Spectral information content analysis of ISMAR frequencies – Preliminary results

Verena Grützun¹, Jana Mendrok², Manfred Brath¹, Stefan Buehler¹

¹Meteorological institute, University of Hamburg ²Luleå University of Technology, Kiruna

Overview

- Optimal estimation theory, reduction of degree of freedom
- ICON model
- 2-moment microphysics
- Jacobian calculation with ARTS
- Jacobians
- Apriori and retrieval error covariances
- Error reduction
- Information content

Optimal estimation theory

 Mathematical framework for estimation of information content: Reduction of degree of freedom

Analysis error covariance ${\boldsymbol{S}}{\boldsymbol{r}}$

$$S_r = \left(S_a^{-1} + K^T S_y^{-1} K\right)^{-1}$$

- K : Jacobian
 - Sy : Measurement error
 - **Sx** : Apriori covariance

LULEÅ

Optimal estimation theory

 Mathematical framework for estimation of information content: Reduction of degrees of freedom

4

LULEÅ UNIVERSITY

UН Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

Model data

Meteorology)

ICON (ICOsahedral Non-

2013 over Germany

hydrostatic model, developed by

German Weather Service, DWD,

Verena Grützun, verena.gruetzun@uni-hamburg.de, OEM Information content

2013-04-26 12:00:00

0.9

0.8

0.7

0.6

cloud water

Simulation from project HD(CP)2, http://hdcp2.eu They also have an extensive measurement database for validation.

cloud ice

0.00

0.9

0.8

0.7

0.6

0.3

0.2

0.1 0.0

0.5 [°]ш/бу 0.4 У

LULEÅ

OF TECHNOLOG'

Two-moment cloud microphysics

- Hydrometeors represented by mass and number density
 - Cloud liquid water (LWC)
 - Cloud ice(IWC)
 - Rain (RWC)
 - Snow (SWC)
 - Graupel and hail (not considered here)

- Modified gamma distribution $f(m) = A m^{\nu} \exp(-\lambda m^{\mu})$
- μ and ν fixed per hydrometeor, A and λ calculated from mass and number
- Mean Particle mass by division of grid box mass density by number density

Seifert, A. and Beheng, K. D. (2006). A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Met. Atm. Phys., 92:45–66

LULEÅ

Atmospheric profile

- Mean atmospheric profile from cloudy gridpoints
- Recalculated mean particle mass from mean mass density and mean number density
- → Smooth profile with all hydrometeors
- Removed cold particles at warm temperatures

Verena Grützun, verena.gruetzun@uni-hamburg.de, OEM Information content

LULEÅ

OF TECHNOLOGY

Jacobian calculation in ARTS

- Line-by-line model, explicit calculation of scattering (more from Jana and Patrick)
- Discretization of the particle size distribution on the ARTS particle size grid for scattering, slight adjustment of the particle number to preserve mass density
- Relative perturbation of 1% on each $1000 \left| \frac{1}{100} \right|_{-1}^{-1} \left| \frac{1}{000} \right|_{-1}^{-1} \left| \frac{1}{100} \right|_{-1}^{-1$
- Frequency set used : 23.8GHz up to 325.15GHz (higher frequencies underway)

LULEÅ

OF TECHNOLOG'

Jacobians Mass Densities

9

LULEÅ

OF TECHNOLOGY

Jacobians Mass Densities - excursus

Verena Grützun, verena.gruetzun@uni-hamburg.de, OEM Information content

LULEÅ

OF TECHNOLOGY

Jacobians Mass Densities - excursus

Verena Grützun, verena.gruetzun@uni-hamburg.de, OEM Information content

11

LULEÅ

OF TECHNOLOGY

Jacobians Mass Densities - excursus

12

LULEÅ

OF TECHNOLOGY

Jacobians Mean Masses

Verena Grützun, verena.gruetzun@uni-hamburg.de, OEM Information content

13

LULEÅ

OF TECHNOLOGY

Jacobians Mean Masses

Verena Grützun, verena.gruetzun@uni-hamburg.de, OEM Information content

14

luleå

OF TECHNOLOGY

Apriori and analysis error covariance - ICON

 The initial correlations remain clearly visible but again are "diffused" through out the matrix and overall weakened

Correlation apriori covariance

Correlation analysis error covariance

15

LULEÅ

OF TECHNOLOGY

Error reduction for the ICON case

(Reminder: Square root of the diagonals of Sx and Sr)

Verena Grützun, verena.gruetzun@uni-hamburg.de, OEM Information content

16

LULEÅ

OF TECHNOLOGY

Information - excursus

 Caveat: absolute number of △DOF depends on a priori and measurement noise assumptions

Thin lines from idealized a priori of this form:

Verena Grützun, verena.gruetzun@uni-hamburg.de, OEM Information content

LULEÅ

OF TECHNOLOGY

Information content

- Example ICON a priori, 0.5K noise
- Total reduction of degree of freedom less than number of measurements
- Hardly information about mean masses (inclusion of higher frequencies likely improves it)
- Breakdown of the information content: how much can we potentially learn about the hydrometeors with this specific setup

Total reduction of degree of freedom: 10.8256	Contri- bution
SWC mass density	2.81
mean mass	0.29
IWC mass density	2.67
mean mass	0.35
LWC mass density	2.15
mean mass	3.29e-04
RWC mass density	1.15
mean mass	0.16

Conclusions

- OEM information content analysis performed for ISMAR frequencies up to 325GHz (higher frequencies underway)
- Two-moment cloud microphysical scheme, estimation of apriori covariance from underlying ICON data
- Jacobian calculations within ARTS, cloudy Jacobians tricky and highly dependent on parameters and cloudy profile
- Reduction of degrees of freedom: How much can we learn about which parameter?

LULEÅ

Backup slides

Jacobians T and H2O

Verena Grützun, verena.gruetzun@uni-hamburg.de, OEM Information content

21

LULEÅ UNIVERSITY

OF TECHNOLOGY

Apriori and analysis error covariance - ideal

 The initial correlations are "diffused" through out the matrix, new patterns occur

Correlation apriori covariance

Correlation analysis error covariance

Verena Grützun, verena.gruetzun@uni-hamburg.de, OEM Information content

LULE

OF TECHNOLOG

UNIVERSITY

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8