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Abstract

An attractive approach to study free particle diffusion consists in
modeling the microscopic motion of the particle by stochastic pro-
cesses, such as the Galilean Ornstein-Uhlenbeck process. The resulting
phase-space probability distribution function for the aforementioned
process is known to obey the Kramers’ equation.

We present a procedure to solve analytically the Galilean Kramers’
equation in the general case of an arbitrary sufficiently regular initial
condition. We then apply this technique to a wide class of physically
relevant initial conditions, and provide an integral form for the solu-
tion at any positive time. It turns out that these solutions obey an
‘extended Fick’s law’, with a time-dependent diffusion coefficient and
a rapidly damping drift.

PACS numbers : 05.10.Gg, 05.40.Jc, 02.50.Ey
Keywords : Kramers’ equation, Brownian motion, Fick’s law.

1 Introduction

The past twenty years or so have witnessed a new interest in modeling cor-
rectly the irreversible behavior of both Galilean and Relativistic macroscopic
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systems [1, 2, 3]. More precisely, starting from a rather consensual statistical
description of the system under consideration, usually a transport equation,
the key question investigated by various authors is how to derive from that
description sufficiently general constitutive relations which involve macro-
scopic quantities only but nevertheless describe properly the evolution of
the system. The traditional method for obtaining such constitutive rela-
tions is the Chapman-Enskog expansion [4]. It restricts the study ab initio
to cases for which the system is in a near-equilibrium situation where the
characteristic length and time-scales of its behavior are much larger than
some microscopic scales, typically a mean free path and a collision time.
The desired constitutive relations are then obtained rigorously, but only in
the afore-mentioned limit, which seems to be far too restrictive for many
interesting physical situations. An alternative can be found in the Grad- or
moment-method [5, 2], which delivers apparently more general constitutive
relations, but whose validity range cannot be ascertained in any precise way
since the expansion it requires does not involve any small-parameter.

The aim of the present article is to contribute to this debate by pro-
ducing new results about one of the simplest irreversible phenomenon, free
(Galilean) particle diffusion, investigated through what is arguably its sim-
plest statistical description, the (Galilean) Ornstein-Uhlenbeck process [6].
The relevant transport equation in phase-space is sometimes called Kramers’
equation [7] and delivers, when treated by the Chapman-Enskog method, the
usual Fick’s law for diffusion [7, 8]. On the other hand, a method originally
introduced by Lax [9] to solve the rather similar Fokker-Planck equation can
be generalized in a straightforward manner and furnishes the exact solution
of Kramers’ equation in unbounded space-phase at any time in terms of an
integral transform of its initial condition. Even if some authors seem to
have already been aware of this extension [7], the procedure is reviewed in
Section 3 of this paper, if only to make the present article self-contained and
fix various notations. We then prove in Section 4 that, for a large class of
physically relevant initial conditions, the exact solution to Kramers’ equa-
tion satisfies a strikingly simple generalization of Fick’s law and that the
usual Fick’s law can then be exactly recovered, for these solutions, in the
long-time limit. In a final section, we review rapidly our results and ad-
dress their possible relevance for the general problematics discussed at the
beginning of this introduction.
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2 The Galilean Ornstein-Uhlenbeck Process

2.1 Definition

We define the Galilean Ornstein-Uhlenbeck Process for the variables x and
v in IR3 as the solution of the following stochastic differential system :

d
dtx = v

d
dtv = −αv + 1

mF

, (1)

where F is a random vector whose components are “centered Gaussian white
noises” such that :

< F(t) > = 0, (2)

< Fi(t1)Fj(t2) > = 2Dδ(t2 − t1)δi
j , D > 0. (3)

The system (1) can be interpreted as the Galilean equations of motion of a
particle with mass m, under the action of a deterministic force −αv and a
stochastic Gaussian force F. These forces can be thought of as mathematical
models of the deterministic and stochastic parts of the force experienced by
a Brownian (big) particle from the small particles of the surrounding fluid
with which it interacts. The coefficients α, m and D are three constant
parameters of the model. This physical mental image of a Brownian particle
interacting with a surrounding fluid will be used throughout this article to
clarify the physical discussions of the results.

2.2 The statistical approach

The stochastic system (1) defines a stochastic trajectory in the phase-space
of the particle. This trajectory can be studied statistically by introducing
a distribution function Π(t,x,v) in phase space, associated to the usual
measure d3xd3v so that : ∫

IR6
Π(t,x,v)d3xd3v = 1. (4)

This distribution function is known to obey the so-called Kramers’ equation

∂tΠ +∇x(vΠ) +∇v(−αvΠ) =
D

m2
∆vΠ. (5)
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Several proofs of this can be found, for example in [10] or in [11] for the
relativistic version of the Ornstein-Uhlenbeck process. Kramers’ equation is
also known as the forward Chapman-Kolmogorov equation for the Ornstein-
Uhlenbeck process [12].

At least if the problem is restricted to a finite volume V in physical space,
the Kramers’ equation (10) is known to have the following uniform (global)
equilibrium solutions :

Πe(t,x,v) =
1
V

(
2πD

m2α

)− 3
2

e
−m2α

2D
v2

. (6)

This leads to a natural definition of the equilibrium temperature Te through
the identification of (6) with the usual Maxwell-Boltzmann distribution at
temperature Te. This temperature is related to the fundamental parameters
of the model α, m and D by the so-called ‘fluctuation-dissipation theorem’ :

kBTe =
D

mα
, (7)

where kB is the Boltzmann constant. With the mental image of a Brownian
particle, this temperature Te can be interpreted as the temperature of the
surrounding fluid in which the particle is immersed.

It can be shown, for example by a Chapman-Enskog expansion around
local equilibrium distributions (see [7] and [8] in the relativistic case), that
the particle density and particle current

n(t,x) ≡
∫

IR3
Π(t,x,v)d3v, and j(t,x) ≡

∫
IR3

Π(t,x,v)vd3v, (8)

are linked by a Fick’s law

j(t,x) = −χ∇xn(t,x) (9)

with a constant diffusion coefficient χ = D/(mα)2 = kBTe/(mα), at least in
the (long time) hydrodynamic regime.

Our purpose is to investigate whether and under which form this Fick’s
law can be generalized to short time non-hydrodynamic regimes, for which
no scale separation hypothesis is valid. We thus present a procedure to
solve Kramers’ equation for an arbitrary initial distribution function under
the hypothesis that the Fourier transform of the solution is non-vanishing
at any time and position in phase space.
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3 Exact resolution of the Kramers’ equation

We start from the Kramers’ equation (5), that we rewrite in terms of the
equilibrium temperature Te, to ease further physical discussions :

∂tΠ +∇x(vΠ) = α
(
∇v(vΠ) +

kBTe

m
∆vΠ

)
. (10)

The development hereafter is inspired by Laxes solutions to the Fokker-
Planck equation [9, 7]. We introduce the Fourier transform Π̂(t,k,u) of the
distribution function Π(t,x,v) :

Π̂(t,k,u) =
1√
2π 6

∫
IR6

Π(t,x,v)e
−i(k·x+u·v)

d3xd3v. (11)

Since the distribution function Π(t,x,v) has to satisfy (10), its Fourier
transform Π̂(t,k,u) satisfies :

∂tΠ̂ = (k− αu) · ∇uΠ̂− kBTeα

m
u2Π̂. (12)

If the Fourier transform does not vanish anywhere, Equation (12) leads to :

∂t(logΠ̂) = (k− αu) · ∇u(logΠ̂)− kBTeα

m
u2. (13)

We now introduce the new function λ(t,k,u) ≡ ∂t(logΠ̂), so that :

logΠ̂(t,k,u) = logΠ̂0(k,u) +
∫ t

0
λ(τ,k,u)dτ, (14)

where Π̂0(k,u) stands for Π̂(0,k,u). Equation (13) imposes that λ(t,k,u)
verify :

λ(t,k,u) = (k−αu) ·
(
∇u(logΠ̂0) +

∫ t

0
∇uλ(τ,k,u)dτ

)
− kBTeα

m
u2, (15)

which, for t = 0, leads to :

λ(0,k,u) = (k− αu) ·
(
∇u(logΠ̂0)

)
− kBTeα

m
u2. (16)

Deriving (15) with respect to t yields the following partial differential equa-
tion for λ :

∂tλ(t,k,u) = (k− αu) · ∇uλ(t,k,u). (17)
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Let us introduce the new variable p ≡ k−αu and the new function λ̃(t,k,p) ≡
λ(t,k, (k− p)/α). This new function must satisfy :

∂tλ̃ = −αp · ∇pλ̃, (18)

which implies that λ̃(t,k,p) is to depend on t and p only through the com-
bination pe−αt. According to (16), the initial value of λ̃ is :

λ̃(0,k,p) = p ·
(
∇u

(
logΠ̂0(k,u)

))∣∣∣∣∣
(k,(k−p)/α)

− kBTe

mα
(k− p)2, (19)

where the subscript (k, (k− p)/α) means that the expression between paren-
theses is to be taken for (k,u) equal to (k, (k− p)/α). Since the dependence
of λ̃ on t and p must only involve pe−αt, the expression (19) yields the ex-
pression for λ̃(t,k,p) by changing all occurrences of p into pe−αt :

λ̃(t,k,p) = pe−αt ·
(
∇u

(
logΠ̂0(k,u)

))∣∣∣∣∣
(k,(k−pe−αt)/α)

− kBTe

mα
(k− pe−αt)2.

(20)
It is now straightforward to use (14) to get an exact expression for Π̂(t,k,u)
in terms of Π̂0 :

Π̂
(
t,k,u

)
= Π̂0

(
k,ue−αt +

k
α

(1− e−αt)
)
e
−

kBTe
mα

∫ t

0
(k−(k−αu)e−ατ)2

dτ

. (21)

It is convenient for further discussions to introduce the following time-
dependent quantities :

η(t) =
kBTe

mα2
(αt− 3

2
+ 2e−αt − 1

2
e−2αt),

µ(t) =
kBTe

mα
(1− e−αt)2,

ν(t) =
kBTe

m
(1− e−2αt).

(22)

The expression for Π̂ now takes the simpler form :

Π̂
(
t,k,u

)
= Π̂0

(
k,ue−αt +

k
α

(1− e−αt)
)
e
− 1

2k2η(t)−k·uµ(t)− 1
2u2ν(t)

, (23)
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which leads to the complete solution in terms of Π :

Π(t,x,v) =
1√
2π 6

∫
IR6

Π̂0

(
k,ue−αt +

k
α

(1− e−αt)
)

×e
− 1

2k2η(t)−k·uµ(t)− 1
2u2ν(t)

e
i(k·x+u·v)

d3kd3u.

(24)

Without specifying any more the initial distribution function, we can
obtain from (24) an integral expression for the particle density n(t,x) ≡∫

Πd3v :

n(t,x) =
∫

IR3
Π̂0

(
k,

k
α

(1− e−αt)
)
e
− 1

2k2η(t)

e
ik·x

d3k. (25)

The gradient of the particle density follows immediately :

∇xn(t,x) =
∫

IR3
ikΠ̂0

(
k,

k
α

(1− e−αt)
)
e
− 1

2k2η(t)

e
ik·x

d3k. (26)

Still as a consequence of (24), the particle current j(t,x) ≡
∫

Πvd3v reads :

j(t,x) =
∫

IR3
i∇u

[
Π̂0

(
k,ue−αt +

k
α

(1− e−αt)
)
e
−k·uµ(t)− 1

2u2ν(t))

]∣∣∣∣∣
u=0

×e
− 1

2k2η(t)

e
ik·x

d3k.
(27)

Arbitrary order moments of Π(t,x,v) can be expressed in a similar manner.

4 Application to a wide class of initial conditions

To proceed further, we restrict the study to initial conditions that can be
factorized into an arbitrary function of the position x, and a Maxwell-
Boltzmann distribution with temperature T0, centered around a mean ve-
locity vector v0 :

Π0(x,v) = n0(x)
( m

2πkBT0

) 3
2 e

−m(v−v0)2

2kBT0
. (28)

The Fourier transform is

Π̂0(k,u) = n̂0(k)
1√
2π 3

e
−iu·v0

e
− 1

2u2 kBT0
m

, (29)
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where n̂0(k) is the Fourier transform of f(x). The phase-space distribution
function Π(t,x,v) at any positive time is then, according to (24) :

Π(t,x,v) =
1√
2π 9

∫
IR6

n̂0(k)e
− 1

2k2σ2(t)−k·uχ(t)−
kB
2mu2T (t)

e
i(k·x′+u·v′)

d3kd3u,

(30)
where the quantities σ2, χ, T , x′ and v′ are defined as follows, in terms of
the temperature difference ∆T = Te − T0 :

σ2(t) =
kB

mα2

(
Te

(
αt− 1

2
+

1
2
e−2αt

)
−∆T

(
1− 2e−αt + e−2αt

))
,

χ(t) =
kB

mα
(1− e−αt)

(
Te −∆Te−αt

)
,

T (t) = Te −∆Te−2αt,

x′ = x− v0

α
(1− e−αt).

v′ = v − v0e
−αt.

(31)
The application of the relations (25) yields a very simple expression for

the particle density :

n(t,x) =
1√
2π 3

∫
IR3

n̂0(k)e
− 1

2k2σ2(t)

e
ik·x′

d3k. (32)

In other words, the particle density at time t is the convolution product :

n(t,x) = n0(x) ? Φ(t,x), (33)

of the particle density at time t = 0 with a ‘propagator’ Φ(t,x) that can be
explicitly written as :

Φ(t,x) =
1√

2πσ2(t) 3
exp−

(
x− v0

α (1− e−αt)
)2

2σ2(t)
(34)

The quantity v0
α (1 − e−αt) can be interpreted as the position of a point,

initially at x = 0, moving with velocity v0e
−αt. Thus, the propagator Φ

involves a uniform drift which is damped exponentially on a time scale α−1,
and a diffusive spreading with a growing typical width σ(t).
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Equations (26) and (27) show that the particle current obeys the follow-
ing simple relation :

j = −χ(t)∇xn + e−αtv0n. (35)

We identify in the right-hand side of (35) two contributions to the particle
current :

• a diffusion term proportional to the gradient of the particle density
with a time-varying ‘diffusion’ coefficient χ(t),

• an ‘advection’ term that damps exponentially, and which is a remnant
of the initial mean drift a velocity v0.

The physical meaning of T (t) is more subtle. Indeed, since the distri-
bution function Π(t,x,v) for t > 0 cannot be an equilibrium solution when
spatially non-uniform, it is not trivial to define a time-dependent temper-
ature. The mean square velocity1, that can give some sense to the notion
of temperature, is a priori position-dependent in the most general case.
However, the space-averaging of the mean square velocity is a well-defined
quantity that amounts to 3kBT (t)/m. The quantity T (t) defined in (31) can
thus be thought of as a space-averaged temperature, characteristic of the
distribution Π at time t.

The physically relevant quantities σ2(t), χ(t) ant T (t) are plotted on
Figure 1, 2 and 3. The solid curves correspond to ∆T = 0, that is, the
initial condition is at thermal equilibrium with the surrounding fluid. The
dashed curves correspond to ∆T = Te, that is, T0 = 0, so that they describe
situations with vanishing initial velocities.

5 Discussion

The Galilean Kramers’ equation considered in this paper describes the sta-
tistical behavior of Brownian particles which diffuse freely in a given fluid
according to the (Galilean) Ornstein-Uhlenbeck process. Without loss of
generality, the system has been studied in the (global) proper frame of the
fluid in which the particles diffuse. We have extended to Kramers’ equa-
tion a method developed by Lax for solving the Fokker-Planck equation in
terms of its initial condition. This has enabled us to prove that, for a very
wide class of physically important initial conditions, the exact solution to
Kramers’ equation verifies a very simple generalization of the usual Fick’s
law. In particular, if the initial phase-space distribution is factorized into

1with uniform damped drift v0e
−αt subtracted.
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Figure 1: mα2

kBTe
σ2(t) versus αt for ∆T = 0 (solid) and ∆T = Te (dashed).

Figure 2: mα
kBTe

χ(t) versus αt for ∆T = 0 (solid) and ∆T = Te (dashed).

Figure 3: T (t)
Te

versus αt for ∆T = 0 (solid) and ∆T = Te (dashed).
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an arbitrary (initial) spatial density and a position independent Maxwellian
distribution (with arbitrary temperature and mean-velocity), the particle
current at all times is the sum of two contributions which can be easily in-
terpreted. The first one describes the relaxation towards zero of an initially
non-vanishing contribution to the current due to an initial non-vanishing
mean velocity of the diffusing particles. The characteristic time-scale of this
relaxation is simply the inverse of the friction coefficient which appears in the
deterministic part of the force acting on the Brownian particles. The second
contribution to the current is proportional to the spatial density-gradient at
all times. The involved coefficient however does depend on time and on the
difference between the initial temperature T0 and the temperature Te of the
surrounding fluid. This coefficient relaxes to its usual value predicted by the
Chapman-Enskog expansion on the same time-scale, i.e. the inverse of the
friction coefficient. We think that these striking results could, in principle,
be tested experimentally and that the result of such a test would be of cru-
cial importance for a proper evaluation of the Ornstein-Uhlenbeck process.
In other words, one of the main features of the Ornstein-Uhlenbeck process
is its simplicity; despite this simplicity, it is at least able to predict, in the
long-time limit, the usual Fick’s law, which is well confirmed experimentally.
The natural question to ask is obviously : What about other, more subtle
predictions of this seemingly rather crude model ? We believe that the an-
alytical results presented in this article are particularly suited for providing
the basis to a possible partial answer to this question.

We also believe these results to be of another, more methodological im-
portance. As mentioned in the introduction, there are essentially two stan-
dard ways of deriving constitutive relations between macroscopic quantities
from a given transport equation. The first one is the Chapman-Enskog
method and it delivers, in the case under consideration in this article, the
standard Fick’s law and diffusion equation. The same method, when ap-
plied to Boltzmann equation, furnishes the usual Navier-Stokes model of
dissipative fluids [4]. If one wants to describe the solutions of the transport
equation beyond the regime for which the Chapman-Enskog expansion is
valid, the only method really documented and developed in the literature
seems to be the so-called Grad- or moments-method. The basic idea be-
hind this method is to include also as macroscopic field variables moments
of the phase-space distribution function higher than those usually retained
in the Chapman-Enskog method. The best-known application of this phi-
losophy is the thirteen-moments expansion of the solution to Boltzmann
equation and the resulting ‘hydrodynamical’ equations actually involve 13
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field variables instead of the usual five used by the Navier-Stokes model2.
Apart from the problematic fact already mentioned in the introduction that
Grad’s method is based on an expansion which does not involve any small
parameter, this kind of theory has run into various problems, both exper-
imental and theoretical [13]. As far as we know, Grad’s method has never
been applied to Kramers’ equation3. If it were, it would lead to the inclu-
sion of (at least) the particle current among the macroscopic field variables,
on equal footing with the spatial density. The macroscopic equations ver-
ified by the ‘extended’ set of fields would be derived from the momentum
hierarchy associated to Kramers’ equation and would most certainly exhibit
damped oscillatory behavior, which seems to be a common feature to the
various evolution equations obtained so far via Grad’s method. This kind
of behavior is clearly absent from the exact solutions to Kramers’ equation
presented in this article.

In quite general a context, it is naturally tempting to try and guess
from the new exact results on Kramers’ equation presented in this article
how one could fruitfully extend usual constitutive relations obtained from
an arbitrary transport equation via a Chapman-Enskog expansion. If one
ventures to do so, one gets the following picture. The addition of new
macroscopic fields to the usual ones considered by Chapman and Enskog
does not seem to be compulsory, even if it could help take into account, for
certain initial conditions, contributions to the currents similar to the first
term on the right-hand side of (35); on the other hand, one should probably
let the various kinetic coefficients which appear in the Chapman-Enskog
constitutive relations depend explicitly on time, having them relax in time
to their constant Chapman-Enskog value.

This section would certainly not be complete without a brief discussion
of Titulaer’s work [14] and de Groot’s and Mazur’s work [15]. Indeed, Tit-
ulaer has considered a more general Kramers’ equation than (10), which
describes the statistical behavior of Brownian particles under the influence
of a constant inhomogeneous force-field. He has proposed a systematic so-
lution scheme to the equation, under the hypothesis that the force be weak
enough. His scheme is actually of the Chapman-Enskog type and we already
have discussed it at great length in a previous publication, to which we refer
the interested reader [16].

2These equations are identical to those of the simplest non-trivial implementation for
simple fluids of what is commonly called Extended Thermodynamics Theories [2].

3The Extended Thermodynamics of binary mixtures do not start from a transport
equation for the diffusing particles alone but from the system of coupled Boltzmann-
equations for both components and apply to them the Chapman-Enskog method only [2].
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In their famous book [15], De Groot and Mazur also propose an appar-
ently rather general scheme for solving Kramers’ equation. Their scheme is
based on the ansatz that the solution takes the form of a local equilibrium
Maxwellian distribution at all time, with position- and time-dependent par-
ticle density, mean-velocity and temperature. It can easily be proven with
the help of equations (138), (139), (141), (144) and (145) of their book
(pages 192 and 193), or with equation (24) of this article, that the ansatz is
correct only if the distribution function is Gaussian in position and velocity
at all time, including therefore at the initial instant, with a time-dependent
only temperature. In terms of initial particle density, their work is therefore
far less general than ours. It is true that the initial mean-velocity field of
their solutions is not restricted to be uniform and can be, up to an additive
constant, an arbitrary linear function of the position. It is obvious however
that the method presented in Section 3 of the present work also applies to a
generalization of (28) with such a mean-velocity field. It just leads to more
cumbersome algebra than those presented in Section 4 and did not seem to
us to be of sufficient physical relevance to justify its inclusion in this article.
Let us finally remark that De Groot and Mazur do derive the usual Fick’s
law for the solutions they consider, but in the long-time limit only, and
that, contrary to us, they do not mention an extension of the result valid
for arbitrary instants.

Possible extensions of this work are currently envisaged by the authors.
A first one is to take into account, at least perturbatively, the effects of a
small enough force field. Another, certainly not trivial one, would be to
devise a suitable generalization of Laxes method to the relativistic Kramers’
equation, to which one could then obtain exact solutions at all time. Finally,
one should certainly investigate further if, and under which circumstances,
a generalization of the usual Navier-Stokes model along the lines suggested
in this section makes sense.
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