LIMA: Liq. Ice Multiple Aerosols A quasi 2-moment bulk scheme developed in the cloud-resolving mesoscale model MesoNH

Jean-Pierre Pinty⁽¹⁾, Benoît Vié⁽²⁾,

and contributions from C. Barthe, S. Berthet and M. Leriche

(1) Lab. Aérologie, CNRS-Université de Toulouse, Toulouse, France(2) Météo-France, Toulouse, France

Motivations:

- Steering cloud physics by 3D fields of aerosols (nCCN and mIFN)
- ... but preserving enough computational efficiency to perform large meteorological simulations at high resolution

Introduction to LIMA: Liq. Ice Multiple Aerosols

<u>1-moment (bulk) microphysical schemes (4-5-6-7 Eqs): ICE3/4</u>

• Advantage: adapted to NWP models => QPF, cloud radiative effects, scavenging of gas-aerosol, cloud electricity, ...

• Drawbacks: no sensitivity to the aerosols, temperature-water vapor adjustment => no supersaturation, autoconversion cloud particles => hydrometeores => no physics: threshold & time scales to tune

2-moment (bulk) microphysical schemes (~2*Eqs + aerosols Eqs):

- Advantage: remove preceeding drawbacks ... but aerosol description is often too much simplified => LIMA (new)
- Drawbacks: assumed size-distributions of the particles, uncertain parameterization of autoconversion processes (droplets=>raindrops)

Detailed (bin) microphysical schemes (40-60 Eqs/water, ice & aerosol):

- Few assumptions => ref. schemes (YES for water, but for ice ?)
- Mass conservation (solved) and spectral diffusion (vapor cond/dep)
- Huge computational needs (transport & processes) for 3D numerical experiments over large domains

Introduction to LIMA: Liq. Ice Multiple Aerosols

LIMA : a 2-moment microphysical scheme

- 2 budget Eqs for each aerosol type (Nfree & Ncaptured)
- Activation of a mixture of CCN => competition effect
- Nucleation by multiple IFN sources => V. Phillips scheme
- Scavenging by raindrops
- Nsnow, Ngraupel, Nhail diagnosed
- Size distributions : *n*(*D*)
- *p*-moment : *M(p)*
 - $(\alpha \& v \text{ are fixed})$

$$n(D)dD = N\frac{\alpha}{\Gamma(\nu)}\lambda^{\alpha\nu}D^{\alpha\nu-1}\exp\left(-(\lambda D)^{\alpha}\right)dD$$
$$M(p) = \frac{1}{N}\int_{0}^{\infty}D^{p}n(D)dD = \frac{\Gamma(\nu+p/\alpha)}{\Gamma(\nu)}\frac{1}{\lambda^{p}}$$

Aerosol modes are distributed lognormally

LIMA : what is missing yet ?

- Regeneration of the aerosols: surface processes, cloud processing
- Pristine ice crystal habits
- Transition particles : drizzling drops & «big» pristine ice crystals ?

LIMA is coupled to the radiative transfer scheme (effective radius or dim.)

LIMA: Warm part of the scheme

Based on Cohard and Pinty (2000)

State variables: N_{free1}, N_{free2}, N_{free3}, ..., N_{act1}, N_{act2}, N_{act3}, ..., N_c, r_c, N_r, r_r

LIMA: IFN nucleation (1)

Based on Phillips et al. (2008, 2013)

<u>Classical</u>: Meyers et al.(1992), Diehl et al. (2004, 2006) but no IFN budget, no sensitivity to IFN type or to IFN size distributions

 \rightarrow « Empirical Parameterization » for multiple chemical species of IFN to homogenize the description of the heterogeneous nucleation process.

Species: XE {Dust, Black Carbon, Organics, Biogenics}

- Singular hypothesis: spontaneous vs probabilistic process => the largest IFN are nucleating first
- Importance of cloud chamber calibration vs theoretical modeling

LIMA: IFN nucleation (2)

Based on Phillips et al. (2008)

The number of «nucleable» IFN for local *SSi* & *T* conditions is given by:

$$N_{IFN,i}^{*}(SSi,T) = \int_{0.1\,\mu m}^{\infty} \left[1 - \exp(-\mu_{X}(d_{a},SSi,T))\right] \times n_{a=IFN,i}(d_{a}) dd_{a}$$

with $\mu_X = H_X(SSi, T)(\alpha_X n_{IFN}^* / \Omega_X^*) \times \pi d_a^2$ and where H_X is an interpolation factor to account for different {*SSi*, *T*} regimes, α_X is a fractional type contribution, Ω_X^* is the total surface of Xtype IFN, n_{IFN}^* is an IFN reference concentration.

IFN spectra are assumed to be lognomal:

$$\mathrm{d}N_a = \sum_{i=1}^l n_{ai} (d_a) \mathrm{d}d_a = \sum_{i=1}^l \frac{N_{ai}}{\sqrt{2\pi} \ln \sigma_{ai}} \exp\left(-\left(\frac{\ln(d_a/d_{ai})}{\sqrt{2\pi} \ln \sigma_{ai}}\right)^2\right) \mathrm{d}\ln d_a$$

Integral involving size distributions $n_{IFN}(d_a)$ is computed analytically if $\exp(-\mu) \sim 1-\mu$ or performed with a Gauss-Hermite quadrature formula.

LIMA: coated IFN activation/nucleation

Heterogeneous nucleation by immersion

<u>Coated IFN: insoluble core + encapsulated by sulfate material</u>

Coated IFN (aging effect) are treated separately:

- First, a CCN activation effect → droplets with IFN inside. These droplets are tagged.
- Then IFN nucleation by immersion: droplet freezing → pristine ice crystal

According to Phillips et al. (2008) the same formula of the Empirical Parameterization can be used

LIMA: Other sources of pristine ice (w/o IFN)

Hallett-Mossop, droplet homogeneous freezing, haze freezing

Hallett-Mossop process (splintering or ice multiplication)

HM process occurs when droplets are riming on graupel particles. The process is efficient in the range T=[-3℃, -8℃] (triangular function). A splinter is produced each time 200 droplets with size>25µm are riming (Mossop, 1976; Beheng, 1987). This is computed using the incomplete Γ function.

Homogeneous freezing of the cloud droplets

 Homogeneous nucleation occurs when T<-35℃ at least and no more droplet exist when T<-42℃. The freezing probability is proportional to the droplet volume and to the freezing rate taken in Pruppacher (1995).

Haze (wet aerosol) freezing

 The freezing of wet aerosols occurs at very low temperature (T<-40℃). The parameterization of Kärcher and Lohmann (2002) is used here. No size and aerosol type dependence is accounted for.

LIMA: water vapor ⇔ cloud droplets & water vapor ⇔ pristine ice

<u>Adjustment to saturation for the liquid phase and explicit deposition or</u> <u>sublimation rates for the ice phase (thanks to prediction of N_i)</u>

3 cases:

- Liquid only: equilibrium \rightarrow pure adjustment to saturation (*SSw* = 0)
- Ice only: out of equilibrium \rightarrow computation of an explicit deposition growth rate function of *SSi* and *T*(*SSi* is not constrained to saturation)

• Mixed-phase (both droplets and ice crystals are present): tradeoff → analytical scheme of Reisin et al. (1996) but no supersaturation allowed over liquid droplets

In addition, ...

- Deposition/sublimation rates computed explicitly for snow/aggr. and for graupel
- Evaporation rate is computed explicitly for the raindrops

LIMA: Pristine ice to snow/aggr. conversion

Scheme of Harrington et al (1995)

The conversion rate of the pristine ice crystals into the «snow/aggregate» category depends on the water deposition rate on pristine ice.

<u>Assumption</u>: Transfer rate of pristine ice \rightarrow snow/aggr. is taken equal to the deposition growth rate of the ice crystals larger than $d_i=125 \ \mu m$.

$$-\frac{\partial N_{i}}{\partial t}\Big|_{\text{CNVIS}} = \int_{d_{CNVIS}}^{\infty} \frac{\partial n_{i}(d_{i})}{\partial t}\Big|_{\text{DEP}} dd_{i} = \int_{d_{CNVIS}}^{\infty} \frac{\partial}{\partial d_{i}} \left(\frac{dd_{i}}{dt}\Big|_{\text{DEP}} \times n_{i}(d_{i})\right) dd_{i} = \frac{dd_{i}}{dt}\Big|_{\substack{\text{DEP}\\d_{i}=d_{CNVIS}}} \times n_{i}(d_{CNVIS})$$
$$-\rho_{air} \frac{\partial r_{i}}{\partial t}\Big|_{\text{CNVIS}} = \rho_{air} \frac{\partial r_{s}}{\partial t}\Big|_{\text{CNVIS}} = \int_{d_{CNVIS}}^{\infty} \frac{\partial (m_{i}(d_{i})n_{i}(d_{i}))}{\partial t}\Big|_{\text{DEP}} dd_{i}$$
$$= m_{i}(d_{i})\frac{dd_{i}}{dt}\Big|_{\substack{\text{DEP}\\d_{i}=d_{CNVIS}}} \times n_{i}(d_{CNVIS}) + \int_{d_{CNVIS}}^{\infty} \frac{dm_{i}(d_{i})}{dt}\Big|_{\text{DEP}} n_{i}(d_{i}) dd_{i}$$

The reverse mechanism is used to transfer snow/aggr. into pristine ice when snow sublimates (loss of «snow » and gain of pristine ice).

LIMA: Overview of the whole scheme

Cohard & Pinty (2000), Pinty & Jabouille (1998)

Microphysical Scheme diagram

MACC analyses à ECMWF

MACC page

CECMWF			Ham	o N	ly ros	r t	ortac	t F	cedbo	ck.	Silon	SIP.	Scaro	h =C\	198-
About us Products	Services Rese	ai ch	P	iblica	lions	é I	News		rents	1					
lype of level			-	-											
► Model levels	MAG	-6	Rea	nar	ISIS										
Pressure levels	Note	Ye.	imay	be in	e esta	d ir t	akin g	part i	r a Re	ar aly	als Us	61 a n	AFR	l cati	on
Surface	Seld	ect d	ate												
MACC Fields	0	Sel	ect a	dat	e In	the l	Inter	val 2	2003	01-0	1 10	2012	-12.	31	
► Reassalysis	201	date:	2003	U1-J1	-Cirily		1	nd dat	e: 🕰	2-12-3	1				
Near reallinne	Rese	1	A.												
Data	C	Sel	ect a	list	of m	ont	19								
Conditions		111	Pab	Nat	3.0	11	-inte	<u>in</u>	0.4	sep.	0:1	Has	Des		14
Nevigation	2003	C	0	C	0				C		D		D	P114	C
Datasets	2003	C.	10	C.	10	U.	E	O.	E	\odot	(\bigcirc	Û	2005	L
Job list Batch access	2007	E	0	C.	0	Ľ.	C	U.	C		0		0	2225	L
Michill Group and	2012	1	39	U_{\pm}	30	E.	IC.	$\Gamma 1$	E	11	[11	(1)	2111	ţ.
See also	2011	T.	-	1		n	E	\square	C	-	\square	-	0	1218	É
Data FAQ		-	HD	NIC	.tor	max	ามา	.10	nue.	Sep	cet	HOV	Det		181
Data Servers	and the second	 (*		1011		1111-							·····		
Data Services	Carlos Carlos														

Flexible files.nc: up to 13 mixing ratios of different aerosol type/size to select.

MACC analyses adapted to LIMA

◄

GDR µondes workshop, Paris, April, 2014

Summary and conclusion

• 2-moment microphysical scheme LIMA in MesoNH

- realistic representation of the aerosols
 - Lognormal modes, spatially heterogeneous population
 - Aerosols: CCN, IFN and coated_IFN: first CCN then IFN
- interaction between aerosols, cloud particles and raindrops
 - multimodal CCN activation and IFN nucleation
 - impaction scavenging by rain
- 3D prognostic budget equations in LIMA
 - Mixing ratios (kg/kg): r_c , r_r , r_i , r_s , r_g ... r_h (hail to include)
 - Concentrations (#/kg): n_c, n_r, n_i
 - Aerosol concentrations (#/kg per mode): n_{free}, n_{act/nucl}

Simulation of precipitating systems at high resolution

- Aerosols of MACC II analyses → CCN, IFN, coated IFN
- Quantitative evaluation of cloud μ physics (RR, radar, lidar, RTTOV)
- Additional developments to integrate (crystal shape, ...)
- Long-term integrations with full aerosol regeneration (future)