Remote Sensing of Precipitation

Eric Defer LERMA-Observatoire de Paris

Outline

- Measuring Rain
- Temporal and Spatial Variability of Rain
- Remote Sensing Techniques
- Precipitation and Radiometry
- Use of mm/submm Radiometry for Severe Weather Monitoring and Rain Quantification

Measuring Rain (1/2)

- Rain directly impacts on human activities
- Key factor to follow climate change and to study energy/water budgets
- Where, when, how much?
- Estimation of rain and its forecast poorly characterized because of its high variability

	Temporal variability	Spatial characteristics
Convective cell	Few minutes	4 km
Rain system	Few hours	100 km
Cyclone	Few days	1000 km

Measuring Rain (2/2)

- Where we are now (from space borne view)
 - > Monthly/weekly/daily global from IR+VIS+MW+gauges
 - > Instantaneous 5/10 km from active/passive microwave LEO

User Requirements

Position Paper from Rizzi *et al.* (2006) > only liquid precipitation shown here

Position Paper – Cloud, Precipitation and Large Scale Land Surface Imaging Version 1.k 06/03/06 (NWP : numerical weather prediction; NWC : nowcasting)

			accu	racy				ho spatia	orizonta al resolu	ıl ıtion	vertical spatial resolution		observation cycle		delay							
Table 2 of 8		Accuracy (r.m.s.)			.)	Bias	Stabil	Δ x (km)		∆ z (km)		Δt (h)			δ (h)			Priority		Note		
Parameter	Application	Unit	thresh	break	obj		İ	thresh	break	obj	thresh	break	obj	thresh	break	obj	thresh	break	obj	global	hi lat	i
Precipitation profile (liquid)	NWP global NWP regional	%	100 100	50 50	20 20			50 20	15 5	5 2	3 2	2	0.2 0.1	12 6	3	1 0.5	6 0.5	2 0.1	0.5 0.02	1	2	11,12,13,14 11,12,14
	NWP global	%	100	50	20			50	15	5	-	-	-	12	3	1	6	2	0.5	1	2	11,12,14
Precipitation rate at surface (liquid)	Climate	mm/h	100	5	20	0.125	0.003	250	50	5	-		-	12	6	3	720	72	6	1	2	11,12,14
	Hydrology (> 10 mm/h)	%	20	10	5			30	10	1	-	-	-	3	0.25	0.08	0.25	0.17	0.08	1	2	
	Hydrology (1- 10 mm/h)	%	40	20	10			30	10	1	•	-	-	3	0.25	0.08	0.25	0.17	0.08	1	1	
	Hydrology (< 1 mm/h)	%	80	40	20			30	10	1	-	-	-	3	0.25	0.08	0.25	0.17	0.08	1	1	
Precipitation detection (liquid	NWP global	HR/FAR	50/50	95/10	99/2			50	15	5	-	-	-	12	3	1	6	2	0.5	4	4	15
	NWP regional	HR/FAR	50/50	95/10	99/2			20	5	2	-	-	-	6	1	0.5	0.5	0.35	0.25	4	4	15
	NWC	HR/FAR	50/50	70/40	85/20		l	5	2	0.1	-	-	-	6	1	0.25	0.25	0.17	0.08	1	1	15
Precipitation type	NWP global	classes	3	4	6		I	50	15	5	-	-	-	12	3	1	6	2	0.5	4	4	16
	NWP reg.,	classes	3	4	6			20	5	2	-	-	-	6	1	0.5	0.5	0.35	0.25	3	3	16
	Climate	classes	3	4	6			250	50	5	-	-	-	12	6	3	720	72	6	3	3	16

Variability of Rain (1/2)

• High temporal and spatial variability (example: ISREX Experiment, Methoni, Greece, 09/03/04)

Perser in branen

Variability of Rain (2/2)

• Variability also along the vertical due to kinematic, thermodynamic and microphysics processes (example: ABFM Experiment, KSC, Florida, 03/02/01 - NOAA-ETL K band (35 GHz))

Measuring Precipitation

- Rain gauges and disdrometers
 > local measurements
- Operational/research ground-based radar
 > long range capability but mostly over land in habited area
- Airborne/LEO space borne radar
 - > campaign dedicated/snapshot
 - > GEO radar (Nexrad In Space)
- Space borne radiometry
 - > LEO (SSMI, TMI, AMSU : operational; Madras and Saphir Megha-Tropiques : in 2009)
 > GEO (GEO IR + LEO MW)
- Cell phone links

Measuring Precipitation

- Rain gauges and disdrometer
 > local measurements
- Operational/research ground-> long range capability but mo
- Airborne/LEO space borne rai
 > campaign dedicated/snapsho
 > GEO radar (Nexrad In Space
- Space borne radiometry

 > LEO (SSMI, TMI, AMSU : ope Madras and Saphir Meg
 > GEO (GEO IR + LEO MW)
- Cell phone links

A-Train AMSRE 85 GHz V brightness temperatures (a), A-Train IIR 10.6 μm radiances (b) and vertical cross section of reflectivity from A-Train CLOUDSAT radar and top (bottom) of the first cloud layer measured with A-Train CALIOP lidar in red (white) over the Ligurian Sea at 01:40 UT on 16/08/06.

Precipitation and Radiometry

bservatoire

LERM

Precipitation with Space Radiometry : TRMM

 Tropical Rainfall Measuring Mission (TRMM)

> Hurricane Katerina (05/08/05)

Retrieving Rain Properties from Radiometry

- Radiative transfer simulations
- Algorithms developments
 - > Bayesian
 - > neural network
 - > quality of the results linked to the quality of the database and how it is representative of reality
- Validation activities
 - > dedicated ground-based validation campaigns
 - > TRMM precipitation radar

Using the 10-90 GHz Frequency Range

- Adequate performances for instantaneous rain retrieval from low orbits (eg TRMM)
- Temporal averages are strongly affected with sampling bias
- Poor revisiting time from LEO satellites for monitoring of severe weather events

> use of multiple platforms (GPM) BUT still limited to 3h sampling

> GEO satellites BUT poor spatial resolution for reasonable antenna size in the usual microwaves

3-m antenna 54 GHz, resolution = 50 km 380 GHz, resolution = 12 km

Interest of mm/submm Radiometry on GEO

- A solution : Use of mm/submm radiometry from geostationnary orbit
- Limiting conditions :
 - > No operational observations above 190 GHz
 - > <u>High sensitivity to the ice phase</u>

- Some activities using AMSU-B data (89, 150 & 183 GHz) and Megha-Tropiques soon
- Airborne instruments but no study on precipitation
- GOMAS mission proposed to ESA

GOMAS Mission

• Geostationary Observatory for Microwave Atmospheric Sounding (GOMAS) (Bizzari *et al.*, 2005)

> precipitation estimate with a high temporal sampling, for nowcasting

> temperature/humidity profiling

0	2	0 ₂		H ₂ 0		H ₂ 0		0 ₂		
54	GHz	118 GHz		183 GHz		380 GHz		425 GHz		
∨ (GHz)	∆∨ (MHz)	∨ (GHz)	∆∨ (MHz)	∨ (GHz)	∆∨ (MHz)	v (GHz)	∆∨ (MHz)	√ (GHz)	∆v (MHz)	
56.325	50	118.750±0.018	6	183.310±0.300	300	380.197±0.045	30	424.763±0.030	10	
56.215	50	118.750±0.035	12	183.310±0.900	500	380.197±0.400	200	424.763±0.070	20	
56.025	250	118.750±0.080	20	183.310±1.650	700	380.197±1.500	500	424.763±0.150	60	
55.520	180	118.750±0.200	100	183.310±3.000	1000	380.197±4.000	900	424.763±0.300	100	
54.950	300	118.750±0.400	200	183.310±5.000	2000	380.197±9.000	2000	424.763±0.600	200	
54.400	220	118.750±0.700	400	183.310±7.000	2000	380.197±18.000	2000	424.763±1.000	400	
53.845	190	118.750±1.100	400	183.310±17.000	4000	340.0	8000	424.763±1.500	600	
53.290	360	118.750±1.500	400			optional/auxiliary		424.763±4.000	1000	
52.825	300	118.750±2.100	800							
51.760	400	118.750±3.000	1000							
50.300	180	118.750±5.000	2000							

Frequency selection for the GOMAS mission (Bizzari et al., 2005)

Investigating Potential of mm/submm Radiometry

- Observations above 183 GHz are rare ! > only airborne demonstrators
- Use of cloud resolving models interfaced with radiative transfer codes

> it requires cloud/radiative simulations as representative as possible

- Cloud resolving model MésoNH (Lafore *et al.*, 1998)
 > SIMGEO microphysics database (Chaboureau *et al.*, 2008)
- Atmospheric Transmission at Microwaves (ATM) radiative transfer code (Pardo *et al.* 2001)
 > one needs to take into account carefully the properties of the icy particles (density, permittivity; Meirold-Martner *et al.*, 2007)

Simulating mm/submm GOMAS Observations (1/2)

Simulating mm/submm GOMAS Observations (2/2)

integrated cloud

Retrieving Rain from GOMAS Simulations

- Combination of mm/submm channels such as GOMAS can provide an estimate of rain rate with an error of 50% for rain rate > 1 mm/h
- Satisfying performances of mm/submm channel combination for rain detection (not shown)
- Capability of retrieving liquid and ice hydrometeor profiles (not shown)

Performance of the rain rate retrieval schemes for different frequency sets, with or without IR channel, quantified by r.m.s errors (in %) as function of the rain rate.

Summary

- Potential of mm/submm radiometry for rain detection and quantification demonstrated through modeling studies (Surussavadee, 2006; Defer *et al.*, 2008)
- High interests from Research Community, Operational and Space Agencies
- Technology available now in Europe
- Building and operating airborne demonstrators to

 validate instrumental concepts (frequency sets, scan strategy...)
 validate cloud and radiative transfer models
 ii) investigate scientific questions

