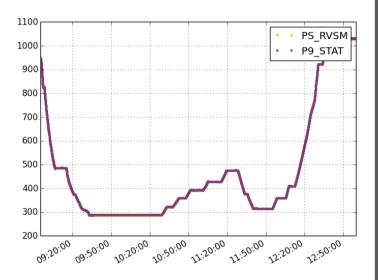


www.metoffice.gov.uk

Ancillary data

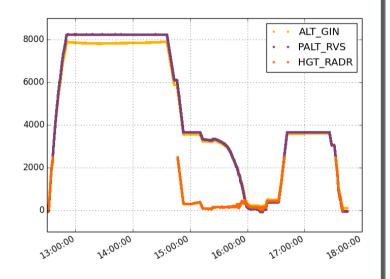
Stuart Fox

ISMAR workshop, Paris, September 2015


FAAM core data

- Available on BADC (registration required): http://browse.ceda.ac.uk/browse/badc/faam/data
- core_faam_*.nc
- 1 Hz and full data rate files available
- Use latest revision number
- Variables have associated FLAG indicating data quality – meaning is instrument dependent

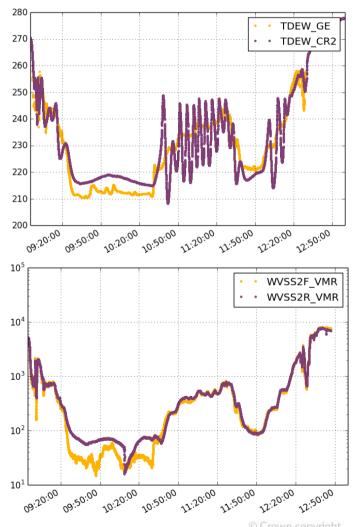
Pressure


- Two static pressure measurements:
 - PS_RVSM (from aircraft data system)
 - P9_STAT (from fuselage static ports)

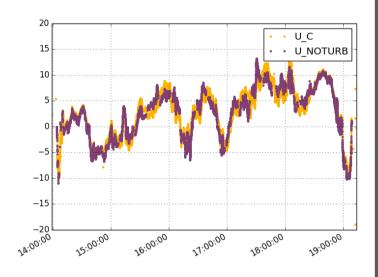
Altitude


- Altitude from GPS/ INU (ALT_GIN)
 - Height above ellipsoid
- Pressure altitude (PALT_RVS)
 - Based on standard atmosphere
- Radar altitude (HGT_RADR)
 - True height above ground, only below ~2500m

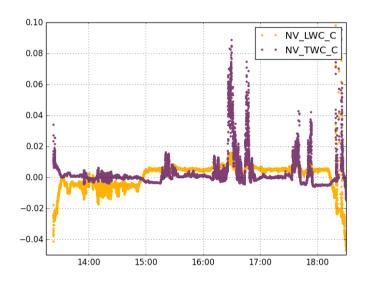
Temperature data


- Two temperature sensors (rosemount inlets)
- Non-deiced
 (TAT_ND_R) and deiced (TAT_DI_R)
- Non-deiced is preferred unless in icing conditions (supercooled liquid cloud)

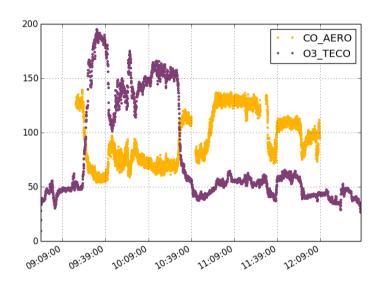
Humidity


- Two chilled mirror hygrometers: General Eastern (TDEW_GE) and Buck CR2 (TDEW_CR2)
 - Meteorological standard instruments
 - Slow response time
 - Uncertainty between dew/frost point, particularly during ascents
 - Buck not always working well during STICCS or COSMICS
- Two WVSS-II tuneable laser diode hygrometers: flush-mount inlet (WVSS2F_VMR) and rosemount inlet (WVSS2R_VMR)
 - Preferred humidity measurement
 - WVSS2F has faster response but tends to over-read at low humidity
 - WVSS2R susceptible to liquid cloud

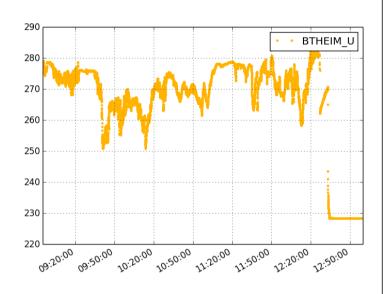
Winds


- Eastward (U_C) and Northward (V_C) wind components from 5hole turbulence probe
 - Not available from B884 onwards due to replacement nose
- Also versions calculated without turbulence probe (difference between air speed and ground speed) (U_NOTURB, V_NOTURB)
 - · Lower frequency data
 - Only during straight flight
- High-frequency wind data also available from AIMMS probe (not in core file)

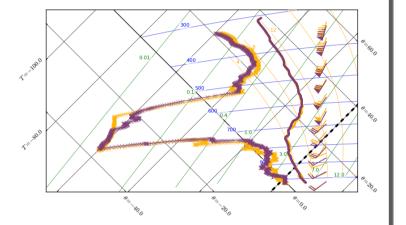
Cloud bulk water content


- Liquid water content and total (liquid+ice) water content from Nevzorov probe (NV_LWC_C and NV_TWC_C)
 - May need to download latest revision of file to get corrected data
 - Probe baseline changes with temperature and altitude
 - Core processing removes gross baseline
 - May be possible to improve by re-processing and including data from other probes
- Liquid water content from Johnson-Williams (LWC_JW_U)

CO and O₃


- Carbon monoxide (CO_AERO)
- Ozone (O3_TECO)

Heimann IR thermometer

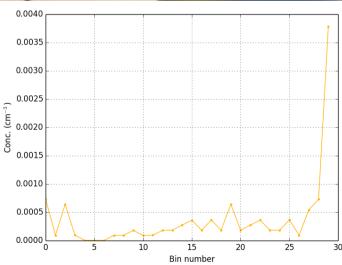

- Thermal IR radiometer (BTHEIM_U)
- Downward pointing
- 8-15µm
- No corrections applied for emissivity or atmospheric absorption
- For best results calibrate against ARIES

Dropsondes

- Near-vertical profiles of temperature, humidity and horizontal wind
- Available from BADC faam-dropsonde_faam_*.nc
- One file per sonde
- Profiles are coincident with radiative measurements

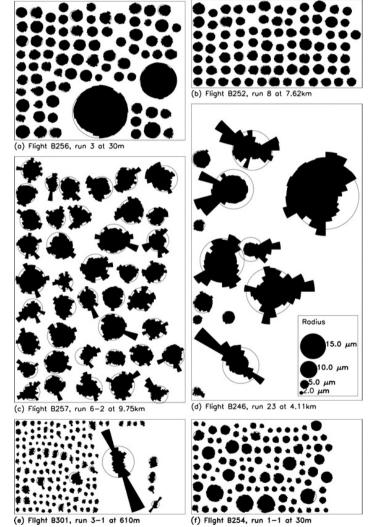
Cloud physics

- Measure particle size distribution
- Multiple probes to cover full particle size spectrum
- Two main types:
 - Scattering probes
 - Imaging probes



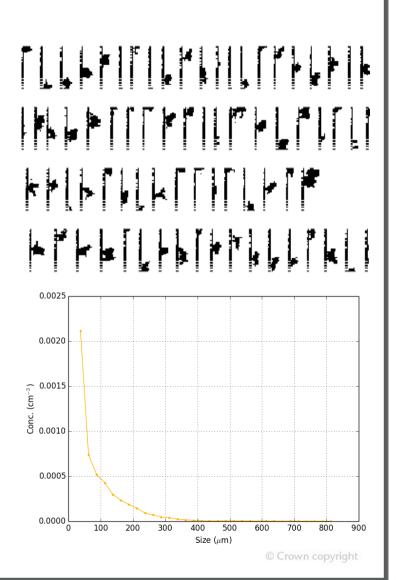
Scattering probes

- Cloud droplet probe (CDP)
 - Measures scattering cross section of particles in 30 size bins
 - For known refractive index and spherical particles can convert to particle size
 - Much trickier for ice!
 - Processed data on BADC (corecloud-phy_faam_*.nc)
 - Particle concentration in each size bin
 - Nominal bin sizes for liquid water drops (2-50 micron)
 - Campign-specific calibrations can be applied by user



Scattering probes

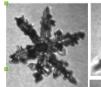
- SID-2 (small ice detector)
 - Up to 140 micron
 - Photodetectors arranged in ring so angular scattering pattern detected
 - · Data from Met Office
 - Damaged by lightning strike, repaired for COSMICS
- SID-3
 - Scattering pattern imaged on CCD
 - University of Hertfordshire instrument
 - Only fitted during COSMICS



Cotton et alJ. Atmos. Oceanic Technol., 27, 290-303.

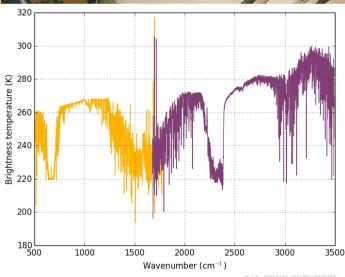
Imaging probes

- 2DC
 - 25-800 micron
 - Processed size data on BADC (in corecloud-phy file)
 - Images also on BADC in pdf file
 - Only fitted for STICCS, damaged by lightning strike and retired



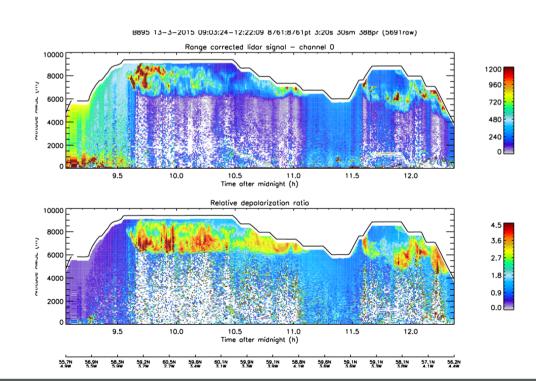
Imaging probes

- CIP-100
 - 64 x100µm pixels
 - Some problems during STICCS
 - Data needs to be processed by user
- 2DS
 - 128x10 µm pixels
 - 2 detectors
 - Manchester University handles data
- CIP-15
 - 64x15 µm pixels
 - Part of Manchester university CAPS probe
- CPI (Manchester)
 - Images of cloud particles idea of habit
 - New 3V-CPI during COSMICS

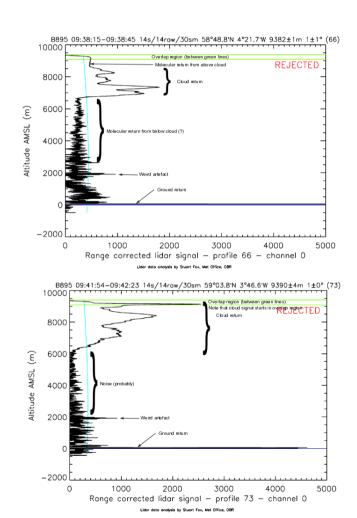


ARIES

- IR Fourier Transform spectrometer
- 500-3500cm⁻¹ at 1cm⁻¹ resolution
- Upward and downward views, internal calibration black bodies
- Can be used to retrieve:
 - Surface skin temperature
 - IR emissivity
 - Clear-sky temperature and humidity profiles
 - · ... and more
- Calibrated spectra available on BADC (monon-core directory)



LIDAR


- Leosphere ALS450 downward pointing
 - 355nm (near-UV)
 - · Depolarisation channel
- · Qualitative idea of cloud layers
- Data available directly from Met Office on request

LIDAR

- Quantitative retrieval may be possible with additional analysis:
 - Cloud top height
 - Cloud base height (for optically thin clouds)
 - Extinction profiles at 355nm (with some assumptions)
 - (Extinction/backscatter ratio at 355nm)

Questions?

www.metoffice.gov.uk