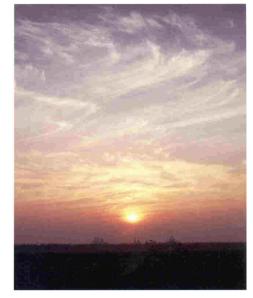
Ice clouds observed by passive remote sensing : What did we learn from the GEWEX Cloud Assessment ?



Claudia Stubenrauch Laboratoire de Météorologie Dynamique, IPSL/CNRS, France

Clouds are extended objects of many very small liquid / ice particles

Cirrus (high ice clouds)

satellite radiometers

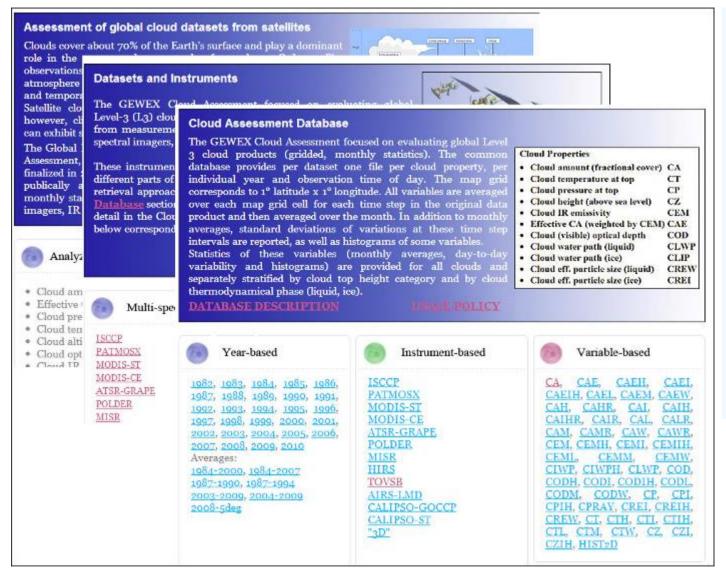
bulk quantities

at spatial & temporal scales to resolve weather & climate variability Cloud structures over Amazonia

Cumulus (low fair weather clouds)

Cumulonimbus (vertically extended)

Copyright: 1998 Wadsworth Publishing Company; C. Donald Ahrens, Essentials of Meteorology



global gridded L3 data (1° lat x 1° long) : monthly averages, variability, Probability Density Functions

ISCCP GEWEX cloud dataset	1984-2007	(Rossow and Schiffer 1999)
MODIS-ScienceTeam	2001-2009	(Menzel et al.2008; Platnick et al. 2003)
MODIS-CERES	2001-2009	(Minnis et al. 2011)
TOVS Path-B	1987-1994	(Stubenrauch et al. 1999, 2006; Rädel et al. 2003)
AIRS-LMD	2003-2009	(Stubenrauch et al. 2010; Guignard et al. 2012)
HIRS-NOAA	1982-2008	(Wylie et al. 2005)
relatively new retrieval version	ns:	
PATMOS-x (AVHRR)	1982-2009	(Heidinger et al. 2012, Walther et al. 2012)
ATSR-GRAPE	2003-2009	(Sayer et al. 2011)
complementary cloud informat	tion:	
CALIPSO-ScienceTeam	2007-2008	(Winker et al. 2009)

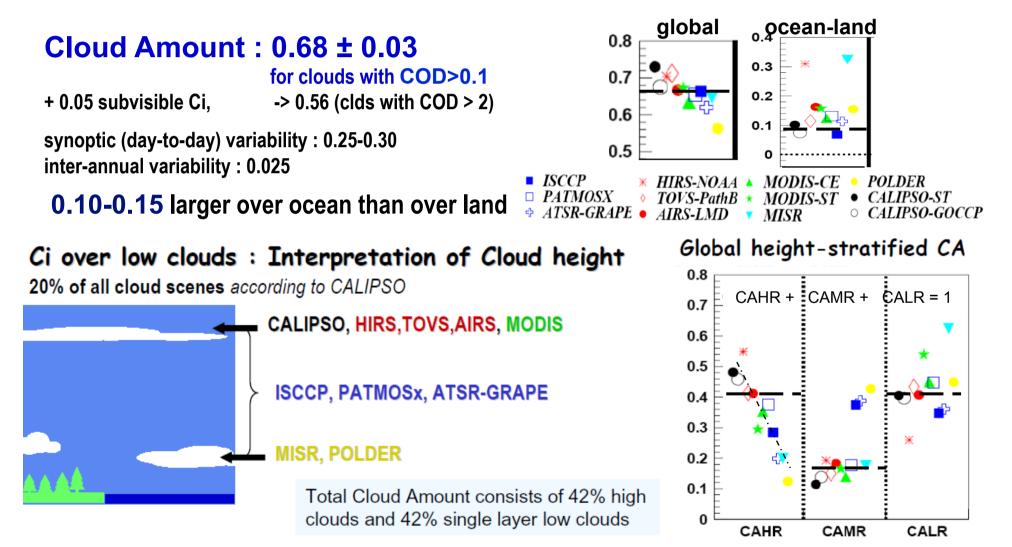
CALIPSO-Science Team	2007-2008	2007-2008 (Winker et al. 2009)	
CALIPSO-GOCCP	2007-2008	(Chepfer et al. 2010)	
MISR	2001-2009	(DiGirolamo et al. 2010)	
POLDER	2006-2008	(Parol et al. 2004; Ferlay et al. 2010)	
		3	

GEWEX Cloud Assessment Web-site

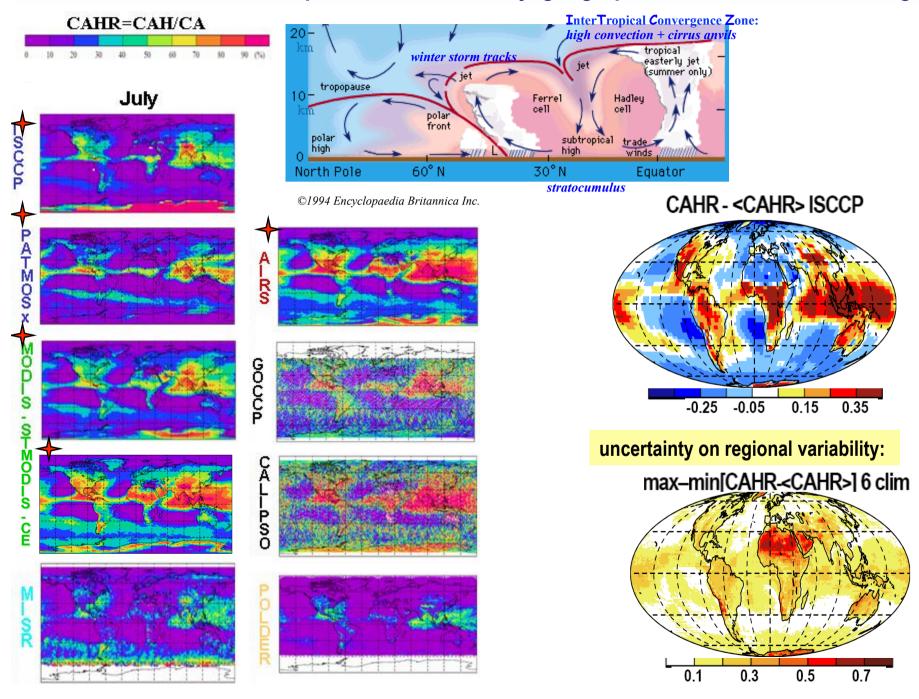
• General sections: description, meetings, publications, etc

• "Datasets" : provides individual descriptions

• "Database" : contains links to zipped netCDF files, grouped per variable, instrument and year, ftp-accessed.

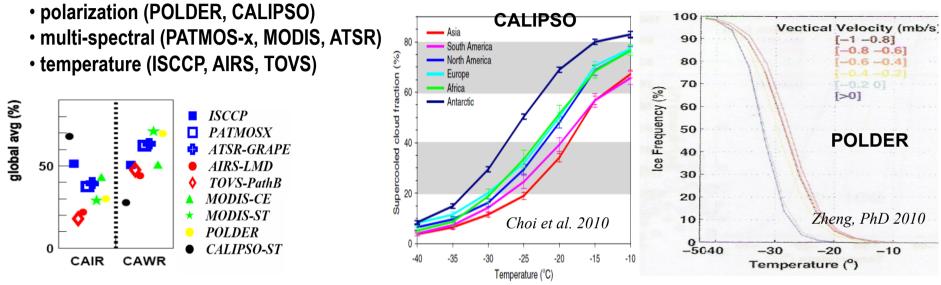

http://climserv.ipsl.polytechnique.fr/gewexca

4


GEWEX Cloud Assessment key results

IR-NIR-VIS Radiometers, IR Sounders, multi-angle VIS-SWIR Radiometers *exploiting different parts of EM spectrum*

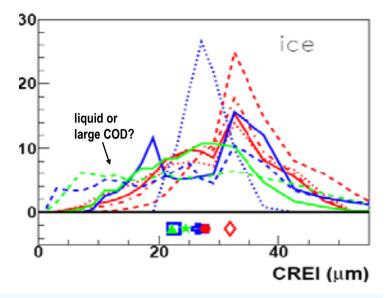
How does this affect climatic averages & distributions?



Even if absolute values depend on Ci sensitivity, geographical cloud distributions agree!

Thermodynamic phase & retrieval of optical / microphysical properties

Retrieval of optical / bulk microphysical properties needs thermodynamic phase distinction:

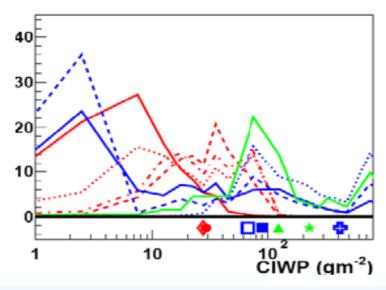


 $R_{VIS} \rightarrow COD$ $R_{VIS} \& R_{SWIR} \rightarrow COD \& CRE \quad (smaller particles reflect more)$ $assumptions in radiative transfer: \quad particle habit, size distribution, phase$ $WP = 2/3 \times COD \times \rho \times CRE \text{ (vertically hom.)}$

IR: small ice crystals in semi-transparent Ci lead to slope of CEM's between 8 & 12 μm

Ice bulk microphysical properties: Re & IWP

Single scattering properties in radiative transfer depend on phase / particle shape



Effective Particle radius: $25 \pm 2 \,\mu m$ differences linked to retrieval filtering of optically thicker clouds

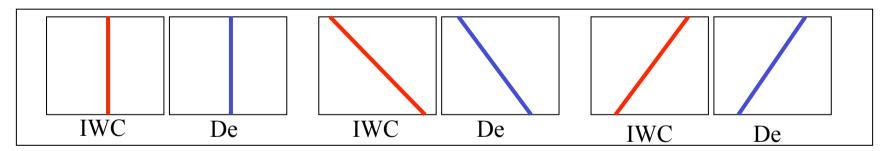
& less to different channels (3.7 / 2.1 / 1.6 μ m) -> only retrieved near cloud top

- ISCCP PATMOSX
- ATSR
- ---- MODIS-ST ---- MODIS-CE
- TOVSB
- AIRS-LMD
- ---- AIRS-LMD ε>0.3
- AIRS-LMD CT>260 K

Retrieval filtering essential to be taken into account when comparing to models!

Cloud Water Path: 25 – 300 gm⁻²

averages & distributions strongly depend on retrieval filtering & partly cloudy fields

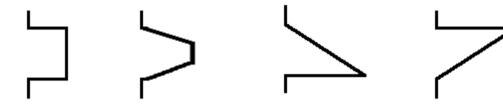

(MODIS-ST, ATSR retrieval filtering COD > 1, AIRS COD < 4)

A-Train Synergy: Classification of IWC profiles

A. Feofilov, LMD

Clouds with same IWP may have different IWC and De profiles -> influence on radiation ?

Is it possible to give a shape probability in dependence of cloud properties or atmospheric properties?



increasing IWC compared to const. IWC leads to stronger cooling of atmosphere

-> analysis using AIRS

Iidar-radar GEOPROF-IiDARraDAR data(Mace et al. 2009)(Delanoë & Hogan 2010)

IWC profile classes & dependency on IWP

Feofilov et al., EGU 2013, paper in preparation

trapecia constant

lower triangle upper triangle

IWP (g/m2) (occurrence)	constant	trapecia	low trian	upp trian
0-10 (51%)	54%	20%	10%	16%
10-30 (29%)	31%	48%	13%	8%
30-100 (17%)	28%	56%	14%	3%
100-300 (3%)	26%	51%	21%	2%
300-1000 (<1%)	38%	35%	26%	1%

using const. instead of increasing IWC profile might underestimate radiative cooling of atmosphere by 1 – 2 Wm⁻²

const & trapecia correspond to 80% of the profiles

lower triangle increases with IWP from 10 to 25%

upper triangle only for IWP < 30 g/m2

strong vertical wind might affect occ of low / upp trianges

nearly independent of location / season !

Conclusions

> Satellite instruments: unique possibility to study cloud properties over long period

➢GEWEX Cloud Assessment:

• first coordinated intercomparison of L3 cloud products of 12 global 'state of the art' datasets

common database facilitates further assessments, climate studies & model evaluation

>ISCCP: only dataset that directly resolves diurnal cycle (3-hourly) & covers whole globe

- ➢ geographical distributions, latitudinal & seasonal variations agree well
- accuracy is scene & instrument dependent (interpretation of cloud height): differences can be mostly understood by different performance to identify Ci (problems in some retrieval methods, misidentification water-ice clouds)
- >histograms are important (esp. for optical and microphysical properties)
- Cloud products adequate for model evaluation & monitoring regional variability
- Iongterm datasets -> robust statistics & explore rare events
- ➢global monitoring of cloud properties very difficult

➢even if instantaneous cloud properties are not very accurate, synergy of different variables provides invaluable potential for improving understanding of clouds