage of preamplifiers for semiconductors bolometers are classically J-FETs giving

optimal performance at 100 K or more. Rather long wiring is needed between the J-FETs

and the bolometer to avoid an excessive thermal load on the sub-Kelvin stage supporting

the bolometer. Stray capacitance of tens and even hundreds of picoFarads result from this

design. In Fig. 4, we plot for our three test bolometers the excess of NEP versus the value

of the stray capacitance. For a typical value of 150 pF, the NEP excess is several percents

(from 4 % to 8 %). Let us note here that the DC bias case is identical to an AC case without

stray capacitance.

4.B. Modulation Frequency

As we have seen in previous section, the use of an AC bias has the advantage of presenting a

noise spectrum flat down to very low frequencies, while DC biased readouts show a large 1/f

component at frequencies less than about 10 Hz. The modulation frequency of the electronics

will be chosen therefore taking into account the requirement of keeping the Flicker noise less

then the Johnson noise but also taking into account the scanning strategy of the instrument

and the angular responsivity of the optics. In the case of Planck HFI for example [11] the

full width at half maximum δ ranges from 5 to 9 arcmin and the scanning speed is 6 degrees

per second. So, in the limit of small angles, the maximum frequency of interest is given by

the relation:

f ∼ vang
δ

(20)

where f is the frequency of the optical modulation. In Fig. 5 we consider the excess NEP

with respect to a 85 Hz modulation frequency. In the worst case the excess NEP is 0.5 %

per Hertz.

4.C. Optical Background

The background strongly affects the static performance of a bolometer by changing the

operating point. With respect to others parameters, the background is the most uncertain

and variable parameter during an observational campaign. A good understanding of the

effect of the optical background on the static performances of a bolometers is therefore a key

point during the calibration of the instrument. In Fig. 6 we present the relative variation

of the total NEP versus the nominal background for our test bolometers. For the 3 mm

bolometer, the nominal background is 0.3 pW; for 1 mm 0.6 pW and for 0.3 mm 3.6 pW.

In the worst case the degradation in NEP is 2 % with respect the nominal background for a

background increase of +16.5 %.
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4.D. Bolometer Plate Temperature

Following the first order thermal model of a bolometer (Eq. 1), we know that a change

in temperature of the plate corresponds exactly to a change of background power on the

bolometer. In this case the equivalent power generated from a change of the plate temperature

is:

∆Pplate = Gs∆T0 (21)

Our test bolometers were designed for a plate temperture of 100 mK. The NEP variation

in the range 95 mK – 105 mK is reported in Fig. 7. We find that a change of the plate

temperature of 1 mK gives a change in NEP of 0.8 % in the worst case.

5. Comparison Between two Modulation Techniques : Sine AC Bias vs Square

AC Bias

We want now to compare the performances, in terms of responsivity and NEP, of a sine-wave

and a square-wave AC electronics. The results are shown in Fig. 8. The sine case is better

for both responsivity and NEP. This is more obvious for the responsivity (better by about

10 %) than for the total NEP (better by about 4 %). We conclude that in terms of NEP, a

bolometer connected to a sine AC biased readout electronics would be more sensitive.

Let us remark that the difference in NEP is modest. Let us also notice that an AC sine

bias would induce significant variations in the temperature of the fastest bolometers, bringing

them into the non-linear regime. On the contrary, the square bias deposits a nearly constant

power in the bolometers, that deviate from their mean temperature only by small amounts.

6. Conclusion

The analytical model presented in this paper has been developed for the HFI on board Planck

satellite. It allowed us to predict the responsivity and the noise of semi-conductor bolometers

cooled at 100 mK and biased by AC currents in a realistic environment. It sheds some light

on the differences between AC and DC biased bolometer and on the different optimal bias

currents for these two cases. Three test bolometers rather similar to Planck’s ones were used

to illustrate our results. Our main conclusions are:

• The AC responsivity is always lower than the DC responsivity. This is due to a more

effective electro-thermal feedback. The resulting excess of NEP depends on the relative

part of the preamplifier noise in the total NEP. In our test cases the excess NEP ranges

from 4 % to 10 %, which is more than compensated for by shifting of the low frequency

noises out of the range of useful frequencies. Frequencies down to 1 mHz are measurable

with a well designed AC readout electronics.
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• The AC bias RMS current providing to the maximum of the responsivity is about

twice larger than that obtained for a DC bias. This concerns the current through the

bolometer and results from the different electro-thermal feedback.

• For a stray capacitance of ∼ 150 pF we obtain an excess NEP of 10 % in the worst

case (3 mm bolometer) and 4% in the best case (0.3 mm bolometer).

• Around a modulation frequency of 90 Hz, the excess NEP ranges between 0.2 % and

0.5 % per Hz.

• The sensitivity of NEP to background is dlog(NEP)/dlog(Wbg) = 0.22 to 0.42

• The sensitivity of NEP to the plate temperature is dlog(NEP)/dlog(Tplate) = 0.3 to

0.8 around 100 mK, but is rather non-linear.

• The performances of a sine bias are better than the square bias. In our test cases, this

result is more obvious in the responsivity (better by about 10 %) than in the total

NEP (better by about 4 %). But non-linear effects may show up in the sine case for

bolometers fast enough to respond to the modulation frequency.

Appendix A: Computing the Responsivity with a Sine Bias

Let us consider the bias circuit of Fig. 1 with a stray capacitance in parallel to the bolometer

and a load capacitance in series. The value of the load capacitance is fixed to Cb = 4.7·10−12F

which is the typical value in HFI.

Let’s also consider a range of temperatures starting from the temperature of the plate

(100mK for example) up to an arbitrary value. For each temperature we can calculate the

impedance Rb of the bolometer and its total power using Eqs. 1 and 3. In this simulation we

assume that the parameters of the bolometers (R∗, Tg, β, etc......) are those of HFI.

If the optical background is constant in this run of simulations, the dissipated electrical

power in the bolometer is:

Welec = Wtot −Wopt (22)

So, the r.m.s. Voltage at the ends of the bolometer is :

Vb = (RbWelec)
1/2 (23)

and the r.m.s. bias current passing through the bolometer is:

Ib =
Vb

Rb

(24)

In general for a quadripole we have:

F (Vb) = TF (ω,Rb, Cp) · F (V0) (25)
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where F indicate the Fourier transform and TF (ω,Rb, Cp) is the transfer function of the

quadripole. Using the quadripole obtained from Eq. 9, the module of the transfer function

is :

|TF (ω,Rb, Cp)| =
RbωCb

(1 + ω2R2
b(Cb + Cp)2)1/2

(26)

So, the r.m.s. input voltage is:

V0 =
Vb

|TF (ω,Rb, Cp)|
(27)

In order to calculate the optical responsivity let us consider a small step in temperature

for each bolometer. If we keep V0 unchanged, the step in temperature is due to a change of

the optical background that can be computed:

Wopt1 = Wtot1 −Welec1 (28)

where Wtot1 is calculated from the new temperature Tb1 and Welec1 is derived from:

Welec1 =
V 2
b1

Rb1

(29)

Vb1 is equal to:

Vb1 = V0 · |TF (ω,Rb1, Cp)| (30)

assuming that V0 is not varying, and using the TF calculated from Rb1

The responsivity will be:

ℜ = | Vb1 − Vb

Wopt1 −Wopt

| (31)

with the responsivity and NEP equations from the previous section, it is possible to cal-

culate the total NEP

Appendix B: Computing the Responsivity with a Square Bias

With the same bias circuit (Fig. 1), it is possible to derive the performances of a REU in

which a square wave voltage applied to the bolometer, as in HFI. Let us assume that if

the REU is balanced, a perfect square wave bias is passing through the bolometer even in

presence of a stray capacitance. In HFI this is achieved by using a triangular wave plus a

square wave.

A square wave can be decomposed as:

Vb(ω) = acos(ωt) +
a

3
cos(3ωt) +

a

5
cos(5ωt) + ....... =

=
n̄
∑

n=0

a

2n+ 1
cos((2n+ 1)ωt)
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The r.m.s. Vb is equal to:

Vb = (
n̄
∑

n=0

(
a√

2(2n+ 1)
)2)1/2 (32)

If the temperature of the bolometer is given and the optical power is constant we can

calculate the r.m.s. Vb as we did for the sine bias case (Eq. 23 and Eq. 22). So we have:

a = (WelecRb)
1/2 ·

n̄
∑

n=0

2(2n+ 1)2 (33)

The r.m.s. bias current passing through the bolometer is:

Ib =
Vb

Rb

(34)

Now let’s derive the responsivity. As for the sine AC case, so we can calculate the Rb1,

Wtot1, and the TF starting using a small step in temperature due to an incoming optical

signal.

On the other hand we cannot derive the electrical power following the same logic: if we

keep the same set up of the REU, after a small step in temperature the bias passing through

the bolometer is not a square wave anymore so, the Eq. 32 is not applicable. We have to

correct each term of the sum as follows:

Welect1 =
a2

Rb1

n̄
∑

n=0

2(2n+ 1)2 ·Υ((2n+ 1)ω,Rb, Rb1, Cp) (35)

where

Υ((2n+ 1)ω,Rb, Rb1, Cp) =
TF ((2n+ 1) · ω,Rb, Cp)

TF ((2n+ 1) · ω,Rb1, Cp)
(36)
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wavelength R∗[Ohm] Gso[pW/K] Tg[K] n β

Bolo #1 3 mm 100 52 16 0.5 1.3

Bolo #2 1 mm 94 70 16 0.5 1.3

Bolo #3 0.3 mm 105 703 16.5 0.5 1.1

Table 1. Parameters of the test bolometers used to illustrate the results of the

analytical model.

Fig. 1. Schemes of a DC (left) and an AC (right) bias circuits
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Fig. 2. Left: Simulation of responsivity versus bias current in the bolometer

for DC (solid curve) and AC sine (dashed curve) bias currents in the case of a

3 mm bolometer (using parameters from Tab. 1). For AC model we consider a

sine wave bias with a stray capacitance of Cp = 130 pF and plot the respon-

sivity versus the r.m.s. value of the bias current. Right: Consistency of the AC

model (dashed curve) with experimental measurements (stars points) taken

from ground calibration of Planck HFI. The disagreement is of the order of 1

%.

Fig. 3. Left: noise equivalent power versus bias current in the bolometer for

different sources of noise in case of an AC readout electronics for the test

bolometer λ = 3 mm. Right: total NEP versus frequency for a DC and AC

readout electronics at respective best bias currents.
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Fig. 4. Relative variation of the total NEP versus stray capacitance from 0 to

300 pF for three typical bolometers with an AC sine bias.

Fig. 5. Relative variation of the total NEP versus modulation frequency of the

AC sine from 85 Hz to 120 Hz for three typical bolometers
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Fig. 6. Relative variation of the total NEP versus optical background. We

consider for each bolometer a total range in background equal to 33 % of the

nominal background.

Fig. 7. Relative variation of the total NEP versus bolometer plate temperature

from 95 mK to 105 mK for the three test bolometers.
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Fig. 8. Simulation of responsivity (left) and total NEP (right) of the three test

bolometers in case of an AC sine bias (solid curves) and a square AC bias

(dashed curves)

18


