Microwave observations of planetary atmospheres

François Forget (LMD, CNRS, Paris) E. Lellouch (LESIA) The MAMBO team

First interplanetary space probe = first microwave radiometer

December 1962: Mariner 2 microwave radiometer (λ =1.9 cm) demonstrates that the hot microwave emission of Venus comes from the surface (limb darkening)

Planetary Science and microwave sounding

- Mariner 2...
- MIRO on Rosetta :
 - 190 GHz (1.6 mm) and 562 GHz (0.5 mm)
 - 30 cm antenna + CTS
 - CO, CH3OH, NH3 and three, oxygen-related isotopologues of water, H2 16O, H2 17O and H2 18O
- Juno on Jupiter
- More « Earth –like instrument » proposed for Mars, Titan, etc...

Juno Microwave Radiometer (Launch: august 2011): to probe deep in the atmosphere of Jupiter

MWR probes NH3, H2O

An example to study Mars atmosphere

Atmospheric temperatures

(Northern winter; Mars Global Surveyor Observations (Spectrometer TES , CO2 15 μm band inversion)

Global dust storms

June 26, 2001

September 4, 2001

An active chemistry

SIMULATION : Ozone column at the end of northern winter (movie : 4 pictures / day) (Lefevre, Lebonnois and Forget 2004)

Available observations of Mars atmosphere from Orbit

- Profile : Mostly temperature below 50 km
 - IR sounding
 - TES on Mars Global Surveyor, 1997-2005),
 - PFS on Mars Express (2004-present)
 - MCS on Mars Reconnaissance Orbiter (2006present)
 - A few radio occultation and stellar occultation profiles
- Column: Water vapor, ice, dust aerosols
- Ozone observed with UV spectrometer SPICAM / Mars Express (2004)

Other key measurements obtained from Earth, in the microwave (thermal emission) *(Encrenaz, Lellouch, Moreno, Clancy, etc.)*

- Doppler shift winds
- Temperature monitoring
- H2O, HDO, CO , ¹³CO column
- Detection of H2O2

Microwave observations of the Martian atmosphere from orbit ?

- Lots of gas rotational lines available
 - especially CO, used to retrive temperature and winds : 115, 230, 345, 460, 575 GHz, etc.)
 - H2O
 - Many other species : O3, H2O2, HDO, HO2, NO, etc...
- Which frequency ?

⇒ Compromise :

- Higher frequency : higher noise
- Lower frequency : larger antenna required for a given beam size
- Detailed choices driven by available gas lines (especially CO)
- Spectrometer can be used looking Nadir, but ground breaking science is performed by scanning the limb

Science objective 1) 3D mapping of the wind from 20 to 110 km

•

(cross-track wind: zonal wind in polar orbit)

• Measurement of the Doppler shift on ^{13}CO et CO (10 m/s = 10 kHz)

Wind retrieval accuracy

(Monte Carlo simulation)

Altitude (km)

Science objective 1) 3D mapping of the wind from 20 to 110 km

(cross-track wind: zonal wind in polar orbit)

- Measurement of the Doppler shift on ^{13}CO et CO (10 m/s = 10 kHz)
- First direct wind observations from orbit
- Accuracy : ~10 m/s
- => This observations is crucial to study Mars Meteorology and climate because indirect estimation of the wind is difficult on Mars

2) 3D mapping of <u>temperature</u> (0-120km)

- Inversion of CO and ¹³CO
- Unprecedented sensitivity:
 - Insensitivity to aerosols (affect IR below 40 km)
 - Thermal emission a T
 - Well known line shape
 - Local thermal equilibrium (LTE) valid everywhere

(major problem in the IR above 70 km)

Urban et al. 2004

Example: Northern winter dynamics The best part is above 80 km !

Combining wind + temperature :

=> Synergy with Netlander

3) 3D mapping of water vapor (0-60km)

- Inversion of H2O et HDO
 Insensitivity to aerosols
 High accuracy and sensitivity
- Water vapor + general circulation : => *Water cycle*, *sources*, *sinks*

Simulated inversion of H2O at 325.15 GHz (Obs de Bordeaux-LMD))

Water vapor profiles

Volume mixing ratio RMS retrieval accuracy

Relative RMS accuracy (%)

Based on Simulation performed with MOLIERE, Obs de Bordeaux

4) 3D mapping of D/H ratio

5) 3D mapping of <u>H2O2</u>

- Key molecule
- (H2, O2, CO regulation) • Recently been detected ! (Clancy et al. 2004, Encrenaz et al. 2004)
- Surface oxydation => Exobiology

6) 3D mapping of <u>O3</u>

- up to 70 km
- simultaneously with H2O

7) 3D mapping of <u>CO</u>

=> A complete view of Mars photochemisrty

Retrieval of chemical species

RMS Mixing Ratio Retrieval accuracy

8, 9, 10, 11) : Surface Science

Mapping of the surface microwave emission and will map the variations due to:

- 1) subsurface ice contents (1-20 mm)
- 2) surface roughness (10-100 m horizontal scale)
- 3) CO2 ice cap characteristic
- 4) temperature sensing depth

Method:

- H and V polarization
- Same point observed with various viewing Angle and at different local time

Example: surface roughness Mapping at 85 GHz (Prigent et al. 1997).

Magnetic Map of Mars, altitude=200 km (Purucker et al., 2000)

MAMBO Instrument

Design : ASTRIUM

Receiver frequency	323 – 347 Ghz
System Temperature DSB	1500 K
Maximal spectral resolution	100 kHz
Antenna aperture	23 cm (*)
Antenna beam width at limb	~8 km (*)
Mass (20% margin included)	27.8 kg
Power (margin included)	62.5 W
Data rate to Earth)	35 to 50 Mbits/day

Total sequence : 110 s

MAMBO observation strategy

[MARS] MAMBO Trace de l'orbite

>>> Durée représentée : 240.0 min = 0.16 sol Trace des fauchées orthogonales

 Altitude = 350.0 km a = 3746.200 km

 Inclinaison HELIOSYNCHRONE = 92.86°

 Période = 116.30 min * Trs/sol = 12.72

 Décalage à l'équateur = 1677.4 km (28.3°)

 ** Demi-fauchée : 65.0° => 1479 km [1.0 min]

MAMBO Functional Diagram

MAMBO Instrument and team

- **PI** : F. Forget (LMD)
- Hardware development :
 - Management : Paris Observatory, LERMA (G. Beaudin, A. Deschamps, M. Gheudin)
 - IF processor : JPL (USA) (M. Janssen, L. Riley, P. Frerking, S. Gulkis)
 - CTS Spectrometers: MPAE (Germany) (P. Hartogh)
 - ACS spectrometers: SSC/Omnisys (Sweden)

Science teams

- IPSL : LMD (M. Capderou, K. Dassas, S. Lebonnois) , SA (F. Lefevre, F. Montmessin)
- Paris Observatory : LESIA (T. Encrenaz, E. Lellouch) , LERMA (C. Prigent, P. Encrenaz)
- Bordeaux Observatory (P. Ricaud, J. Urban)
- MPAE (Germany) (W. Markiewicz)
- JPL, Caltech (M. Allen, M. Richadson), SSI (T. Clancy), NASA Ames (B. Haberle) (USA)....

Other Mars projects

- Proposal for Mars Observer (~1985. Pl D.Muelhman). 220-230 Ghz
- MIME (1999) proposed for Mars Express (*PI : P. Hartogh*) 575 GHz

SW

⇒ current concept "SWI"

The future of microwave sounding on Mars

New technologies :

- Use higher frequencies ?
- Tunable receivers (frequency scanning with a synthetizer) to look for minor constituent or simplify the instrument
 Cooled instrument ???

Upcoming opportunities

- Next ESA orbiter : Mars Next in 2016. Includes a 15 kg microwave sounder in its strawman payload. *Won't happen*
- Next NASA orbiter (after 2013 selected Maven) : Mars Science Orbiter (2018). Includes a 30 kg microwave sounder in its strawman payload !
- Japan (2016-2018) ?

ANOTHER EXAMPLE : A sounder for Titan aboard the TANDEM mission

> Titan NUV, false color Cassini

The case for a submillimeter sounder on the TSSM Titan Orbiter

E. Lellouch, S. Vinatier, P. Hartogh, G. Beaudin, R. Moreno, ..., et al.

Presented at TSSM meeting Meudon, 19 March 2008

A model of Titan's (nadir) spectrum as seen by a heterodyne spectrometer

Titan's expected spectrum at 1.0-1.3 THz HCN CO CH4

Thermal sounding

- From CH_4 (uniform) : up to ~500 km
- From CO (almost certainly uniform); no homopause uncertainty problem: up to ~800 km
- From HCN (not uniform vertically nor spatially, but feasible through multiple lines incl. isotopes, cf. CO on Venus) : up to ~1200 km
- Advantage: LTE is not a major issue like in IR
- vertical resolution ~ 8 km (width of contribution functions)
- expected precision $\Delta T \sim 1$ K in 1 min observation

Science goal # 1: Temperature

sounding

- Approach: use HCN, CO and CH4 to retrieve T(z)
- CO and CH4 probe atmosphere up to ~800 and ~400 km respectively and are horizontally/vertically uniform in range of interest.
- HCN is not uniform but optically thick up to 1150 km; combination with INMS-like instrument possible higher up.
- Advantages:
- good sampling of 40-1200 km range
- vertical resolution ~ 8 km (width of contribution functions)
- expected precision $\Delta T \sim 1$ K in 1 min observation
- **rotational LTE** valid to very high altitudes (typically ~ 10-11 bar ~1250 km)

Science goal #2: Direct wind

measurements

- Approach: *Direct absolute* wind measurements from Doppler shift on any optically thin line. Advantages:
- No assumption on thermal field equation validity
- or boundary condition
- Precision 3-4 m/s for $\Delta T \sim 100$ K contrast line in 1-min
- Possibility to measure zonal winds (off-track from polar orbit) and meridional wind (in-track)

Science goal #3: Chemistry and coupling with dynamics

- Goals: 1) determine vertical/horizontal distribution of several
- minor species with various chemical lifetimes (HCN, HC3N, CH3CN, CH3CCH,
- H2O) and relate it to the global wind field (and possibly to source of oxygen).
- 2) Search for species yet undetected in stratosphere/mesosphere (HC5N, C2H3CN,
- NH3, CH2NH) and compare chemical complexity to thermosphere as seen by INMS.
- 3) Determine yet un-established isotope ratios (160/180 in CO, D/H in HCN and H2O).

Preliminary instrument characteristics

- D= 15 cm-antenna with articulation system, allowing limb and nadir sounding
 - In track-views needed for meridional winds and to perfom limb sounding over poles
 - Off-track views needed for zonal winds
- Two receivers sharing common and tunable LO system
 - 1 "high-frequency" band (e.g. 540-640 GHz; or 1080-1280 GHz)
 - 1 "low-frequency" band (e.g. 300-360 GHz band)
- Typical spatial /vertical resolution ~ 4 mrad @ 600 GHz (⇔ 8 km @ 2000 km)
- Instantaneous bandwidth: 1 GHz @ 300 kHz resolution
- Uncooled Schottky receivers: Tsys (DSB) ~6000 K at 1 THz, ~4000 K at 600 GHz, 2500 K at 350 GHz
- Typical performances: $\Delta T (1 \sigma)$ in 1 MHz = 0.6-1.5 K in 1 min; 0.08 K -0.2 K in 1 hour

•

Conclusions

- Limb Sub-mm atmospheric sounding will be used in future planetary missions
- Key objectives : Doppler winds, temperature, trace species
- Need for wide band / tunable receivers to monitor several lines with a light instrument
- Key compromise : Noise/antenna size/gas lines target/vertical resolution
 ⇒need to define acquisition time when designing/comparing concepts.