Using CloudSat to generate ISMAR retrieval databases

Patrick Eriksson

Bengt Rydberg

and the ARTS team

Earth and Space Sciences Chalmers University of Technology Göteborg, Sweden

Molflow Göteborg, Sweden

radiativetransfer.org

3rd ISMAR workshop, Paris, 2015-09-29

2 Background data and assumptions

3 Using CloudSat 2B-CWC products

Some ISMAR "nadir" data from flight B893 Compared to ERA-Interim based non-scattering calculations

Some ISMAR "zenith" data from flight B893 Compared to ERA-Interim based non-scattering calculations

Some ISMAR data from flight B897 Compared to ERA-Interim based non-scattering calculations

The Bayesian Monte Carlo method

- Retrieved state is $\hat{\mathbf{x}} = \sum_i w_i \mathbf{x}_i / \sum_i w_i$
- with $w_i = exp(-0.5 \cdot [\mathbf{y} \mathbf{y}_i]^T \mathbf{S}_{\varepsilon}^{-1} [\mathbf{y} \mathbf{y}_i])$
 - y: measurement vector
 - S_ε: covariance matrix of measurement errors
 - x_i and y_i realisations of x and y
- ► The set of [**x**_{*i*}, **y**_{*i*}] constitutes the "retrieval database"
- Basic requirements on the database
 - relationship between x_i and y_i must be "physically correct"
 - must cover all possible states
 - for a Bayesian solution, must follow a priori distribution
 - must be sufficiently dense (~ n^d)
- Same issues apply when using neural nets
 - but database size appears less critical

Approaches to generate retrieval database

Purely empirical

- + does not require a forward model
- hard to obtain required "ground-truth" data
- Based on an atmospheric model
 - + a fairly complete description of the atmosphere is provided
 - atmospheric and forward model errors/biases will be inherited

"Observation-based"

- + real observations used for most critical part(s)
 - here CloudSat used to obtain cloud structure information
 - successfully applied for Odin-SMR inversions
- data from different sources have to be merged
- at least forward model errors will be inherited

Use external IWC and LWC retrieval

- Use basic observation, dBZ
 - results in an implicit retrieval

1 Introduction

2 Background data and assumptions

- 3 Using CloudSat 2B-CWC products
- 4 Using CloudSat dBZ

Clear-sky atmosphere and surface

From ERA-Interim (0.7° resolution)

- geopotential, temperature, water vapour, skin temperature
- LWC, IWC, low and high cloud cover fraction

Extracted for time and position of CloudSat measurements

Only March 2008, lat 50°N to 70°N, lon -60°N to 0°N

Surface: just ocean

- winds not considered
- Fresnel equations applied with n from MPM93

Why not use FASTEM? Answer 1: don't work at high incidence angles

Why not use FASTEM? Answer 2: don't work at all above ~ 400 GHZ

Single scattering data

- The aggregate particle from the Hong database used
 with a rough correction of absorption
- Some test calculations with "sector snowflake"

Particle size distributions (PSDs) Exemplified for 0.1 g/m3 and 253 K

- MH97: McFarquhar and Heymsfield (1997) (MH97)
- F07t: Field et al. 2007, tropical version

Radiative transfer

ARTS used

- "clear-sky" T_b calculated
- 1D scattering calculations by DOIT
- DOIT provides the complete radiation field
 - all flight altitudes and view directions covered in one calculation
- MARSS and ISMAR channels between 183 to 664 GHz

So far only total random orientation considered

1 Introduction

- 2 Background data and assumptions
- Using CloudSat 2B-CWC products

Setting of IWC and LWC

- Products used: IO_RO_ice_water_content and LO_RO_liquid_water_content
 - these products overlap in the "melting layer"
- The transition between liquid and ice selected randomly
 - a sharp transition applied, based on temperature
 - transition uniformly placed between 270 and 275 K
- IWC from ERA randomly forced to 0 based on high cloud fraction
- Final IWC set as max(IWC_{Csat},IWC_{ERA}),
- Same procedure for LWC, but low cloud fraction used

MH97 and Hong aggregates, 243 GHz T_b as a function of IWP

Size of dot indicates median height for ice/liquid mass

Mainly only data with RO_ice_water_path > 50 g/m²

MH97 and Hong aggregates, 243 GHz T_b as a function of LWP

MH97 and Hong aggregates, 664 GHz T_b as a function of IWP

Particle size distribution matters! 243 GHz

Same comparison at 664 GHz

Some calculations with sector snowflake But particle shape still matters!

1 Introduction

- 2 Background data and assumptions
- 3 Using CloudSat 2B-CWC products

Comparison of resulting IWC

Impact on one individual DOIT calculation 243 GHz, nadir, F07t, aggregates, IWP > 2 kg/m², same "melting point"

Impact on database

Same patterns when using F07t

Correlation of T_b between channels Red dots are some ISMAR data from B897

Conclusions / comments

"Ensemble retrievals" of CloudSat can be performed

attenuation fully considered, but no multiple scattering

1D databases based on CloudSat can be generated

- specified statistics of RH in cloudy regions will be added
- non-random orientation will be considered
- surface radiative properties so far simplistic
- melting layer not properly represented
- do we need 3D radiative transfer?

EarthCARE should remove the need for adding model IWC