Utilisation des observations micro-ondes passives AMSU-B/MHS pour l'étude des nuages précipitants

C. Claud, B.M. Funatsu, J.-P. Chaboureau, B. Alhammoud, J.F. Rysman

> ¹LMD-Ecole Polytechnique/Palaiseau ²Laboratoire d'Aérologie/Toulouse

Tableau 1: Liste des plateformes ayant à leur bord les radiomètres AMSU-B/MHS et caractéristiques principales : LTAN (Local Time Ascending Node- Heure locale du nœud ascendant) au moment du lancement et en décembre 2010 (dû à des dérives de l'orbite).

WHY AMSU-B/MHS?

• AMSU-B water vapor channels have unique advantages, such as:

- high sensitivity to frozen hydro-meteors in precipitating clouds [e.g.,Burns et al., 1997; Wang et al., 1997; Bennartz and Bauer, 2003],

- different sensitivities to vertical distributions of frozen hydrometeors [e.g., Burns et al, 1997; Bennartz and Bauer , 2003],

- and negligible impact of the ground surface and liquid water cloud in the lower to middle troposphere [e.g., Muller et al., 1994; Wang et al., 1997; Greenwald and Christopher, 2002; Bennartz and Bauer, 2003].

- AMSU has improved horizontal and spectral resolutions compared to its predecessor (MSU). Resolution spatiale: 16 km, fauchée 2200 km.
- Continuous coverage: AMSU-B/MHS instrument has been collecting data onboard NOAA and METOP satellites since 1999.

STRATEGY

There is no attempt to determine a rain rate as proposed by other authors (e.g. Kongoli et al., 2007; Vila et al., 2007; Surussawadee and Staelin, 2009; Di Tomaso et al., 2009; Laviola and Levizzani, 2011).

Two reasons:

- the weak correlation of scattering intensity and instantaneous rain rate at the surface (e.g. Bennartz and Petty, 2001).
- saturation issues (e.g. Lima et al., 2007) might indeed lead to an under-estimation of large rain rates associated with severe events, which are of special interest in the HYMEX project.

We have favoured an approach in which we detect precipitating clouds / deep convection occurrences.

In the following, we show:

- 3 diagnostics: MR ("Moderate rain"), DC ("Deep convection"), COV ("Convective Overshootings"
- Some applications of these diagnostics.

2 critères différents pour: -Deep convection (DC) B3m5, B3m4, B4m5, all>or = 0

-Convective Overshootings (COV) B3m5>B3m4>B4m5>or = 0

Hong et al., 2005 Detection of tropical deep convective clouds from AMSU-B vapour channels measurements

Case Study: Nîmes-Marseille (8-9 September 2002)

Precipitation and AMSU-B: Comparison with TRMM3B42 Nîmes-Marseille – 02 UTC 9 September 2002

Precipitation and AMSU-B: Comparison with Ground Data Nîmes-Marseille – 02UTC 9 Septembre 2002

AMSU-B [3-5] and DCT

Thin black – radar (precip intensity in mm/ h at 02:30UTC)

Black – accum. precip between 2-3 UTC

▲ - station SQR (precip. accum. during 24h)

Radar and accumulated precip. provided by Brice Boudevillain (LTHE) SQR data provided by METEO-France (Véronique Ducrocq)

Precipitation and AMSU-B: « Deep Convection Threshold » Analysis using TRMM

Frequency distribution for "Deep Convection Threshold" of Hong et al. (2005) DCT = $AMSU_B45 \ge 0$ and $AMSU_B35 \ge 0$ and $AMSU_B34 \ge 0$

Funatsu et al, 2007

B3m5 NOAA18 CloudSat (#10mn)

From AMSU-B to MHS

exp: oct 2007

Now there is ATMS...

Seasonal Distribution of precipitation and Deep Convection occurrences

Data: NOAA-16 2001-2007

Southern France - Upper-level structures

Southern France - SST and wind at 850 hPa

SST and wind fields from Operational ECMWF analyses

Etudes aux Tropiques : Utilisation de DC et COV pour étudier les couplages tropiques/extra-tropiques

Diagrammes Hovmöller jours/altitude de l'anomalie de vitesse verticale normalisée (issue de la réanalyse Era-Interim)

-→ Modulation de l'activité convective aux tropiques en lien avec les échauffements stratosphériques soudains dans la stratosphère arctique

+ Etude cycle diurne convection en Amazonie: Funatsu et al, JGR, 2012

Application à l'étude des polar lows: Validation simulations Meso-NH par une approche modèle-vers-satellite

Conclusions & perspectives

Intérêt de AMSU-B/MHS pour la détection de nuages précipitants/convectifs illustré pour différentes latitudes/situations

Limitations/projets de travaux:

- Changement de radiomètres/ dérives des plateformes
- Problème de la neige (précipitation): Signal en diffusion potentiellement masqué par le signal en émission (Liu et Seo, 2013)

Solution: approche statistique couplée à CloudSat

- Problème des surfaces froides/enneigées

•••

Etude de la convection profonde durant la SOP HyMeX par synergie instrumentale

Capteur IR de Meteosat Réseau Euclid (détection des éclairs)

Radar nuage aéroporté Rasta Canaux vapeur d'eau MHS

Exemple : IOP 12a 12 octobre 2012