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Abstract

The modelling of baryonic physics in numerical simulations of disc galaxies allows to

study the evolution of the di�erent components, the physical state of the gas and the star

formation.

The present work aims at investigating in particular the role of the cold and dense molec-

ular phase, which could play a role of gas reservoir in the outer galaxy discs, with low star

formation e�ciency.

After a presentation of galaxies with a focus on spiral galaxies, their interstellar medium

and dynamical evolution, we review the current state of hydrodynamical numerical simu-

lations and the implementation of baryonic physics. We then present the simulations we

performed. These include cooling to low temperatures, and a molecular hydrogen compo-

nent. We especially test the impact of the presence of molecular hydrogen in simulations

with several feedback e�ciencies, and �nd that the molecular hydrogen allows in all cases

some slow stellar formation to occur in the outer disc, with an e�ect on the vertical structure

of the disc that is sensitive to the feedback e�ciency. Molecular hydrogen is therefore able

to play the role of gas reservoir in external parts of spiral galaxies, which accrete gas from

cosmic �laments all along their lives.
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Résumé

Notre travail se concentre sur le rôle de la phase moléculaire froide et dense dans l'évolution

des galaxies spirales. Cette phase peut jouer le rôle de réservoir de gaz à faible taux de

formation stellaire dans les parties externes des disques.

Après une présentation générale des propriétés des galaxies, en particulier des galax-

ies spirales, leur milieux interstellaire et leur évolution dynamique, nous passons en revue les

simulations numériques hydrodynamiques contemporaines et l'implémentation de la physique

baryonique. Nous présentons ensuite la série de simulations que nous avons e�ectuées. Ces

simulations incluent du refroidissement jusqu'à basse température, en prenant notamment

en compte de l'hydrogène moléculaire. Nous testons en particulier l'in�uence de l'hydrogène

moléculaire dans des simulations avec di�érentes e�cacités de rétroactions énergétique stel-

laire, et obtenons que le dihydrogène permet dans tous les cas une faible formation d'étoiles

dans les parties externes des disques. Les disques gazeux ont de plus tendance à s'épaissir à

grands rayons du fait de la rétroaction stellaire renforcée par la présence de dihydrogène.

L'hydrogène moléculaire peut donc jouer le rôle de réservoir de matière baryonique dans

les parties externes des galaxies spirales qui accrètent du gaz par les �laments cosmiques tout

au long de leur vie.
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Résumé détaillé

Les simulations numériques permettent de tester des hypothèses sur la physique non

linéaire en jeu dans la formation et l'évolution des galaxies. Grâce au développement des

possibilités de calcul numérique et l'élaboration d'algorithmes e�caces pour traiter la grav-

itation et l'hydrodynamique, il est possible de simuler de mieux en mieux l'évolution des

galaxies. Les limitations en résolution spatiale et massique nécessitent cependant d'utiliser

des méthodes dites "sous-grille" pour traiter les détails de la physique du gaz. Le caractère

phénoménologique de ces méthodes est accentué par les incertitudes concernant notamment

la physique de la formation des étoiles et l'impact de cette formation d'étoiles sur le gaz

environnant.

Dans ce travail, nous nous intéressons particulièrement à l'impact de l'inclusion d'hy-

drogène moléculaire et du refroidissement du gaz subséquent sur l'évolution de galaxies spi-

rales. Nous utilisons un code de type TreeSPH qui traite les composantes stellaires, gazeuses,

et la matière noire comme des particules.

L'hydrogène moléculaire se forme surtout sur la poussière interstellaire dès lors qu'une

faible quantité de grains de poussière est présente, et est dissocié par le rayonnement ultra-

violet, notamment celui issu des jeunes étoiles massives. Il peut être protégé de ce rayon-

nement soit par l'e�et de "bouclier" de la poussière qui absorbe le rayonnement, soit par sa

propre protection , les molécules de dihydrogène de certaines régions pouvant absorber su�-

isamment de rayonnement pour que se maintienne de l'hydrogène moléculaire dans d'autres

régions, comme à l'intérieur d'un nuage dense de gaz. La présence d'hydrogène moléculaire

dépend donc de la quantité de poussière présente et de la possibilité du gaz de se protéger

lui-même du rayonnement ultra-violet. Nous utilisons une recette semi-analytique pour déter-

miner la fraction d'hydrogène moléculaire en fonction des caractéristiques de la densité du

gaz, de la métallicité et du �ux ultra-violet ambiant. Ce �ux est estimé par la sommation des

contributions des étoiles jeunes formées au cours de la simulation.

Le gaz refroidi peut se condenser et former des étoiles, ce qui agit en retour sur le gaz, en

particulier par les explosions de supernovae. Nous prenons en compte le refroidissement lié

à l'hydrogène, l'hélium et certains métaux au-delà de 10 000 K par l'intermédiaire de taux

de refroidissement tabulés en fonction de la température et de la métallicité. En-dessous de

10 000 K, nous prenons en compte le refroidissement lié à certains métaux contenus dans

le milieu interstellaire car ils sont rejetés par les supernovae. Nous considérons aussi le re-
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froidissement lié à l'hydrogène moléculaire, en incluant les contributions des collisions avec les

atomes d'hydrogène, d'hélium, et les autres molécules de dihydrogène. La formation d'étoiles

est modélisée par une méthode stochastique, et la rétroaction énergétique des supernovae de

type II est appliquée sous forme cinétique dans la plupart des simulations.

Nous faisons varier l'important de la rétroaction énergétique des supernovae. Nous étu-

dions tout d'abord des simulations de galaxies spirales sans prendre en compte d'hydrogène

moléculaire. Nous imposons un gradient de métallicité dans le gaz a�n de reproduire les obser-

vations de pro�ls de métallicité. Le gaz est d'autant plus hétérogène, avec des pics de masses

volumique, dans les parties centrales que la rétroaction est faible. En présence de rétroaction,

la formation d'étoiles dans les régions denses limite la masse volumique maximale du gaz et

régule donc aussi la formation d'étoiles. Les parties externes, pauvres en métaux, sont elles

di�uses car peu refroidies, et forment très peu d'étoiles.

Nous observons que la prise en compte de l'hydrogène moléculaire permet d'obtenir, pour

toutes les intensités de rétroaction stellaire, une faible formation d'étoiles dans les parties

externes des disques, régions pauvres en métaux et donc peu susceptibles d'être assez refroidies

pour former des étoiles en l'absence du refroidissement lié à l'hydrogène moléculaire. Ce

résultat est cohérent avec de récentes observations de rayonnement ultra-violet dans les parties

externes de certaines galaxies spirales. Nous relions le taux de formation d'étoiles surfacique

à la masse surfacique de tout le gaz ou de la partie d'hydrogène atomique ou moléculaire,

et obtenons une meilleure corrélation avec le gaz moléculaire seul, comme observé dans des

études de galaxies proches. La corrélation est meilleure en présence de rétroaction stellaire

car le gaz est alors moins hétérogène en masse volumique.

La formation stellaire accentuée par l'hydrogène moléculaire dans les parties externes

in�ue sur la structure verticale du disque. La rétroaction des supernovae provoque l'épais-

sissement du disque à grands rayons, d'autant plus que la rétroaction est importante.

Les résultats obtenus peuvent être sensibles aux méthodes utilisées pour la modélisation

de la physique baryonique. Nous présentons quelques variations dans la modélisation de

la formation d'étoiles et la rétroaction stellaire. L'état physique du gaz est a�ecté par des

changements tels que l'augmentation du seuil de masse volumique à partir duquel le gaz peut

former des étoiles.

Les résultats des simulations suggèrent que la présence d'hydrogène moléculaire peut jouer

un rôle dans le cycle baryonique en accumulant du gaz accrété dans les parties externes des

disques.
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Chapter 1

Galaxies: an overview

Galaxies can be loosely de�ned as gravitationally bound objects containing many stars,

from a lower bound at ∼ 105 stars for the smaller galaxies, below the ∼ 106 stars in the

largest stellar clusters (substructures of galaxies), to an upper bound of ∼ 1012 stars (Binney

& Tremaine 2008). They were proved to be extragalactic objects only in the 1920s, when

Edwin Hubble calculated distances of a few close galaxies using the properties of Cepheid

stars (Hubble 1926). Observations of increasing resolution and in a vast range of wavelengths

have then allowed to derive properties of our own galaxy, the Milky Way, and to explore the

diversity of sizes, shapes and physical properties of galaxies in the local universe and also at

larger distances, meaning, due to the �nite speed of light, at earlier times of the Universe.

1 Diversity and scaling laws followed by galaxies

1.1 Galaxy classi�cations

Hubble proposed a classi�cation of galaxies, originally expressing what he thought was a

time evolution, from the left of Figure 1.1 to one of the ends of the branches on the right.

This classi�cation distinguishes galaxies according to their morphology.

The galaxies at the left of the sequence are elliptical galaxies, exhibiting smooth ellipsoidal

isophotes (contours of same surface brightness). They are sorted as En's, with n growing as

the isophotes are more elongated. n is the closest integer to 10(1− b

a
), with a the semimajor

axis and b the semiminor axis of the isophotes. A spherical galaxy is thus an E0, and the

classi�cation goes up to the most elongated ellipticals observed, E7's.

On the right side of the sequence reside spiral galaxies, barred (e.g. SBa) or not (e.g.

Sa). Spiral galaxies have most of their stars in a thin disk, with a characteristic height much

smaller then their characteristic radial length, supported against gravitational collapse by

the rotation of the stars around the center. They often present a stellar central spheroidal

�bulge� component. In the Hubble sequence, spiral galaxies are separated into a, b and c

types according to the relative size of the bulge compared to the disc, and how tightly wound

1
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Figure 1.1: Hubble Sequence. From an image created by NASA and ESA.

the spiral arms are. Sa galaxies have a large bulge to disc ratio and tightly wound spiral

arms, while types b and c have progressively smaller bulge to disk ratios and more loosely

wound arms. About half of observed disc galaxies have a central bar component.

Lenticular galaxies, S0s, are intermediate galaxies insofar as they have a stellar disc with

possible spiral arms and bars, but contain very little gas and have a more dominant bulge

than disc galaxies. They are mainly found in clusters of galaxies.

Dwarf galaxies or galaxies of ellipsoidal or irregular shapes that have a faint luminosity,

are not included in this classi�cation in its original version. A population of dwarf galax-

ies resemble ellipticals except that they have lower masses. Amongst the elliptical shaped

dwarves, the lighter ones with an almost spherical shape have been called dwarf spheroidals.

Finally, some galaxies are called �peculiar� galaxies because of their unique shape that

makes it impossible to attribute them a Hubble type. The Antennae (NGC 4038 and 4039)

are such galaxies. Peculiar galaxies are thought to often be the result of mergers between

galaxies. The tidal forces explain long tails that can be observed in some of these galaxies.

Other morphological classi�cations have been proposed. de Vaucouleurs (1974) inserted

sub-categories in the spiral branches of the Hubble sequence, such as Sbc, and extended the

classi�cation to Sd types and irregular galaxies, lacking any clear symmetry, but that can

be added on the right of the sequence as an extension to normal spirals or barred spirals if

they contain a bar-like component. The de Vaucouleurs classi�cation attributes a number

accounting for the bulge to disk ratio, from −6 for ellipticals, to 10 for irregular galaxies.

It is also possible to classify galaxies in terms of other properties. Photometric properties,

such as luminosity, surface brightness or colour can be used. The gas fraction or the star
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formation rate can also serve as a basis for classi�cations. While it is no longer thought

that galaxies evolve from the beginning of the Hubble sequence to one of its end during

their life time, the sequence (or the de Vaucouleurs classi�cation) is still useful to separate

morphological classes, and because physical properties such as the colour or neutral hydrogen

fraction vary systematically along it as shown on Figure 1.2.

Figure 1.2: Colour and neutral hydrogen mass fraction for galaxies of di�erent types, from

Roberts & Haynes (1994).

1.2 Some properties of elliptical galaxies

1.2.1 Baryonic content

Elliptical galaxies have stellar masses from ∼ 106 M� for dwarf ellipticals, to ∼ 1012 M�

for the most massive ellipticals in the centre of galaxy clusters. Their photometric colour is

red, indicating old stellar populations. They contain little cold gas, although some small gas

discs are present in some elliptical galaxies. Di�use hot (107 K) gas is observed in X-ray: it

forms coronae around ellipticals (e.g. Fabbiano 1989).

1.2.2 Stellar density pro�les

One of the best �ts to the one dimensional surface-brightness pro�les I(R), the surface

brightness as a function of the semimajor axis R of the isophotes of ellipticals, is the Sérsic

pro�le (Sersic 1968):

I(R) = I(0) exp

[
−βn

(
R

Re

)1/n
]

(1.1)

where I(0) is the central surface brightness, Re is the e�ective radius, i.e. the radius enclosing

half of the total luminosity, βn is a coe�cient that must be determined numerically from Re
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and n is the Sérsic index. The steepness of surface brightness pro�les inside Re increases

with n. n = 4 and βn = 7.67 give the original density pro�le of giant ellipticals observed by

de Vaucouleurs (1948) (the �R

1

4 law�). The Sérsic index of the more general Sérsic pro�le is

found to decrease from n ' 10 for the most luminous ellipticals to n ' 0.5 for faint dwarf

ellipticals.

1.2.3 Shapes and kinematic properties

Stars in elliptical galaxies are mainly supported against collapse by their random motion,

with variations following their shape that may deviate slightly from ellipsoids: �boxy� ones,

i.e. galaxies whose isophotes resemble a parallelepidal box, are almost uniquely supported

by random motions while �discy� galaxies, i.e. galaxies that are a little �at, are also partly

supported by rotation, which �attens them (e.g. Kormendy & Bender 1996). Ellipticals have

also been divided into �slow rotators� and �fast rotators� by Emsellem et al. (2007) who

studied the variations in the stellar speci�c angular momentum in central regions of a sample

of local elliptical galaxies.

1.2.4 The fundamental plane

The kinematic of ellipticals is correlated with their photometric properties. The higher the

central velocity dispersion is, the brighter and larger an elliptical is. Faber & Jackson (1976)

derived the Faber-Jackson law relating the central velocity dispersion σ0 to the luminosity L:

L ∝ σβ0 , with β ∼ 4 (1.2)

while another relation, the Dn-σ relation relates central velocity dispersion to size. In fact,

the logarithms of the e�ective radius, of the mean surface brightness inside the e�ective radius

and of the central velocity dispersion can be used as coordinates variables of a fundamental

plane on which ellipticals fall with a smaller scatter.

1.3 Some properties of spiral galaxies

1.3.1 Baryonic content

Spiral galaxies have lower stellar masses than ellipticals, going up to a few ∼ 1011 M�.

They have a cold gas fraction (the ratio of the mass of cold gas to the mass of cold gas

and stars) that goes from a few percent for Sa galaxies to ∼ 80% for low mass/low surface

brightness galaxies (McGaugh & de Blok 1997). The interstellar medium and the bar and

spiral structures will be discussed in Chapter 2.
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1.3.2 Stellar density pro�les

The surface stellar density pro�les of spiral galaxies can usually be �tted by a decompo-

sition into a central spheroidal component with a Sérsic pro�le and an exponential disc:

I(R) = I(0) exp

(
−
(
R

Rd

))
(1.3)

where I(0) is the central surface brightness, and Rd is the characteristic radius that can go

from 1 kpc to 50 kpc for giant low surface brightness galaxies (e.g. de Jong 1996).

Vertical pro�les can be �tted by laws that decrease exponentially with the distance from

the disc plane far away from the plane, and with central variations. In most discs seen edge-

on, two components with about the same radial scale lengths but di�erent scale heights can

be distinguished: a thin disc of young stars with a scale height of a few hundreds of parsecs

and a thick disc of older stars with a scale height ' 1 kpc.

1.3.3 Rotation curves

Rotation curves represent the circular velocity, the speed of a body in a circular orbit,

as a function of galactocentric radius. Circular velocities are usually obtained from spec-

troscopy of HII regions emission lines (coming from ionised regions around young hot stars)

or spectroscopy of the 21 cm emission line of HI, assuming that young stars and cold gas

have almost circular orbits. The cold neutral HI gas extends much beyond the star forming

disc, allowing the measurement of the circular velocities far away from the centre of galaxies,

two or more times the radius of the stellar disc.

The rotation curves usually have the following features:

� Near the centre, circular velocity rises linearly with radius, as for a solid rotation (for

which the angular speed Ω(R) is constant and the circular velocity RΩ(R) thus increases

linearly with radius).

� The circular velocity reaches a plateau instead of decreasing at large radii. The maximal

rotation speeds ranges from & 50 km/s to ' 300 km/s.

The latter point, revealed in the 1970s by observations of ionised gas (Rubin et al. 1978,

1980) and the 21 cm hydrogen line (Bosma 1978), poses a problem if only observed mass is

taken into account and if the gravitational law is trusted at the galactic scale. Indeed, if most

of the mass is in stars, outside of the stellar disc, the curve should fall as

√
GM

R
, where M is

the stellar mass. Figure 1.3 shows the surface density pro�les of stars and gas in two example

galaxies with high or low surface brightnesses, and the two rotation curves deduced from 21

cm observations, with the contribution due to the baryonic components (the stellar bulge and

disc having been decomposed) obtained from a numerical resolution of the Poisson equation

from the surface densities. The total circular velocity inferred from the observed baryonic

mass is signi�cantly below the observed circular speed curve, at large radii or almost all radii

for respectively the high and low surface brightness galaxies. The observed discrepancy is
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usually attributed to the presence of an invisible component that does not radiate but is

subject to gravitation and called dark matter. Observations of many �at rotation curves

have brought an increasing body of proof for dark matter in spiral galaxies.

Figure 1.3: Top row: surface density pro�le of stars (blue circles) and neutral hydrogen (green

circles). Bottom row: Rotation curves with the contributions inferred from the observed

components: gas (dotted line), stellar bulge (dash-dotted line), stellar disc (dashed line), and

the total contribution from observed baryonic matter (black solid line). Figure from Famaey

& McGaugh (2012).

However, some alternatives to dark matter have been suggested. One of them is Mod-

i�ed Newtonian Dynamics (MOND), introduced by Milgrom in 1983 (Milgrom 1983c,a,b).

According to his modi�ed Newton's law (or modi�ed gravitational �eld, depending on the

version), the acceleration/gravitational �eld felt by a body di�ers from the Newtonian one

in the �low acceleration regime�, ie around and below an acceleration scale a0 ' 10−10 m/s2,

that is of the order of the centripetal accelerations felt by stars in galaxies. The gravitational

�eld for low accelerations becomes
√
gNa0, where gN is the Newtonian gravitational �eld and

thus does not fall as
1

r2
, but as

1

r
, making the circular speed constant with radius for large

radii. MOND can �t rotation curves in details and is successful as a rule at the galactic scale,

but it encounters some problems at clusters scale and building a satisfying corresponding
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covariant theory analogous to General Relativity is still a problem.

1.3.4 The Tully-Fisher law

The luminosity of disc galaxies is observed to be correlated with their maximal circular

speed Vmax. Tully & Fisher (1977) found the following relation between optical luminosity

and the maximal rotation speed inferred from the width of the neutral hydrogen 21 cm

emission line:

L ∝ V N
max (1.4)

The exponent N and the scatter depend on the colour band in which the observation is

made. The exponent increases for longer wavelengths, from ' 3 in the B band to ' 4 in the

redder K band and the scatter diminishes with wavelength. This relation is analogous to the

Faber-Jackson relation for elliptical galaxies.

The Tully-Fisher relation may rather be a relation between baryonic mass and circular

speed. As stellar populations radiate di�erently depending on the colour band, the mass to

light ratio depends on the band and when adding the observed mass of gas to the stellar

mass inferred from luminosity in near infrared bands (tracking the bulk of the stellar mass),

it is actually possible to obtain a baryonic mass Mb vs circular speed tighter relation, the

Baryonic Tully-Fisher Relation (McGaugh et al. 2000):

Mb ∝ V 4
max (1.5)

This law applies over a range of �ve decades in baryonic mass with a limited scatter as

shown on Figure 1.4.

2 Galaxies in a cosmological context

2.1 ΛCDM model and the baryonic budget

2.1.1 Cosmology and the ΛCDM model

Most cosmological models rely on General Relativity (Einstein 1916), and the cosmological

principle that states that, on large scales, the universe is homogeneous and isotropic. The

Einstein equations link the geometry of spacetime to the matter-energy content, the geometry

being encapsulated in a generic metric. When using the Friedmann-Lemaître-Robertson-

Walker, a metric that is a solution of the Einstein equations that satis�es isotropy and

homogeneity and involves a scale factor a(t), and when describing the matter-content as an

isotropic and homogeneous �uid of density ρ and pressure P , one gets equations that can be
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Figure 1.4: Baryonic Tully-Fisher Law (Vf is the outer disc velocity.). Data points are

galaxies whose baryonic mass is dominated by gas (light blue points) or stars (dark blue

points). Figure from Famaey & McGaugh (2012) using values from McGaugh (2005, 2011).

arranged the following way: (
ȧ

a

)2

=
8πG

3
ρ− kc2

a2
+

Λc2

3
(1.6)

ä

a
= −4πG

3

(
ρ+

3P

c2

)
+

Λc2

3
(1.7)

where k is the curvature signature and Λ is named the cosmological constant. H(t) =
ȧ

a
,

the rate at which the Universe expands, is named the Hubble constant as Hubble (1929)

made the �rst observations of the expansion of the Universe studying the recession of distant

galaxies and derived a �rst estimate of the current value H0 of the constant.

A separation of the density ρ into the matter density ρm ∝ a−3 and the radiation density

ρr ∝ a−4 gives for the �rst equation:

H2(t) = H2
0

[
Ωr,0

(
a

a0

)4

+ Ωm,0

(
a

a0

)3

+ Ωk,0

(
a

a0

)2

+ ΩΛ,0

]
(1.8)

where Ωr,0 =
ρr,0
ρc,0

, Ωm,0 =
ρm,0
ρc, 0

, ρc,0 =
3H2

0

8πG
, Ωk,0 = −kc

2

H2
0

, and ΩΛ,0 =
Λc2

3H2
0

. Ωr,0 is

negligible compared to Ωm,0 and ΩΛ,0.

The currently preferred model, that �ts very well with a number of observations and

whose parameters are especially well constrained by the analysis of the Cosmic Microwave

Background (CMB) by the WMAP mission (e.g. Komatsu et al. 2011) and the recent Planck
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mission (Planck Collaboration et al. 2013), is the ΛCDM model, in which the universe has a

�at geometry (k = 0), and is currently composed of:

� about two thirds of �dark energy�: ΩΛ,0 = 0.683

� about one quarter of �Cold Dark Matter� (CDM): ΩCDM,0 = 0.268

� only a few percent of ordinary matter named in this framework �baryonic matter�

(though including electrons): Ωb,0 = 0.049

The values come from the 2013 results of the Planck mission. The matter contribution

Ωm,0 to the content of the Universe is thus divided into Ωm,0 = ΩCDM,0 + Ωb,0.

Dark energy, encapsulated in this model in the cosmological constant Λ in the equations

of evolution of the geometry of the Universe, has been inferred from observations of distant

supernovae of type Ia, that showed the expansion of the Universe is accelerating (Riess

et al. 1998; Perlmutter et al. 1998). It acts as a �uid of negative pressure, thus allowing for

expansion, and the value of the cosmological constant is su�cient for the expansion to be

accelerating. Its nature remains a mystery.

Cold dark matter is postulated as a non-baryonic collisionless medium with no electromag-

netic interaction but a gravitational role. It is needed at galactic and galaxy clusters scales

to explain the often observed �atness of rotation curves incompatible to a Newtonian gravi-

tation for the observed mass (as seen in 1.3.3), and to explain the mass of galaxies or clusters

inferred from lensing and that are also incompatible with the observed matter and General

Relativity. It is also assumed to allow the formation of structures to be quick enough so that

the density �uctuations inferred from the temperature �uctuations of the CMB can give rise

to current galaxies in a time of 13.7 Gyr, the estimated age of the Universe in this cosmo-

logical model. CDM is thought to collapse �rst, while in the hot baryon-photon plasma, the

baryons are prevented from collapsing by the pressure of photons. As the Universe expands

and the temperature of the plasma goes down, protons recombine with electrons, photons

are now no longer scattered by free electrons and can propagate freely (giving rise to the

CMB), and the baryonic matter can now collapse in the already formed dark matter wells.

A number of detection experiments, assuming some energy range for dark matter particles,

have been performed but they have still not given any clear detection.

While this model involves two components whose nature is not determined, it is an e�ec-

tive framework to reproduce observations.

2.1.2 Missing baryons

The fraction of 4.6% for the baryons is deduced from the CMB power spectrum analysis,

is also predicted by primordial nucleosynthesis, and is consistent with Lymanα observations

at a redshift z ' 3. However, at low redshift, according to the study of the baryonic budget

performed in Fukugita et al. (1998) and updated in Fukugita & Peebles (2004), only ∼
10% of these baryons are truly observed in gas and stars, in galaxies or galaxy clusters.

The rest is more speculative. A fraction of 25% to 40% is thought to be in a Warm Hot
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Intergalactic Medium, a very di�use medium in the form of coronae around galaxies or

�laments. The WHIM has not been convincingly observed yet. Lehner et al. (2007) estimates

from observations of the Lyα forest at low redshift that it could constitute & 20% of the

baryonic fraction, and some other estimates of 30 − 40% come from results of numerical

simulations (e.g. Davé et al. 2001).

Depending on the chosen estimation, ∼ 50% of baryons are not accounted for. This leaves

room for potential baryonic dark matter, possibly in the outer parts of galactic discs (e.g.

Pfenniger et al. 1994; Pfenniger & Combes 1994). Cold dense gas could potentially be too

di�cult to observe, if it radiates very little or in di�cultly observable wavelengths, or if it

has a too little volume �lling factor.
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Neutral
gas

Hot cluster
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Figure 1.5: Schematic matter-energy content of the Universe respecting the Planck pro-

portions (top) and speculative baryonic content derived from observations and simulations

(bottom).

2.2 Organisation of galaxies at various scales

2.2.1 Clusters and groups

Some galaxies are observed to be gathered in gravitationally bound ensembles of several

or many galaxies, respectively groups or clusters, with an arbitrary dividing line, the rest

being ��eld� galaxies, relatively isolated.

The group of galaxies to which the Milky Way belongs is called the Local Group. Its

size is of order of 1Mpc. The Milky Way and Andromeda (M31) are its two more massive

members, and most of the other members are satellites of these two galaxies. The two largest

satellites of the Milky Way are irregular galaxies disrupted by their interaction with the Milky

Way: the Small and Large Magellanic Clouds (SMC and LMC). These two satellites contain

gas while all the other satellites of the Milky Way are so far observed to be gas-free dwarf

spheroidals. Andromeda has a star-forming spiral satellite, M33, and dwarf ellipticals and
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spheroidals as other satellites.

Clusters can contain as many as thousands of galaxies, extending over several Mpc. The

closest cluster from the Milky Way is the Virgo cluster. Usually, one very massive elliptical

galaxy is found at the centre of clusters. Other galaxies evolve around it, with a high velocity

dispersion of around 1000 km/s. Some hot (∼ 107 K) intra-cluster gas is observed in X-ray.

2.2.2 Large-scale structures

At larger scales, galaxies are found to lie on a cosmic web, as shown on Figure 1.6.

This is consistent with an evolution of the Universe driven by the counteracting e�ects of

gravity and expansion: in such a situation with initial density �uctuations, overdense regions

collapse while underdense regions become expanding voids. These voids will be separated by

the collapsed matter that will take the aspect of sheets, lines or nodes between the voids.

Figure 1.6: Spatial distribution of galaxies (each represented by a black dot) in the 2dFGRS

survey. Figure from Peacock et al. (2001).

3 Some statistical properties

3.1 Bimodality

We saw in 1.1 (see Figure 1.2) that elliptical galaxies are redder and contain less gas than

spirals. Galaxy surveys have shown a bimodality in the distribution of colours and magnitudes

of galaxies in the local Universe. Figure 1.7 shows that two main populations of galaxies can

be distinguished: a red and a blue sequence. The red sequence consists mainly of ellipticals

being gas poor and thus having mostly old stars emitting in red wavelengths, and the blue

sequence of spiral galaxies having a higher gas fraction and thus ongoing star formation that

makes them appear bluer. The higher masses reached by ellipticals is consistent with the

preferred scenario of structure formation according to which galaxies experience a varying
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number of mergers during their lifetimes, which tend to increase their velocity dispersion,

hence their spheroidal component, and heat their gas. The most massive ellipticals would

thus be the product of numerous mergers.

Figure 1.7: Colour-magnitude diagram of galaxies in the SDSS survey. Figure from Baldry

et al. (2004).

3.2 Dependence on environment

The statistical morphologies of galaxies are a function of their environment: ellipticals

and lenticulars are found in a higher fraction in clusters of galaxies. Their number fraction is

up to ∼ 80% in clusters, compared to ∼ 30% in the �eld. Galaxies in clusters are also found

to be on average more massive, less gas-rich and redder (e.g. Kau�mann et al. 2004; Baldry

et al. 2006). The higher fraction of ellipticals in clusters can be explained by the higher

merger rate in groups that hierarchically form galaxy clusters. Ram-pressure stripping of the

cold gas of spiral galaxies entering a cluster by intra cluster gas can explain their low gas

fraction and red colour due to the lack of recent star formation.
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Spiral galaxies

Disc galaxies are thought to acquire their thin disc shape due to the dissipative property

of gas. The dissipation causes loss of velocity dispersion and the gas settles in a �at disc

perpendicular to the total angular momentum, the state of lowest energy for such a system in

which angular momentum transfer is not very e�cient. The Inter-Stellar Medium (ISM) of

disc galaxies is observed to be a multiphase medium, as we will describe in this chapter. Star

formation can be empirically related to the gas content. We will then present some aspects of

the instabilities that give rise to the morphological features of disc galaxies: bars and spiral

arms.

1 The ISM of spiral galaxies: content, physics and star forma-

tion

The ISM of galaxies is composed of gas, radiation and dust grains. We will �rst present

these components with a focus on the molecular gas phase, and then detail some aspects of

star formation.

1.1 Composition and phases

1.1.1 Dust

Dust grains are solid particles composed of heavy elements with varying sizes, mainly

belonging to the range 0.01=0.2 µm, mixed with the interstellar gas. It was historically

discovered by its obscuration e�ects on starlight. Despite its low mass contribution �the

mass of dust is typically only 1% of the total mass of the ISM in a disc galaxy� it also has

an impact on the thermal evolution of the ISM by cooling through infrared emission and

heating through photoelectric e�ect on the grains, and on molecule formation by adsorption

of atoms on the grains.

13
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1.1.2 Radiation

Radiation in the ISM of disc galaxies comprises cosmic rays and electromagnetic radiation.

Cosmic rays are ions and electrons with a large kinetic energy that makes them very

relativistic. Their origin (or more exactly the way they acquire this large energy) is a matter

of debate. The main mechanism must however be through shocks, in particular in supernovae

remnants (Bell 1978; Blandford & Ostriker 1978).

Electromagnetic radiation in the ISM encompasses photons with a variety of origins and

frequencies: stars emit radiation from the infrared to the UV; ions, atoms or molecules in

the ISM emit line-radiations with frequencies depending on their energy spectra; dust grains

heated by starlight re-emit the radiation thermally in the infrared; hot ionised gas gives

place to bremsstrahlung radiation, often from electrons interacting with ions and losing part

of their energy given to a photon in the X-rays frequencies; relativistic electrons can emit

radio radiation by the synchrotron e�ect due to magnetic �elds; and some gamma rays can

be produced in nuclear transitions or π0 decays. A given galaxy may receive electromag-

netic radiation due to other galaxies. A background common to all galaxies is the Cosmic

Microwave Background �eld, emitted during the last moments of scattering of electrons by

protons before recombination of hydrogen atoms in the early universe. This background has

a temperature close to 3K in the local Universe, and is thus at radio frequency.

1.1.3 Gas

The gas is observed to be in several phases with characteristic temperatures, densities

and ionisation or molecule content (e.g. McKee & Ostriker 1977; Cox 2005; Krumholz et al.

2009a). The coldest gas is mainly in the molecular form and becomes mainly atomic and

then mainly ionised if it is heated up. The di�erent phases (numerical values from Draine

(2011)) are:

� The Hot Ionised Medium (or coronal gas) that has a temperature & 105.5 K and a

number density ∼ 10−3 cm−3. It has been heated by supernovae explosions or stellar

winds. It can be observed in UV and X ray emission, or radio synchrotron emission.

� The Warm Ionised Medium (WIM) and the HII regions that have a temperature

∼ 104 K and number densities in the range 0.3�104 cm−3. HII regions have been

photoionised by UV radiation from young massive stars. They can be in the form of

dense ionised clouds near young stars, or more di�use gas between clouds. The WIM

encompasses low-density photoionised regions.

� The Warm Neutral Medium that has a temperature ∼ 5000K and a number density

∼ 0.6 cm−3.

� The Cold Neutral Medium that has a temperature ∼ 100K and a number density

∼ 30 cm−3. The Warm and Cold Neutral Media consist mainly of atomic hydrogen and

are observed for example through the HI 21 cm line.
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� The Molecular Medium that can be separated in two sub-categories: the di�use

molecular gas with a temperature ∼ 50K and a number density ∼ 100 cm−3, and

the dense molecular gas with a temperature ∼ 10K − 50K and a number density

∼ 1× 103 cm−3 − 1× 106 cm−3.

The Molecular Medium Dense molecular gas, i.e. gas in molecular clouds, is itself very

heterogeneous. Molecular clouds are indeed organised in Giant Molecular Clouds (GMCs)

often themselves grouped in complexes, and, inside the GMCs, star-forming clumps can be

found, having density peaks named molecular cores. Clouds having about the same density

as GMCs but a lower mass can be called Dark Clouds, and can come in complexes as well.

The various sizes, densities and masses of these systems are indicated in Table 2.1, taking

values from Draine (2011), and an example of GMC complex is shown on Figure 2.1.

Denomination Size [pc] nH [cm−3] Mass [M�]

GMC Complex 25�200 50�300 105�106.8

Dark Cloud Complex 4�25 102�103 103�104.5

GMC 2�20 103�104 103�105.3

Dark Cloud 0.3�6 102�104 5�500

Star-forming Clump 0.2�2 104�105 10�103

Core 0.02�0.4 104�106 0.3�102

Table 2.1: Categories of molecular clouds and complexes. From Draine (2011).

1.2 Molecular hydrogen

1.2.1 Properties of the molecule

The H2 molecule consists of two H nuclei bound together by a covalent bond. It has excited

states that can be due to its electronic state or to vibration or rotation of the molecule.

The �rst accessible excited electronic state is well above the ground state: at 11.2 eV

from it, so it is very little populated in the molecular phase of the ISM of spiral galaxies.

The energy of the molecule can change according to the distance between the atoms and

the angular momentum of the molecule. The two H nuclei can indeed vibrate with respect

to each other, or rotate around a symmetry axis orthogonal to the internuclear axis. The

molecule thus has energy levels that can be labelled by a quantum rotational number J and a

vibrational number v and can experience ro-vibrational transitions, i.e. transitions between

states of di�erent J and/or v. In the approximation of a harmonic-oscillator energy spectrum

and a rigid-rotor rotation spectrum, the total rovibrational energy in the electronic state q

can be written as:

Eq(v, J) = Vq(r0) + hν0(v +
1

2
) +BvJ(J + 1) (2.1)
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Figure 2.1: GMC complex in the Perseus arm. Map obtained from CO emission. For the

estimated distance of 3.5 kpc, the height and width of the plot are respectively ∼ 80 pc and

∼ 90 pc. Figure from Ungerechts et al. (2000).

where r0 is the distance minimizing Vq, the e�ective potential governing the internuclear sepa-

ration in the electronic state q (r0 = 0.741 in the ground electronic state), ν0 is the vibrational

frequency of the harmonic oscillator, and Bv is the �rotation constant� that depends on the

vibrational state. In the ground electronic state, hν0 = 0.52 eV and Bv = 7.4 meV (numerical

values from Huber & Herzberg (1979)). As the molecule is symmetric, it has a null perma-

nent electric dipole moment. The allowed radiative transitions are thus only quadrupole

ones, that correspond to transitions between states with ∆J = 0, +2 or −2. Those transi-

tions have probabilities that are much lower than the dipolar ones in non-symmetric diatomic

molecules. Because of the relative values of ν0 and B0, the energy levels of the ground elec-

tronic state consists of vibrational levels with sub rotational levels for each vibrational level,

as represented in Figure 2.2.
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Figure 2.2: Ground electronic level, two �rst accessible electronic levels and their rovibrational

sub-levels. The states corresponding to dissociated H atoms with electrons in either the

ground electronic state 1s or one of the �rst electronic states 2s and 2p (both of same energy)

are indicated.

1.2.2 Formation

The reaction H + H → H2 is exothermic: for two H atoms each in the ground electronic

state, the reaction liberates 4.5 eV (as can be seen on Figure 2.2), that must be carried o�

for the molecule to be left in a bound state.

Gas-Phase formation Two H atoms approaching each other have a very small probability

of forming an H2 molecule because the symmetry forbids dipolar radiation from removing

energy from the system, leaving only quadrupole transitions whose rate is very low to get rid
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of the excess of energy. Another H atom can take o� this energy in the case of a three-body

reaction involving three H atoms, but the rate for three-body reactions is very low at the

densities of the ISM.

H2 can also form through a reaction with H− (formed by H+e− → H−+ hν), with

the detached electron in H−+H → H2+ e− carrying o� the energy. H− is however little

abundant in the ISM because it is quickly destroyed by reactions with positive ions or by

photodetachment ( H−+ hν → H + e− ). The formation through H− is the main one in the

early Universe (e.g. Galli & Palla 1998).

Dust-catalysed formation As soon as dust is present, H2 forms dominantly by adsorption

on dust grains as described in Gould & Salpeter (1963); Hollenbach & Salpeter (1971, e.g.).

An H atom can indeed become bound to the surface of a grain, di�use on it until it becomes

more strongly bound and trapped at a given position. If a new H atom that arrives on

the grain meets the �rst atom before being trapped itself, the two atoms can form an H2

molecule, liberating energy that will unbind the molecule from the dust grain and be partly

given to the dust grain. As dust is made of metals, the rate of H2 formation thus depends

on metallicity.

1.2.3 Photodissociation

H2 can be dissociated by Lyman-Werner photons, i.e. photons with energy in the range

of 11.2 to 13.6 eV (higher energy photons being more likely to ionise H atoms as the corre-

sponding cross section is larger), that can make the molecule reach an electronically excited

state. De-excitation then results in a dissociation with a probability of ∼ 15%, when the

molecule decays into the vibrational continuum of the ground electronic state (i.e. in an

unbound state above 4.5 eV from the ground energy state) and gets quickly dissociated.

1.2.4 Shielding

H2 molecules can be protected from such radiation if they are shielded by dust grains, H

atoms or by other H2 molecules. A region is shielded if it is surrounded by enough medium

absorbing the radiation at the wavelengths that dissociate H2. Regions of predominantly

molecular gas are thus dense, allowing for su�cient shielding, and surrounded by Photo-

Dissociation Regions (PDRs) in which the gas is mostly atomic (Hollenbach & Tielens 1999,

e.g.). Self-shielding of H2 is an e�cient process (Draine & Bertoldi 1996; Wolcott-Green et al.

2011, e.g.), occurring at low column densities compared to other molecules like CO.

1.2.5 Observations of H2 in the ISM

Absorption in the Lyman-Werner UV bands in the spectra of stars has been observed from

space (the Earth atmosphere being almost opaque to UV radiation) (e.g. Spitzer et al. 1974;
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Rachford et al. 2002). The vibrational lines can be observed in dense molecular gas excited

by shocks, or in PDRs (e.g. Shull & Beckwith 1982). They are also observed in nuclei of

active galaxies or starburst galaxies (having a particularly high star formation rate) because

of UV pumping, i.e. the excitation to an excited electronic state followed by de-excitation

in a vibrational excited state of the ground electronic level and subsequent cascade-like de-

excitation into the lower vibrational level. Rotational lines have been observed in a number

of environments, �rst in a PDR, the Orion Bar by Parmar et al. (1991).

The H2 abundance is however very often deduced from observations of the CO molecule

(e.g. Dickman et al. 1986; Solomon et al. 1997), that is assumed to trace H2 reliably, except

in low metallicity regions (where there is little CO and its relative abundance to H2 is not

well constrained). The CO molecule is not symmetric and has a J = 1�0 transition with a

corresponding temperature of only 5 K, which makes it easily observable in emission. The

mass of molecular clouds can be deduced from the determination of their velocity dispersion

by the study of the J = 1�0 emission of CO and the use of the Virial theorem.

1.3 Cooling and heating in the ISM

The ISM gas can be heated and cooled by adiabatic contraction or expansion, shocks from

supernovae explosions, and by a number of other processes depending on its temperature,

ionisation state, radiation due to external sources or internal sources such as young massive

stars, and chemical composition. The metal fraction in the gas phase is correlated with

star formation, through the enrichment by stellar winds or supernovae explosions, and with

possible in�ows of extragalactic metal-poor gas.

1.3.1 Heating

Heating processes (see e.g. Dalgarno & McCray 1972) include photoionisation, in which

the excess energy of a Far-UV (FUV) photon (for example a 20 eV photon ionizing a H atom

with a 13.6 eV ionisation energy) is transferred into kinetic energy of the escaping electron

that distributes it to the surrounding gas by collisions. A similar photoelectric heating occurs

on dust grains or large molecules (Polycyclic Aromatic Hydrocarbons PAHs): electrons can

be pulled out from dust grains or PAHs hit by energetic photons. Cosmic rays and X-rays

can also heat the gas by ionising molecules or atoms.

1.3.2 Cooling

Radiative cooling, i.e. radiation loss due to the escape of photons from the ISM gas

includes line cooling by atoms, ions or molecules. Line-cooling is due to the emission of a

photon that allows to go from an energy state down to a lower energy state. The energy

spectrum depends on the electronic con�guration for atoms or mono-atomic ions but can also

be a function of a whole molecule con�guration, as in the case of the rotation or vibration
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energy levels of diatomic molecules. The excitation to a high energy level can be due to

collisions.

Collisional excitation is a cooling process because excited atoms or ions make transitions

back to lower energy states by emitting photons. At low temperatures, from ∼ 10 K to

∼ 104 K, line cooling is dominated by molecules and a few metals (in atomic or ionised

form). Around 104 K, the dominant cooling process is hydrogen Lyα emission due to col-

lisional excitation. Between 105 and 107 K, cooling is dominated by collisional excitation

of a few metal atoms or ions, mainly by the electrons provided by the ionisation of hydro-

gen. Recombination is also a cooling process because it removes the kinetic energy of the

recombining electron from the gas, and so is collisional ionisation, because part of the kinetic

energy is used for the ionisation.

At larger temperatures, above 107 K, the cooling is dominated by bremsttrahlung: free

electrons are braked by ions and the lost energy escapes in the form of a photon.

The volume cooling rate or cooling function of plasmas (having a temperature above

104 K) has been computed for di�erent metallicities by Sutherland & Dopita (1993); Schure

et al. (2009, e.g.). Figure 2.3 shows the detailed contribution of cooling processes for hydrogen

and helium cooling, as well as the cooling rate obtained for di�erent metallicities.
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Figure 2.3: Left: contribution of di�erent cooling processes to the total cooling due to hy-

drogen and helium from Katz et al. (1996). Right: cooling curves for di�erent metallicities,

with the various dominant cooling species indicated (Gnat & Sternberg 2007).

1.4 Star formation in spiral galaxies

1.4.1 Estimations of star formation rates

In galaxies where stars cannot be individually resolved, the Star Formation Rate (SFR)

can be estimated from di�erent types of observations relying on massive short-lived young
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stars (Kennicutt 1998):

� The UV luminosity is dominated by these young massive short-lived stars, so it gives

a good estimate of recent star formation, with a minimal dependence on the previous

star formation history.

� Massive young stars have hot ionised atmospheres that radiate in Hα. The Hα emission

is thus a good tracer of stars younger than around 10 Myr. For high redshift galaxies,

the Hα redshifted line falls outside the optical wavelengths when observed, so other

lines such as the oxygen OII lines are often used to trace star formation.

� Dust absorbs the UV light emitted by young stars and reemits it in the far infrared. Far

infrared observations can therefore give an indication of star formation rates. They can

be combined with the other observations to account for all the star formation occurring

in a galaxy.

Deducing the SFR from the light due to young massive stars, or ionisation processes

occurring in their atmospheres requires the assumption of an Initial Mass Function (IMF).

The IMF φ is such that φ(m)dm represents the number fraction of stars formed with a mass

between m and m+ dm. Salpeter (1955) deduced an initial mass function from observations

in the solar neighbourhood. He found φ(m) ∝ m−2.35 for stars in the mass range 0.4 M� ≤
m ≤ 10 M�. Some other IMFs have been derived, for example the Scalo (1986) IMF, or the

Kroupa (2002) IMF, that have slopes relatively close to the Salpeter slope for massive stars

but extend the global mass range and break the power-law into di�erent parts of di�erent

slopes according to the mass range, with slight variations between the two. These two IMFs

are �top-heavy�, meaning that more high mass stars are formed than for the Salpeter IMF.

In all these IMFs, the mass is dominated by low mass stars.

1.4.2 Star formation laws

Numerous attempts of relating the SFR to the gas properties have been made. Schmidt

(1959) �rst proposed the Schmidt law using observations of local gas clouds:

ρSFR ∝ ρNgas (2.2)

This relates the volume SFR ρSFR to the volume density of gas ρgas. Schmidt found N ' 2.

Kennicutt (1998) observed a sample of nearby spirals and starbursts galaxies and obtained

as the best �t for the relation between the surface SFR ΣSFR and the surface density of gas

Σgas:

ΣSFR = (2.5± 0.7)× 10−4

(
Σgas

M� pc−2

)N
M� yr−1kpc−2 (2.3)

with N = 1.4 ± 0.15. This involved the average surface densities and SFRs of galaxies.

Thanks to the increasing resolution of observations that is achievable, it is now possible to

observe the SFR and surface density at sub-galactic scales. Bigiel et al. (2008) observed a

sample of local galaxies with observational bin sizes of 750 pc × 750 pc. They �nd that the
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SFR correlates well with gas density at surface densities largeger than 10 M�/pc2 with a

slope of ' 1 while the correlation fails at lower densities and the slope is signi�cantly higher

(see Figure 2.4).

Figure 2.4: Compilation of observations of surface SFR vs HI+H2 gas surface density. Colour-

�lled contours show results obtained from observations of 750 pc squared regions in local disc

galaxies by Bigiel et al. (2008). Figure from Bigiel et al. (2008).

By separating gas between atomic and molecular hydrogen, Bigiel et al. (2008) �nd the

high density zone is occupied by molecular hydrogen whose density correlates well with the

SFR, while the low density is occupied by atomic hydrogen, with a poor correlation with

SFR (see Figure 2.5).

1.4.3 Star formation trigger and regulation

Stars are formed in the densest parts of molecular clouds. The most obvious trigger for

molecular cloud formation is gravitational instability: collapsing gas will eventually form

stars when its density becomes high enough. Other processes such as supernovae explosions

can shock gas to high densities, allowing for the gas to cool and form stars. Gas that enters

density features such as spiral arms can also be compressed and give rise to star formation,

as observations seem to indicate (see 2.1).

Star formation can be regulated by supernovae explosions that disrupt molecular clouds,

or turbulence that stabilises the gas against gravitational collapse, but many uncertainties

remain on the star formation process itself and what in�uences it the most. The same
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Figure 2.5: From left to right: surface SFR vs HI+H2, HI and H2 gas surface density. Results

obtained from observations of 750 pc squared regions in 7 local disc galaxies by Bigiel et al.

(2008).

processes that are thought to limit it can also enhance it: as previously mentioned, supernovae

can also trigger star formation, and turbulence is also thought to play a triggering role (e.g.

McKee & Ostriker 2007).

2 Instabilities, bars and spiral structure

2.1 Observations

2.1.1 Spiral arms

Optical observations of some galaxies show well de�ned spiral arms (often two) going from

the centre to the external parts. These galaxies are called grand-design galaxies. Observations

in several wavelengths (see Figure 2.6 for the example of M51) show that spiral arms are

present for di�erent components of the galaxies (de Vaucouleurs et al. 1991; Buta & Combes

1996, e.g.):

� the old stars observed in the near infrared;

� the young stars emitting the bulk of optical light and also observed by the Hα emission

in their hot atmospheres;

� neutral hydrogen gas observed by the radio 21 cm emission line of hydrogen;

� molecular gas observed through the radio CO rotational emission.

Some dust lanes are observed (by their obscuration on optical images or by their infrared

emission) in the inside of the arms, indicating a compression of the ISM in these regions.

Some other kinds of spiral galaxies named �occulent galaxies appear globally as spiralling

but without having arms de�ned from the inner regions to the outside. The arms seem to be

due to di�erential rotation of young stellar regions (e.g. Gerola & Seiden 1978).
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Figure 2.6: M51 (also referred to as NGC 5194) observed in di�erent wavelengths. Its com-

panion NGC 5195 is visible in the top left corner of the top row pictures. Top left picture:

optical image from the Hubble Space Telescope with an emphasis on the Hα Balmer line

at 656 nm (pink features) and the near-infrared I band at 800 nm. Credits: S. Beckwith

(STScI), Hubble Heritage Team, (STScI/AURA), ESA, NASA. Additional Processing by

Robert Gendler. Top middle �gure: near-infrared (3.6 µm) image from the IRAC instru-

ment of Spitzer. Image adapted from Buta et al. (2010). Top right �gure: superimposed

optical image (in bright blue) and distribution of HI gas (darker blue) obtained from the HI

21 cm line. Image courtesy of NRAO/AUI and Juan M. Uson. Bottom row: Molecular gas

distribution inferred from the CO emission, from Regan et al. (2001).

2.1.2 Bars

A high fraction of local disc galaxies are observed to be barred, ∼ 70% when observed in

the near infrared H band (e.g. Eskridge et al. 2000). The Milky Way itself is barred, and so

are its two largest (and irregular) companions, the SMC and LMC. Bars are larger compared

to the size of the disc in galaxies of type Sa than in Sb's or Sc's. Their isophotes are typically

intermediate shapes between ellipses and rectangles, with a generally signi�cant elongation.

They exhibit dust lanes on their leading side (where �leading� refers to the rotation), and

often some young stars near the tips of the bar.
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2.2 Local instability

Discs are locally stabilised against gravitational collapse by either pressure in the case

of gas discs, or velocity dispersion in the case of stellar discs. This stabilisation occurs

for perturbations having a scale lower than the Jeans length λJ (Jeans 1902), gravitational

collapse being the winning process above this scale. This length can be derived from a number

of methods: by using perturbation analysis of the �uid equations, by comparing counteracting

forces, or by an analysis of the timescales involved (Schaye 2004). For a gaseous medium, a

region of size L is stable against gravitational collapse if the sound crossing timescale ts =
L

cs
,

with cs the sound speed, is smaller than the dynamical timescale tdyn. For a perturbation of

volume density ρ, tdyn ∝
1√
Gρ

, so ts < tdyn if L < λJ,vol with:

λJ,vol =
cs√
Gρ

(2.4)

For thin discs, studies in terms of the surface density are of special interest. The dynamical

time for a perturbation of size L and surface density Σ is tdyn ∝
√

L

GΣ
, which sets another

Jeans length:

λJ,surf =
c2
s

GΣ
(2.5)

For stars, replacing the sound speed by the velocity dispersion σ (i.e. by considering the

random motions of stars act like a pressure), one gets:

λJ,vol =
σ√
Gρ

(2.6)

λJ,surf =
σ2

GΣ
(2.7)

On larger scales, discs are stabilised by di�erential rotation that counteracts local collapse

for large enough perturbations, larger than a critical length λcrit (Toomre 1964). Conservation

of angular momentum indeed makes perturbations rotate around their own centres, adding

to the support against gravitational collapse. The corresponding natural timescale is the

epicyclic period, tdyn =
2π

κ
, involving the epicyclic frequency κ of radial oscillations. This

sets:

λcrit =
4π2GΣ

κ2
(2.8)

In this (simple) analysis, perturbations are thus unstable only if they have sizes L such

that λJ,surf < L < λcrit (see Figure 2.7).

If the Jeans length is larger than λcrit, perturbations of all scales will be stable. This is

the case if
csκ

2πGΣ
> 1, which is di�erent by just a factor 2 from the original Toomre criterion:

Q =
csκ

πGΣ
> 1 for stability (2.9)
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Figure 2.7: Schematic zones of stability or unstability for perturbations in a disc.

Again, this criterion for a stellar disc is:

Q =
σκ

πGΣ
> 1 for stability (2.10)

For discs composed of both stars and gas, some e�ective Toomre-like criteria have been

proposed (e.g. Jog & Solomon 1984).

2.3 Nature of bars and spiral structure

Spiral structure is observed only in galaxies containing cold gas.

While the appearance of �occulent galaxies can be explained by local instabilities that

have just been presented and that are sheared by di�erential rotation, the nature and gen-

eration of grand-design spiral arms is more problematic. If the arms were material arms, it

can indeed be shown that di�erential rotation would wind them up much more tightly than

what is observed, in a couple of Gyrs (e.g. Binney & Tremaine 2008).

Lindblad (1963) �rst suggested that spiral arms could be a pattern rotating as a solid body,

with a uniform angular speed Ωp. Particles of angular frequency Ω in nearly circular orbits

can be approximated as having a radial oscillation of frequency κ. In general, Ω < κ < 2Ω.

They can resonate with the spiral perturbation if their orbits are closed in a reference frame

rotating at Ωp, i.e. if Ω − Ωp =
nκ

m
. The most common cases are Ω = Ωp, �corotation�,

Ω−Ωp =
κ

2
, �inner Lindblad resonance� (depending on the form of Ω, their can be two inner

Lindblad resonances), and Ω− Ωp =
−κ
2
, �outer Lindblad resonance�.

Spiral arms are thought to be density waves (Lin & Shu 1964) that can be ampli�ed

by a �swing ampli�er� mechanism, i.e. by re�ections of wave packets on resonances (one

inner Linblad resonance and corotation resonance) that, together with di�erential rotation,

make the wave amplitude grow (e.g. Goldreich & Lynden-Bell 1965; Toomre 1981). However

studies show that such waves are damped in a couple of galactic rotations. Spiral arms would

thus be transiently excited by perturbations such as the tidal interaction with another galaxy

(e.g. Toomre 1981), as seems to be the case of M51, or by bars.
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2.4 Secular evolution

Internal evolution is thought to play a major role on the dynamics and morphology of

disc galaxies on long time scales.

Spiral arms are almost only observed as being trailing, i.e. as being seemingly dragged by

the disc rotation, which can be explained by the ability of trailing arms to transfer angular

momentum away from the centre (e.g. Lynden-Bell & Kalnajs 1972), allowing galaxies to

lower their energy.

Bars, by their action on the gas disc, can generate spiral arms in some cases where inner

Lindblad resonances are present and make the stable orbits in the bar region rotate by 90◦

at each resonance, being ellipses with a major axis either parallel to the bar major axis or

perpendicular to it. As the orbits of the gas �a collisional medium� can not cross, a spiralling

pattern is created. However, the apparent link between bars and spiral arms in some grand-

design spiral galaxies could sometimes be an illusion, as revealed by the often lower speed

of the spiral arms compared to the bars (e.g. Sellwood & Sparke 1988). Bars can be easily

destroyed. Shocked gas in the bar region can lose angular momentum and �ow towards the

centre of the galaxy (e.g. Bournaud et al. 2005), creating a central mass accumulation that

will lead to chaotic orbits and destruction of the bar. A bar can be formed again due to

external gas accretion (e.g. Bournaud & Combes 2002). A galaxy could thus experience

several phases of bar formation and destruction.

Finally, vertical resonances in bars can lead to the buckling instability that can make

bars appear as peanut-shaped (Combes et al. 1990), creating a pseudo-bulge, i.e. a structure

resembling a normal central bulge, but di�ering by the kinematics of the stars (the support

by rotation compared to velocity dispersion being higher in pseudo-bulges than in bulges),

the density pro�le and the colour. Pseudo-bulges are frequently observed in spiral galaxies

(e.g. Kormendy & Kennicutt 2004)
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Chapter 3

Simulations of galaxies

Simulations of galaxies have made considerable progress in resolution and sophistication

over the past decades, due to increase in computer power, algorithms which can compute

gravitational and hydrodynamical forces both more e�ciently and accurately, and advances

in models of baryonic physics. The aim of simulations is to test hypotheses at various scales,

for non-linear complex processes that cannot be studied analytically.

In this chapter, after a presentation of the variety of types of simulations aiming at

studying galaxies, we will present the algorithms used to simulate the dynamics of di�erent

components of galaxies: cold dark matter (assumed to be a collisionless �uid), stars and gas,

and then present how baryonic physics is introduced in simulations.

1 Di�erent types of simulations

1.1 Cosmological simulations

Some simulations address the problem of galaxy formation and evolution on cosmological

scales, starting for example with initial density �uctuations of dark matter in periodic boxes,

allowing the study the hierarchical formation of dark matter haloes (e.g. Navarro et al. 1997;

Springel et al. 2005) with possible post-processing to try to match the baryonic matter distri-

bution to the CDM distribution. If gas is also simulated (e.g. Springel et al. 2008), the galaxy

formation process itself can be better studied in the cosmic dark matter web, including the

interactions of galaxies with the intergalactic medium by gas accretion or out�ows, mergers

or tidal interactions of galaxies, or the e�ects of ram-pressure stripping in galaxy clusters.

Those simulations usually have a low resolution at the level of individual dark matter haloes

and galaxies, but it is possible to perform �zoom� simulations (e.g. Navarro & White 1994;

Semelin & Combes 2005), i.e. to re-simulate a zone of a simulation box with an increased

resolution while taking into account the dynamical e�ects of the exterior of the re-simulated

zone.

29
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1.2 Galactic scale simulations

Other simulations, like the ones we will describe in this thesis, focus on isolated galaxies,

or on a couple of galaxies so as to study galaxy interactions. The hypothesis that tidal

interaction was the origin of patterns such as bridges between close galaxies and tails was in

fact one of the motivations for the �rst simulations of galaxies. Holmberg (1941) simulated a

system of two galaxies using light bulbs, making use of the analogous decline of the light �ux

and gravitational force with distance. Galaxies were then simulated for some time with stellar

particles considered as test particles (neglecting self-gravity) for computational speed due to

the limited calculation powers (e.g. Toomre & Toomre 1972). Fast algorithms for gravity

computation and hydrodynamics (detailed later in this chapter), and increased computer

power has allowed for self-gravity to be taken into account, and for gas to be included.

Individual galaxies are now often modelled with a CDM halo.

Simulations of individual galaxies have the advantage of being simpler to perform than

cosmological ones and of allowing for a high spatial and mass resolution. Problems such as

the physical state of the ISM, its chemistry, star formation, or dynamical evolution by secular

processes can be easily studied.

Finally, some simulations aiming at understanding the star formation process using a high

resolution, while considering dynamical conditions of a galactic disc, can be performed by

simulating gas in an external potential due to stars, with possible rotating spiral arms, and a

CDM halo (e.g. Dobbs & Bonnell 2008). Some re-simulations of gas clouds can be performed

(Bonnell et al. 2013).

Examples of hydrodynamical simulations at di�erent scales can be seen on �gure 3.1.

Figure 3.1: Gas density maps of simulations at di�erent scales. Left: SPH structure formation

simulation using Gasoline (Wadsley et al. 2004). 400 Mpc × 400 Mpc × 40 Mpc slice.

Credits:James W. Wadsley. Middle: SPH merger simulation using Gadget-2 (Springel 2005).

Figure extracted from (Di Matteo et al. 2005). Right: AMR simulation of a disc galaxy

similar to the LMC using RAMSES. Most re�ned regions are resolved with cells of width

0.8 pc. Box size: 4 kpc × 7 kpc. Figure from Bournaud et al. (2010).
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2 Simulating stars and dark matter dynamics

Whether a system is collisional or not can be determined by comparing the relaxation

time trelax of the system � the time for which a particle has interacted gravitationally with

enough other particles to lose memory of its initial conditions � to relevant time scales such

as the crossing time, tcross, the characteristic time in which a body crosses the system. A

possibility to quantify trelax is to study the deviations encounters will cause when a body of

velocity v crosses the system, and to de�ne this time as the one for which the velocity change√
∆v2 becomes equal to the initial velocity of the body.

For a system of N bodies, such an approach gives the following relaxation time:

trelax =
N

8 ln Λ
tcross (3.1)

where ln Λ is the Coulomb logarithm: ln Λ = ln

(
bmax

bmin

)
. bmax and bmin are the maximal and

minimal impact parameters of encounters. It can be shown that ln Λ ∼ lnN (e.g. Binney &

Tremaine 2008). For a typical galaxy containing 1011 stars, this gives trelax � tcross.

Moreover, for a galaxy of radius R and mass M , the crossing time is of the order of ' R

vc
,

where vc is the circular velocity vc =

√
GM

R
. R is generally of the order of a few tenths of

kpc, while vc is of the order of 100 km/s. This gives a crossing time ' 1

10

kpc

km/s
' 1

100
tHubble,

where tHubble = 10
kpc/h

km/s
is the Hubble time (h is the Hubble parameter), that gives an

approximation of the age of the Universe (Springel 2009). For galaxies, as trelax � tcross by

much more than two orders of magnitude, one thus also has trelax � tHubble. Stars in galaxies

thus behave collisionlessly over the age of the Universe and should be treated accordingly in

numerical simulations. Sellwood (2013) discusses relaxation in simulations of stellar discs.

2.1 The Vlasov-Poisson system

Stars or CDM particles can be described statistically as collisionlless �uids by using a

distribution function f such that f(x, v, t) d3x d3v is the probability that the particles are in

the phase-space volume d3xd3v at time t, and that is normalised by:∫
fd3xd3v = 1 (3.2)

The mass density is:

ρ = Nm

∫
fd3v (3.3)

with N the number of particles and m the (average) mass of a particle. In the absence of

collisions, the Liouville theorem ensures conservation of the volume occupied by a constant
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number of particles in phase-space, which can be written as a continuity equation for the

distribution function f :
∂f

∂t
+
∂(fẇ)

∂w
= 0 (3.4)

where w = (x,v).
∂

∂w
is a generalised divergence and fẇ can be thought of as a streaming

velocity in phase-space. The system of bodies is Hamiltonian and the divergence term in the

continuity equation can be developed and simpli�ed using the Hamilton equations q̇ = ∂H
∂p

and ṗ = −∂H
∂q , where q = x and p = mv. One obtains the Collisionless Boltzmann Equation,

that, together with the Poisson equation, forms the Vlasov-Poisson system that accounts for

the dynamical evolution of the system:

∂f

∂t
+ v · ∂f

∂x
− ∂φ

∂x
· ∂f
∂v

= 0 (3.5)

4φ = 4πGNm

∫
fd3v (3.6)

2.2 Algorithms for collisionless dynamics

Solving this Vlasov-Poisson system of integral partial di�erential equations involving 6

phase space coordinates in 3D (3 for position and 3 for velocity) is a challenge. A possibility

is to consider truly the system as a 6 dimensional �uid and to solve the equations on a 6

dimensional grid (e.g. Yoshikawa et al. 2013), or on a cold 3D manifold (Abel et al. 2012),

but the codes using these methods run slowly. Such simulations have already started being

run thanks to the increased computer possibilities.

The two main alternative methods we will describe in more details rely on a sampling

of the system, considering a lower number of particles and advancing their positions and

velocities in time, using the computation of the gravitational forces in a way speci�c to each

method. It can indeed be shown (e.g. Binney & Tremaine 2008) that the Vlasov-Poisson

system can be approximated by using a Monte-Carlo sampling of the potential that amounts

to considering a system of N bodies (N � N∗ for a system of N∗ stars for example) and

following their trajectories using Hamiltonian dynamics, i.e. by solving for each body the

system of equation:

ẋ = v (3.7)

v̇ = −m∇φ (3.8)

Gravitation is a long-range force, making it very di�cult to handle numerically as the

force acting on one particle depends on all the other particles. Direct force summation is

the only exact method but can be very time and memory consuming. For N particles, the

number of gravitational forces to compute at each step of a time integration is the number

of pairs of particles,
N(N − 1)

2
, which for large numbers of particles scales as N2. The

computation can be encoded in hardware in special-purpose devices such as GRAPE (e.g.
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Makino & Funato 1993), while some algorithms with a better scaling, typically N lnN , have

been developed, trying to keep a reasonable accuracy. In Tree methods (Barnes & Hut 1986),

forces are computed using grouping of distant particles, while in the Particle Mesh method

(e.g. Hockney & Eastwood 1981), the forces are obtained from the potential corresponding

to the density on a spatial mesh put onto the particles.

This sampling to a lower number of particles than in the original system introduces some

noise but will be accurate if the number of bodies N is such that the relaxation time remains

larger than the time-scales of interest. The minimal approach of bodies must be taken care

of as the fewer bodies there are, the less smooth the potential created by all the bodies will

be, which increases the importance of encounters. A softening depending on the number of

particles must therefore be introduced; it has to be increased when there are fewer particles.

For mesh codes, the softening occurs at the cell size, while for pure N-body methods, a

softening length is explicitly introduced.

2.2.1 Particle Mesh and variations

In particle mesh codes, space is divided into cells (usually cubes for 3D simulations). The

gravitational forces that apply to particles are obtained by:

1. Computing the mass density on the grid;

2. Using this mass density to obtain the gravitational potential by solving the Poisson

equation;

3. Calculating the forces on the grid from the potential;

4. Extrapolating the forces to the positions of the particles.

The mass density is computed for each cell using a �particle to cell� mass assignment.

Each particle is given a �shape�, i.e. a mass distribution in space, and the density of a

given cell is obtained from summing the contributions of particles whose extension overlaps

with the cell. The simplest assignment scheme is the Nearest Grid Point scheme in which

the shape function of a particle is a Dirac function, assigning its mass to the sole cell that

encloses the particle. It is almost never used because it suppresses all spatial information

below the cell size and induces discontinuities in the gravitational force applied to a particle

when the particle changes cell. More sophisticated schemes allow for a more precise density

�eld computation and also for the force, and possibly its derivatives, to be continuous:

� In the Cloud in Cell scheme, a particle mass is uniformly distributed over a cube of the

same size of a cell, centred on the particle position, thus overlapping with 23 = 8 cells

in 3D. The force is then piecewise linear and continuous.

� In the Triangular Shaped Cloud scheme, a particle mass is distributed over a cube of

width twice larger than a cell width, with a shape function that decreases linearly with

the distance to the particle position and that overlaps with 33 = 27 cells in 3D. The

force and its �rst derivative are continuous.
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The potential is often obtained from a Fourier transform of the density, using the relation

between the density and the potential that applies to the problem (depending especially on the

chosen boundary conditions). The gravitational force �eld is then obtained either �rstly in the

Fourier space before being reversely Fourier transformed, or from a �nite di�erence scheme

on the real potential obtained from a reverse Fourier transform of the Fourier potential.

Forces are �nally extrapolated to the positions of the particles, using for this the same shape

function as for the density �eld computation, which ensures momentum conservation.

It is also possible to solve for the potential in real space, without resorting to Fourier

transforms. This can be done by computing the density �eld as previously, by starting

with a trial potential and iterating to �nd a potential �eld that satis�es a �nite-di�erence

approximation of the Poisson equation. Errors are quickly eliminated on the scale of a few

grid cells, but a much higher number of iterations is needed for long-range interactions. To

solve this problem, multigrid methods can be used: the iteration is done quickly on low

resolution grid and is then re�ned on higher and higher resolution grids. The ART code

(Kravtsov et al. 1997), MLAPM code (Knebe et al. 2001) and RAMSES code (Teyssier 2002)

use this approach.

Improvements The PM scheme is quick and simple but the spatial force resolution is

limited to about the cell size, which poses a serious problem for simulations involving highly

clustered areas. These dense regions can di�culty be treated with the desired resolution

because the cell size would have to be small everywhere, demanding a lot of memory and time,

and creating numerical errors due to unphysical two-body relaxation in poorly populated

regions that would be over-resolved.

Some re�ned methods can be used to increase the resolution only in areas of interest:

� In the Particle-Particle PM scheme (Hockney & Eastwood 1981), or P3M scheme, short-

range forces (inside a cell) are computed using direct summation. It makes the dynamic

range higher, but can be slow in the case of high clustering, if numerous particles are

in the same cell. Couchman (1991) has developped an adaptive P3M, AP3M, re�ning

clustered regions recursively with hierarchical grids and using a local PM algorithm to

speed up the computation.

� In the Tree-PM scheme, the potential is split into a long-range potential computed with

a PM algorithm, and a short-range potential computed with a Tree algorithm (detailed

in the following section).

� In the Adaptive Mesh Re�nement scheme (or AMR scheme), the grid is re�ned using

sub-grids in clustered regions, so that the number of particles in a cell is roughly con-

stant and relatively low. The algorithm is however complex and there is an ambiguity

on the choice of secondary grids locations. This algorithm is for example used by ART

Kravtsov et al. (1997), RAMSES (Teyssier 2002) or ENZO (O'Shea et al. 2004).

Another drawback of the PM scheme is that it induces force errors with preferred direc-

tions.
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2.2.2 Tree algorithm

The principle of tree codes is to approximate the force on a particle by a multipole

expansion based on a hierarchical grouping of particles. This hierarchical grouping, the Tree,

can be done by a recursive splitting of space performed until the �nal regions contain only

one particle. The root node of the Tree consists of all the particles, and branches lead to

sub-nodes containing sub-groups of particles, these nodes being divided further and further

until the �leaves� of the Tree that contain only one particle. In the Barnes-Hut algorithm

(Barnes & Hut 1986), a cube containing all the particles is recursively split in 8. A Quad-Tree

(the corresponding decomposition in 2D) is represented on Figure 3.2.

To compute the gravitational force on one particle, the Tree is walked down from the

root node (containing all the particles) in its di�erent branches, stopping, for a given branch,

when an accuracy criterion is satis�ed, basically when the ratio of the spatial extension of

the Tree sub-domain to its distance to the particle falls below a certain value. This ratio, or

opening angle θ, can be thought of as how the distant node is seen from the particle. If the

angle is below the selected threshold, the sum of the forces due to the individual particles of

the node can be approximated using a multipole expansion of the distribution of particles,

truncated at a chosen order. The gravitational potential at position r due to a group of

particles at xi of masses mi, total mass M , and centre of mass at s is:

φ(r) = −GΣi
mi

|r− xi|
(3.9)

= −G
[

M

|r− s|
+

1

2

(r− s)TQ(r− s)

|r− s|5

]
+ o(

(
|s− x|
|r− s|

)2

) (3.10)

where index T indicates a transpose operation of the vector (r− s), and Q is the quadrupole

tensor:

Qij = Σkmk

[
3(s− xk)i(s− xk)j − δij |s− xk|2

]
(3.11)

Most of the time, either only monopoles are kept, or also quadrupoles.

In case θ is too high, the next nodes in the tree are recursively considered until the

condition is satis�ed for each sub-node and the contributions from all particles have been

taken into account.

Tree codes have the advantage of not setting a limit for dynamic range, contrarily to a

mesh with a �xed number of cells. The �mesh� here (i.e. the cubes of the Tree, empty cubes

not being stored) adapt to the clumping. The force accuracy is also interestingly monitored

by the threshold opening angle, and can be adjusted depending on the needs. Finally, tree

codes allow for problems of any geometry to be studied, without risking that particles leave

a �xed mesh.

Tree code scaling is in N lnN and depends only weakly on the clustering, but they are a

little slower than PM codes. This is modulated by the possibility of computing forces only

for a small number of particles in time-integration involving individual time-steps, contrarily

to PM codes that require the whole force �eld to be computed to obtain the force applying
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Figure 3.2: Quad-tree (in 2 dimensions). For a threshold opening angle θ, if θ1 < θ < θ2,

the node seen with an angle θ2 will be opened and the force will be computed using the 4

corresponding leaves of the tree, while a multipole expansion will be used to compute the

contribution of the node seen with an angle θ1.

to a restricted number of particles. Another drawback of Tree methods is that they do

not manifestly conserve momentum because of errors due to the truncation of multipole

expansions.

A di�erent use of the tree construction for force computation is made in the Fast Multiple

Method (Dehnen 2002), in which the forces are computed symmetrically for each pair of

interacting nodes, ensuring therefore momentum conservation. The code is very fast, scaling

as N , but it does not work as well as the tree code for individual time-steps, and is di�cult

to parallelise e�ciently on memory distributed machines.

Force softening For N-body techniques (direct summation or Tree codes), the softening

necessary to avoid any collisional behaviour is done by replacing the potential of a point mass

m, φ(r) = −Gm
r

by a potential that will not become in�nite for small distances. The most

natural choice is the Plummer softening:

φ(r) = − Gm√
r2 + ε2

(3.12)

where ε is the softening length, but this form of potential has the disadvantage of di�ering

from the Newtonian potential at all distances, which introduces a systematic error. A better

possibility is to modify the potential only at small distances where relaxation problems occur.

One replaces the density of a point mass ρ(r) = mδ(r) by ρ(r) = mW (
r

h
), where h is a

softening length parameter and W is a �nite-support softening kernel (so that the potential

is Newtonian at large distances). The following spline kernel (see left panel of Figure 3.3) is
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the most often used kernel:

W (u) =


1− 6u2 + 6u3, if u <

1

2

2(1− u3), if
1

2
≤ u < 1

0 if u ≥ 1

(3.13)

The associated potential has a �nite value at r = 0 contrarily to the Newtonian one, and

becomes Newtonian at u = 1. It is roughly equivalent to a Plummer potential if h = 2.8ε

(see righ panel of Figure 3.3).
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Figure 3.3: Left: Cubic spline softening kernel. Right: potential of a point mass for a

Newtonian potential (dotted line), a Plummer potential with softening ε =
1

2.8
(dashed line)

and using the cubic spline with h = 1 (solid line)

2.3 Time integration

We have so far presented the way gravitational forces are computed. To solve for the

motion of particles, the time is discretised into time-steps, updating velocity and position

using the force computation and repeating the process with the updated spatial repartition

of particles.

To conserve energy and phase-space volume as imposed by the Hamiltonian evolution,

an adequate time integrator has to be chosen, a symplectic integrator, having a mapping be-

tween coordinates of the last time-step and the present time-step that has a unity Jacobian

determinant. The most straightforward explicit Euler scheme and the Runge-Kutta inte-

gration scheme do not satisfy this condition, and accumulate errors at each time-step. The

most used symplectic integrator is the Kick-Drift-Kick second order integrator (analogous to

a �leap-frog� integrator). A Kick transformation advances velocities while keeping positions

�xed, and a Drift transformation advances positions while keeping velocities �xed. Velocities
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v and positions x are thus updated the following way:

v
t+

∆t

2 = vt −∇φt∆t
2

(3.14)

xt+∆t = xt + v
t+

∆t

2 ∆t (3.15)

vt+∆t = v
t+

∆t

2 −∇φt+∆t∆t

2
(3.16)

This integrator is used by Gadget-2 with which we have performed our simulations.

3 Simulating gas dynamics

The gas of the ISM can be modelled in di�erent ways, depending on the physical as-

sumptions that are made. It is usually considered as a collisional �uid, but sometimes as a

cloudy heterogeneous medium. We will present the latter brie�y and then detail Eulerian

and Lagrangian algorithms commonly used to model a continuous ISM.

3.1 Sticky particle algorithm

The sticky particle scheme (e.g. Brahic 1977; Levinson & Roberts 1981), aims at being

a realistic simulation of the heterogeneous and non thermal ISM. Particles represent gas

clouds and interact with each other through inelastic collisions in which they can form stars

or coalesce (e.g. Combes & Gerin 1985), forming a whole mass spectrum. The velocity

dispersion of particles di�ers from the thermal sound speed.

3.2 Hydrodynamics algorithms

The time evolution of the properties of a collisional gas �uid of density ρ, pressure P and

speci�c energy (internal energy per unit mass) u follow from the continuity, Euler and energy

equation:

∂ρ

∂t
+∇ · (ρv) = 0 (3.17)

∂v

∂t
+ v · ∇v = −∇P

ρ
−∇φ (3.18)

∂u

∂t
+ v · ∇u+

P

ρ
∇ · v = H− C (3.19)

The �rst equation accounts for mass conservation, the second one is the Euler equation for

a �uid submitted to a gravitational potential φ, and the third one describes the evolution of

the speci�c energy in the presence of possible source and sink terms for heat: respectively H
and C.
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The system of equations can be closed by an equation of state. For an ideal gas of constant

ratio of speci�c heat at constant pressure to speci�c heat at constant volume γ, one can write:

P = (γ − 1)ρu (3.20)

The evolution equations involve time derivatives at a �xed point in space. If one wishes

to follow the time evolution of properties of a �uid element moving along with the �uid, the

adequate derivative is the convective derivative d
dt = ∂

∂t +v ·∇. The evolution of the density,

velocity and speci�c energy of this element are thus:

dρ

dt
+ ρ∇ · v = 0 (3.21)

dv

dt
= −∇P

ρ
−∇φ (3.22)

du

dt
+
P

ρ
∇ · v = H− C (3.23)

The main algorithms for hydrodynamics use either a Eulerian, either a Lagrangian de-

scription of the �uid. In the Eulerian view, space is discretized and what is followed in time

is the evolution of velocity, density, pressure and energy at �xed spatial points, while in the

Lagrangian view, mass is discretized: one considers conceptual small �uid elements of an

in�nitesimal mass, and follows their velocity, density, pressure and energy as they move with

the �uid (see Figure 3.4).

Figure 3.4: Left: Eulerian volume discretisation scheme used by mesh algorithms. Each

cell has attached properties (density, velocity, internal energy...). Right: Lagrangian mass

discretisation used by the SPH algorithm. Each point mass has attached properties.

3.2.1 Grid codes

The continuity, Euler and energy equations can all be written in the form:

∂q

∂t
+∇ · F = 0 (3.24)

where q is the mass density ρ, linear momentum per unit mass ρv, or energy per unit mass

u +
ρv2

2
and F is the corresponding �ux. In grid codes, the �uid dynamical equations are
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discretized at the cell scale, and a computation of the �uxes is carried out between adjacent

cells. The implementations vary in the exact way the �uxes are computed. Many codes use

the Godunov scheme, in which the �uxes are obtained using the exact solution of the Riemann

problem for each interface between two cells, which ensures exact total energy conservation in

the case where no gravity is included (e.g. Teyssier 2002). Mesh codes are thus well designed

to treat shocks e�ciently.

One of their drawbacks is that Galilean invariance is not enforced (e.g. Wadsley et al.

2008). A numerical truncation error depending on the cell width makes the behaviour of a

�uid di�er if the same velocity is added everywhere. This unwanted e�ect can however be

reduced by increasing the spatial resolution.

3.2.2 SPH

Smoothed particle hydrodynamics was independently developed by Lucy (1977) and Gin-

gold &Monaghan (1977). The �uid is treated in a Lagrangian way, by a further step compared

to the original Lagrangian formalism that is the sampling of the �uid by point masses acting

as a set of discrete tracer particles. The density at the point mass locations is done by a local

average on neighbouring particles. A number of TreeSPH codes, using the Tree algorithm to

compute gravitational forces, as gas are treated as particles in SPH, have been developed:

Hernquist & Katz (1989) �rst combined the two methods, and more recent codes such as

Gadget-2 (Springel 2005) or Gasoline (O'Shea et al. 2004).

The algorithm is based on a kernel interpolation. An interpolated version of any �eld

A(r) can be de�ned using a convolution with a kernel W (r, h):

〈A(r)〉 =

∫
A(r′)W (r− r′, h) dr′ (3.25)

with h the characteristic width of the kernel, called the smoothing length. The kernel must

be normalised to unity (
∫
W (r, h) dr = 1) and reduce to a Dirac distribution in the limit

h → 0. It is required to be spherically symmetric for angular momentum conservation, and

to have a high order of interpolation.

The most used kernel is the same cubic spline kernel as often used for gravitational

softening (see equation 3.13), proposed for SPH interpolation by Monaghan & Lattanzio

(1985). It is a spherically symmetric kernel normalised to unity in three dimensions, i.e.∫
W (r, h)4πr2 dr = 1, with a high order of interpolation. Starting with the lowest order

kernel, the Dirac kernel, it can be obtained by performing four successive convolutions with

a door function, by scaling the resulting kernel to have the desired support and by �nally

normalizing it to unity.

If the �eld A is known only at certain points ri that have an associated mass mi and a

density ρi, and so an associated volume element
mi

ρi
, one can approximate the integral by an

interpolated summation on the values Ai = A(ri) by replacing the integral by a summation,
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with the replacement dr 7→ mi

ρi
:

〈A(r)〉 '
∑
j

mj

ρj
AjW (r− rj, hi) (3.26)

where the summation is on a limited number of particles in the case of a �nite-support kernel,

these particles being called the neighbours of particle i. Their number depends on the choice

of estimation of the smoothing length.

The density can therefore be estimated at any position by:

ρ(r) =
∑
j

mjW (r− rj, h), (3.27)

and can be in particular estimated at the positions of the sampling particles. Mass conser-

vation is automatically ful�lled. Figure 3.5 shows a schematic SPH kernel volume around a

particle i.

h
i

i

j

ij
r

Figure 3.5: Schematic view of an SPH kernel volume of radius hi around a particle i. rij

is the length of rij = ri − rj The density ρi is obtained by the summation of the masses of

particles inside the volume, weighted by the kernel function W .

The other partial di�erential equations � the Euler and energy equations � can be dis-

cretised and transformed into ordinary di�erential equations for the velocity and the speci�c

energy, using the properties of the kernel interpolation. There is a number of choices for the

exact way the discretisation is performed. The −∇P
ρ

term in the Euler equation is often

symmetrised so as to obtain antisymmetric forces between two particles and conserve mo-

mentum. Using
∇P
ρ

= ∇
(
P

ρ

)
+
P

ρ2
∇ρ and a symmetrised kernel for two particles i and j

Wij =
1

2
(W (|rij|, hi) +W (|rij|, hj)), it is possible to write:

dvi

dt
= −

N∑
j=1

mj

(
Pi
ρ2
i

+
Pj
ρ2
j

)
∇iWij (3.28)

and, without considering source or sink terms in the energy equation, it is also possible to

write:

dui
dt

=
1

2

N∑
j=1

mj

(
Pi
ρ2
i

+
Pj
ρ2
j

)
vij · ∇iWij (3.29)
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Other symmetrisations can be obtained from writing for example
∇P
ρ

=
2
√
P

ρ
∇
√
P (e.g.

Monaghan 1992).

Arti�cial viscosity Such an integration scheme relies on di�erential �uid equations whose

validity breaks down in the case of shocks. In discontinuous shock regions, the integral form

of the equations are required. Without any addition to the discretised equations, SPH would

miss the dissipation of kinetic energy into thermal energy by microphysics in these regions.

Therefore, an arti�cial viscosity is introduced to generate dissipation due to shocks and

spread the shock on a resolvable layer, i.e. two or three smoothing lengths, making the use

of the di�erential form of the equations correct in these regions. This arti�cial viscosity is

put as a friction force that damps the relative motions of particles:

dvi
dt

∣∣∣∣
visc

= −
N∑
j=1

mjΠij∇iW ij , (3.30)

where Πij ≥ 0 is an arti�cial viscosity tensor that is non-zero only when particles approach

each other.

The exact choice for the viscosity form and parametrisation vary. The code Gadget-2 we

use for our simulations takes a parametrisation from Monaghan (1997) that involves a �signal

velocity� vsig
ij = ci + cj − 3wij where wij =

vij · rij
|rij |

(from an analogy with the Riemann

problem) in the case particles approach each other. wij = 0 otherwise. Πij takes the form:

Πij = −α
2

(ci + cj − 3wij)wij
ρij

(3.31)

where α ' 0.5 − 1.0. ρij is the arithmetic mean of the densities of particles i and j. Mul-

tiplication by wij in Πij ensures the viscosity vanishes for rigid body rotation. This version

prevents very large viscous accelerations from occurring. Moreover, a viscosity limiter is

added following Balsara (1995) and Steinmetz (1996), so as to reduce the arti�cial viscosity

in shear �ows.

As the aim of this arti�cial viscosity is to convert some kinetic energy into thermal energy,

the decrease in kinetic energy due to the viscous force is exactly balanced by an increase in

thermal energy:

dui
dt

=
1

2

N∑
j=1

mjΠijvij · ∇iW ij , (3.32)

and the total energy is thus conserved.

Energy or entropy integration If the internal energy is integrated, Hernquist (1993)

showed that conservation of entropy can be violated (for adiabatic �ows in which no entropy

should be generated). Without any cooling included, the entropy can diminish, which is not

physical.
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Another possibility is to follow the evolution of an entropy function rather than the

internal energy. One can use:

A =
P

ργ
(3.33)

with γ the adiabatic index of the gas, equal to
5

3
for a mono-atomic gas. For an adiabatic

�ow, this function is constant and in bijection with the speci�c entropy s 1.

This entropy function, that will be hereafter called simply entropy, will have an evolution

due only to the arti�cial viscosity (in the absence of other cooling or heating terms):

dAi
dt

=
1

2

γ − 1

ργ−1
i

N∑
j=1

mjΠijvij · ∇iW ij (3.34)

As this is positive de�nite, the entropy can only grow in time. The internal energy can be

obtained from:

ui =
Ai
γ − 1

ργ−1 (3.35)

Hernquist (1993) however showed that if the entropy is integrated, the total energy is not

necessarily conserved, problems arising from the adaptive behaviour of SPH, from neglected

terms due to the variation of the smoothing lengths in space and time.

Conservative form A better way of solving for the evolution of a �uid in a conservative

manner is to write a Lagrangian for the gas and to derive a discretised Euler equation from

it. As the equation will be derived from a Lagrangian, energy and momentum conservation

will automatically be enforced. Springel & Hernquist (2002) present such an approach and

use in the Gadget-2 code. The Lagrangian for N particles (with no self-gravity added here)

can be written as:

L(q, q̇) =
1

2

N∑
i=1

miṙ
2
i −

1

γ − 1

N∑
i=1

miAiρ
γ−1
i (3.36)

where q = (r1, ..., rN , h1, ..., hN ). The Ai are the speci�c entropy of particles.

By taking into account the constraints φi expressing that the mass in a kernel volume is

demanded to equal a constant MSPH, i.e.:

φi =
4

3
πh3

i ρi −MSPH = 0, (3.37)

it is possible to derive a discretised Euler equation using the Lagrangian equations:

d

dt

∂L
∂q̇i
− ∂L
∂q̇i

=

N∑
j=1

λj
∂φj
∂qj

(3.38)

1. Indeed, applying the thermodynamical identity du = Tds +
P

ρ2
dρ to an isolated ideal gas having

P = (γ − 1)ρu, u =
kT

µ(γ − 1)
with µ the mean particle weight, one �nds ds =

k

µ(γ − 1)

dA

A
.
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where the λj are Lagrange multipliers. They are determined by one half of the equations and

inserted in the other half so as to obtain:

d~vi
dt

= −
N∑
j=1

mj

[
fi
Pi
ρ2
i

∇iWij(hi) + fj
Pj
ρ2
j

∇iWij(hj)

]
, (3.39)

with the fi de�ned as:

fi =

[
1 +

hi
3ρi

∂ρi
∂hi

]−1

(3.40)

3.2.3 Main di�erences

Signi�cant di�erences that can arise in the results of simulations performed either with

grid codes or SPH codes concern Galilean invariance and �uid mixing.

Galilean invariance As previously said, grid codes do not ensure Galilean invariance. This

can for example have an impact on simulations with high velocity streams of gas accreting

onto galaxies, or on simulations of galaxy clusters in which galaxies can have large velocities

with respect to the centre of mass of the cluster. The lack of Galilean invariance can change

their internal dynamics.

Fluid mixing A problem for SPH in its �normal� version (we used such a version in our

simulations) concerns the mixing of di�erent �uids. While grid codes naturally mix �uids at

the cell level, SPH consists of particles having their own identity, and an artefact of SPH is a

spurious numerical �surface tension� that prevents two �uids from mixing. This is related to

the incapacity of SPH to produce entropy when mixing occurs (Springel 2010b), contrarily

to mesh codes that generate entropy when averages are made at each time-step.

This �uid mixing is tightly related to two instabilities that are often used as tests for

hydrodynamical codes: the Kelvin-Helmoltz instability and the Rayleigh-Taylor instability.

The Kelvin-Helmoltz instability occurs when there is a velocity shear at the interface between

two di�erent �uids (of di�erent densities, temperature...). The �uids inter-penetrate at the

interfaces, creating wave-like spatial patterns. The Rayleigh-Taylor instability occurs when

a �uid is accelerated by a less dense �uid, or when it is displaced by the less dense �uid.

Signi�cant di�erences in the evolution of a dense gas cloud moving supersonically relatively

to a less dense bulk �ow was shown by Agertz et al. (2007) (see Figure 3.6). The Kelvin-

Helmoltz instability should gradually destroy the dense cloud by mixing it with the incoming

�uid from its surface to its inside parts, but SPH codes do not show this behaviour. The

cloud remains while it has long correctly been destroyed in grid codes.

Some attempts have been done so as to solve this problem. For example:

� Price (2008) and Wadsley et al. (2008) suggested to add an arti�cial heat conduction

at contact discontinuities, similarly to the arti�cial viscosity. The scheme is however
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Figure 3.6: Simulations of a dense gas cloud in a supersonic �ow. Top row: Simulation with

the SPH code Gadget-2. Bottom row: Simulation with the mesh code Enzo. Figure extracted

from Agertz et al. (2007).

di�cult to tune so that arti�cial heat conduction occurs only when there should be

some mixing.

� A scheme inspired by the density estimates of Ritchie & Thomas (2001) has been

proposed by Read et al. (2010). They use a very large number of neighbours and thus

a steeper kernel so that the �clumping� instability does not occur. This instability is

due to the almost �at kernel shape for small separation of particles, making pressure

gradients very small and tending to group particles together arti�cially. This very large

number of neighbours slows down the code.

� Abel (2011) suggested to change the discretisation of the SPH equations in his rpSPH

version of Gadget-2, evaluating the pressure forces with respect to the local pressure.

The code needs however to be run with a specially �ne resolution for energy to be

conserved.

� The recent attempt by Hopkins (2013), �pressure-entropy SPH�, a modi�cation of SPH

implemented by using the structure of Gadget-2, changes which SPH equations are

considered while interestingly retaining the conservative Lagrangian structure. The

code has no apparent drawback so far.

In our simulations of disc galaxies, we used SPH in its normal version (with no attempt

to lower the arti�cial surface tension), as the evolution of the discs is not likely to be very

sensitive to this problem: in particular, we do not have any hot ambient medium with respect

to which dense clumps would have a large velocity di�erence.
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3.2.4 Hybrid codes

Some hybrid codes (�hybrid� is here used for the treatment of gas) try to combine the

Lagrangian and Eulerian approaches so as to keep the interesting properties of both methods,

particularly the �uid mixing of mesh codes and the Galilean invariance of SPH codes.

The idea of these codes is often to have cells that behave as particles, i.e. that can move

along with the �uid. Early attempts of using such methods faced problems related to the dis-

tortion of cells (e.g. Gnedin 1995; Pen 1998). However in the Arepo code (Springel 2010a), the

cells are built by an optimised tesselation at each time-step, so that they have a simple shape,

with a limited number of edges, and as �round� as possible. Comparisons between Gadget-2

and Arepo, with the same baryonic physics included, have shown di�erences in for example

the sizes, angular momentum and entropy of gas discs formed in cosmological simulations

(Kere² et al. 2012), shedding some doubt on the validity of normal SPH simulations.

4 Implementing astrophysical processes

We present here how some astrophysical processes, by which we mean processes that are

other than gravitational or hydrodynamical, can be implemented in simulations of galaxies.

The limited power of calculation prevents us from treating processes in a fully detailed way.

Moreover, these processes are still not very well understood, which makes a phenomenological

approach necessary. We focus on the implementation in SPH codes, as the code we used for

our simulations.

4.1 Star formation

The resolution of simulations at galactic or extra galactic scales is in particular far too

insu�cient to allow for the study of the formation of individual stars.

Star formation algorithms can involve the creation of new purely stellar particles, or

involve hybrid particles (in SPH codes) containing, at least for a while, a part of gas and a

part of stellar matter. Star formation is implemented as either continuous (particularly in

hybrid schemes), in which case a fraction of gas is necessarily converted into stars at each

time-step (depending however potentially on some conditions on gas particles) or stochastic,

in which case gas particles have a probability of creating some stellar mass at each time-step,

either tied to them in hybrid schemes, or taking the form of a new stellar particle. Continuous

schemes have been used mainly in simulations with lower numbers of particles than what is

now achievable, their advantage being to reduce the accidental time behaviour of the SFR in

stochastic schemes for low number of particles.

There are often some selection criteria for a gas particle (or gas cell in the case of mesh

codes) to be allowed to participate in the star formation process. The most common is that

the density must be above a certain threshold. This aims at reproducing the (often surface)
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density thresholds observed in disc galaxies. Other criteria can be that the particle must

be in a converging �ow, that it must be Jeans unstable (this criterion is however dependent

on the resolution and thus potentially problematic (e.g. Stinson et al. 2006)), or that its

temperature must be below a maximum temperature (this is for example used to forbid star

formation in dense gas heated by supernovae).

The star formation implementation aims most of the time at reproducing a Schmidt law

between the volume densities of stars ρ∗ and gas ρg (Schmidt 1959):

dρ∗
dt

= Cρng (3.41)

with variations in the chosen index n.

In the hybrid continuous star formation scheme of Mihos & Hernquist (1994), the gas

mass Mg contained in a hybrid particle is for example reduced at each time-step by:

Ṁg

Mg
= −Cρ1/2

g (3.42)

so as to recover a Schmidt law with an index n =
3

2
.

In stochastic schemes, gas particles have a probability of converting some of their mass

into stellar mass (keeping the stellar part tied to the gas particle in hybrid schemes, or freeing

it). A commonly used probability is:

p∗ =
mg

m∗

(
1− e−c∗∆t/t∗

)
(3.43)

wheremg is the gas mass of the particle,m∗ the created stellar mass, and t∗ is a star formation

time that is often taken as proportional to the dynamical time tdyn =

√
3π

32Gρ
. c∗ is then

the star formation e�ciency per dynamical time, often set between 0.01 and 0.1 so as to

reproduce observations of SFRs. The created stellar mass m∗ is not necessarily a constant.

Katz (1992) set it to a third of the parent gas particles that had various masses (depending on

the mass gained through stellar gas mass loss). m∗ is yet often taken as a constant (Springel

& Hernquist 2003; Stinson et al. 2006, e.g.) so as to avoid e�ects of mass segregation.

In hybrid particles schemes, the particles feel and contribute to hydrodynamical forces

only through their gas mass. The conversion to a fully stellar particle, that will be only

subjected to gravity and no longer to hydrodynamical forces, depends on the algorithm: the

particle can be converted into a stellar particle once its stellar mass fraction has reached a

threshold (95% of the particle mass in (Mihos & Hernquist 1994)), the rest of the gas being

distributed to the neighbours, or once there is enough stellar mass when adding the stellar

masses contained in the neighbouring hybrid particles (e.g. Semelin & Combes 2002). These

algorithms have the advantage of keeping the number of particles constant, and therefore

not increasing the CPU time needed to evolve the code if several stellar particles are formed

out of one gas particle in stochastic spawning schemes. They also tend to be more able

to reproduce strong star formation in galaxy mergers (Mihos & Hernquist 1994). However,
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they kinematically couple the stars with gas, while they should evolve separately, gas feeling

dissipative hydrodynamical forces and stellar particles behaving in a collisionless manner.

4.2 Stellar feedback

4.2.1 Energy from supernovae explosions

The most commonly implemented form of stellar feedback is the energy e�ect of core-

collapse supernovae (SNII) on the gas. Implementing this feedback was initially partly mo-

tivated by its potential destructive e�ect on low mass galaxies created in a too large number

in simulations, and its capacity to remove some low angular momentum material from the

central parts of disc galaxies, so as to obtain discs of sizes large enough to be consistent

with observations. The e�ect on star formation is complex: it can limit star formation by

preventing it to occur in regions a�ected by the supernovae heating, but can also trigger it

by creating dense shock regions that can be cooled e�ciently.

Core-collapse supernovae are massive stars > 8 M� that explode after about 10 Myr.

The exact fraction of energy that is given to the ISM rather than being radiated away is not

well determined from observations and is a parameter that is often set so as to reproduce

observations concerning the SFR.

The feedback can be implemented in a thermal way, by giving internal energy to gas

particles, or in a kinetic way, by giving them velocity kicks.

If the energy is added thermally, as it is likely to be given to gas particles in dense regions,

close to the star formation region, the energy will be radiated away quickly by the important

cooling of the gas, making the feedback ine�cient. What is often done is forbidding particles

to cool for some time, so as to e�ectively prevent further star formation in heated gas and to

give the particles time to transfer their internal energy into kinetic energy to their neighbours

(e.g. Gerritsen 1997; Thacker & Couchman 2000). The stopping can be ensured for a given

amount of time, often ∼ 10 − 30 Myr, or can last for a time that depends on the local

properties of the gas and of a model of the SNII explosion evolution, as in the blastwave

recipe (McKee & Ostriker 1977), as tested by Stinson et al. (2006).

The energy can also be added in the form of velocity kicks. Navarro & White (1993) try

two implementations: the �energy� and �momentum� schemes:

� In the �energy� implementation, a velocity kick is added to neighbouring gas of a new

stellar particle so that the total energy is properly augmented by the given supernovae

energy. However, the velocities of a�ected gas particles point necessarily away from the

stellar particle, which changes signi�cantly the velocity distribution, reversing neces-

sarily a converging �ow into a diverging one (at least just after the energy injection).

� In the �momentum� implementation, the feedback energy Efeedbacki
attributed to a gas

particle i of massmi is transformed into a velocity kick vi radially away from the stellar

particle, with a value determined by Efeedbacki
=

1

2
miv

2
i . This kick velocity is simply



4. IMPLEMENTING ASTROPHYSICAL PROCESSES 49

added to the velocity of the gas particle, and as the vectors have no reason of being

co-linear, the total feedback energy will not be exactly added.

As particles a�ected by kinetic feedback are often in dense regions, they are likely to be

quickly braked by the arti�cial viscosity of SPH. Some attempts of decoupling them from

hydrodynamics for a while (similarly to the cooling shutting-o� for thermal feedback) have

also been made (e.g. Springel & Hernquist 2003).

Whether the energy is added in a thermal or kinetic way or both, the feedback energy

from new stellar particles can be released in one step or gradually, injecting the total desired

feedback energy in several time-steps.

Explosions of SNIa can also be included (e.g. Stinson et al. 2006), considering a delay

between the formation of a stellar particle and the explosions of SNIa, trying to mimic the

time needed for conversion into SNIa.

Most of our simulations have been run with kinetic feedback in its �momentum� version.

We have not included feedback from SNIa so far.

4.2.2 Stellar mass loss and metal enrichment

Stars of various masses lose mass, in explosions for supernovae, or in continuous winds

for low mass stars (before they become white dwarves). Recycled gas can help sustain star

formation by providing an internal �gas source� in galaxies, and impacts the metallicity of

the interstellar gas as the heavy elements content of the recycled gas has been increased by

its time as a part of a star. This increase in metallicity is important to determine precisely

the cooling undergone by the gas.

The most commonly stellar mass and metallicity feedback that is taken into account in

simulations is from SNII. Low mass stars also lose mass in a gradual manner during their

life-time. This mass can be given to the neighbouring gas of stellar particle time-step after

time-step (Jungwiert et al. 2001). As metals production depends on the age of stars, some

stellar population models are used to determine what mass of which heavy elements are

returned to the interstellar gas at a given time (e.g. Wiersma et al. 2009; Revaz et al. 2009a).

4.2.3 Radiation pressure

Another feedback mechanism is the pressure energetic UV photons emitted by young

massive stars exert on dust grains that can transfer momentum to the gas. Some codes take

this pressure into account, which strongly enhance the feedback related to star formation

(e.g. Hopkins et al. 2011; Agertz et al. 2012).



50 CHAPTER 3. SIMULATIONS OF GALAXIES

4.3 Cooling and heating of the ISM

4.3.1 Cooling and heating from microscopic processes

Cooling and heating are encapsulated in cooling functions, representing the volume rate of

energy loss or gained by the gas depending on its chemical composition and its temperature.

Tabulated cooling rates are often used: they are computed using theoretical computations of

di�erent microscopic processes as the ones mentioned in 1.3 of Chapter 2. Some codes can

use detailed cooling rates that depend on the exact composition of the gas, for example with

the package Cloudy (Ferland et al. 1998).

It is also possible to use an e�ective equation of state that directly sets the temperature for

a given density, based on the equilibrium temperature gas should have due to the considered

composition and background radiation, and the corresponding heating and cooling processes

(Teyssier et al. 2010; Bournaud et al. 2010). In certain conditions of strong shocks, such a

scheme may however not treat accurately the thermal evolution of the gas.

4.4 Molecular hydrogen formation and destruction

Molecular hydrogen formation and destruction are tracked in some simulations (e.g.

Gnedin et al. 2009; Dobbs & Bonnell 2008; Christensen et al. 2012b).

The formation and destruction rates linked to respectively dust and FUV radiation and

cosmic rays can be included in an equation for the evolution of the number density of H2

molecules as in Bergin et al. (2004):

dnH2

dt
= Rgrn(H)n− [ζcr + ζdiss(N(H2), AV )]nH2 (3.44)

where n(H) is the number density of H atoms, n is the total number density of hydrogen

nuclei, and Rgr depends on the temperature and the e�ciency of H2 formation on grains.

ζcr and ζdiss(0) are the dissociation rates dues to respectively cosmic rays and FUV photons,

N(H2) is the H2 column density and AV the visual extinction. The main dissociation process

is photodissociation (except in regions where AV is very large). Its expression is often taken

from Draine & Bertoldi (1996) as being:

ζdiss(N(H2), AV ) = fshield(NH2)fdustζdiss(0) (3.45)

where fshield accounts for H2 self-shielding, fdust for dust absorption, and ζdiss is the photodis-

sociation rate for unshielded H2. fshield is given by Draine & Bertoldi (1996) as a function of

N(H2). Some approximations are used to determine this column density that plays a major

role in the shielding. Wolcott-Green et al. (2011) detail a number of ways it can be estimated.

Other schemes, as the one we used and will detail in the next chapter, do not follow

the time evolution of H2, but rather determine what equilibrium fraction it should have

depending on its physical parameters.
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4.5 Importance of resolution

The e�ect of baryonic physics recipes can be sensitive to resolution. An increased res-

olution (spatial and/or mass) tends to increase the maximum densities reached by the gas,

which, as the cooling e�ciency is proportional to the density (squared), increases the cooling

of the gas and its ability to form stars. Moreover, in star formation recipes whose e�ciency

increases with density, as for most of the used recipes, an increased resolution will lead to

more star formation. This can however be counterbalanced by the increased energetic stellar

feedback. This feedback, depending on its exact implementation, can itself strongly depend

on the adopted resolution.

Most of the time, parameters used in recipes are thus tuned depending on the resolution,

so as to recover observed results, like an average SFR. The threshold density often considered

in star formation is for example increased if the resolution is increased.

A special concern is to resolve the Jeans length/mass, that determine the scale at which

a gas cloud becomes gravitationally unstable. Bate & Burkert (1997) show that for SPH

simulations, a poor resolution of this length/mass can lead to numerical artefacts that depend

closely of the relative values of the gravitational softening ε and hydrodynamical smoothing

length h. For simulations with a �xed ε, h is often allowed to vary and to be potentially

lower than ε, especially in schemes likes the one used in Gadget-2, in which the mass in a

smoothing kernel volume is required to be constant. The smaller ε is, the higher gravitational

forces can be at small distances, while the smaller h can be, the higher pressure forces can be

(by means of higher pressure gradients). If the Jeans length is not well resolved, ε > h could

lead to arti�cially pressure supported gas clouds, while the contrary could lead to arti�cial

fragmentation. For Gadget-2, using a variable softening length ε �which would allow to have

an adaptive resolution for both hydrodynamical and gravitational forces and to keep ε = h�

requires a complex modi�cation of the code so as to preserve the conservation of energy

(Iannuzzi & Dolag 2011). Schaye & Dalla Vecchia (2008) use an e�ective equation of state at

high densities that makes the Jeans mass independent of density, while Hopkins et al. (2011)

take a density-dependent pressure �oor to ensure the Jeans length is resolved, and Bournaud

et al. (2010) use a temperature �oor at high densities.
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Chapter 4

Introducing baryonic physics in

Gadget-2

We took Gadget-2 (Springel 2005) used as a TreeSPH code to perform our simulations of

disc galaxies. In this chapter, we describe what we modi�ed or added to the public version

of Gadget-2 that contains only the computation of gravitational and hydrodynamical forces.

After some comments about parallelisation and time-steps, we detail how the evolution of

particles is exactly carried out, and then precise our treatment of cooling, computation of

the molecular hydrogen fraction, stellar formation and feedback.

1 Some speci�c features of Gadget-2

1.1 Parallelisation

Gadget-2 is an MPI code, which means that the code is run on multiple cores (�tasks�)

�each task dealing with a certain number of particles� that exchange messages so as to use

the required information from other tasks to advance the code.

Space is discretised using a Peano-Hilbert curve, a space-�lling curve (see Figure 4.1), and

a particle is associated to a close point of this curve. This space-�lling curve interestingly

preserves locality: points that are close in 3D space are also close along the curve. Spatial

domains are obtained by splitting this curve into as many parts as tasks, and in a way that

optimises the work-load balance. Basically, clustered regions for which the force computation

will be long (compared to di�use regions) are split in a �ner manner. Another interest of

this curve is that its splitting can be easily done so that the resulting domains are the same

domains that are obtained by the simple recursive oct-tree spatial decomposition that is used

(Warren & Salmon 1995). A given task will thus have particles that correspond to nodes of

the gravitational tree.

Each task builds a top-level tree containing the nodes at higher levels than the one it

53
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contains. If a particle needs information contained uniquely on another task, it is exported

to the other task, the desired computation is performed locally on this other task using the

local data (this can be a gravitational computation or a density or hydrodynamical force

computation), and the particle is imported back to its task.

Figure 4.1: Peano-Hilbert curve in 3D (top row) and 2D (bottom row). Figure from Springel

(2005).

1.2 Individual time-steps

The code uses individual time-steps so that the computing time is optimised, focusing on

the updating of clustered regions without wasting time with low acceleration/di�use regions

that can be treated with longer time-steps. Time-steps are determined using a criterion on

softening length εi and acceleration ai of a particle i:

∆ti =

√
2ηε

|ai|
(4.1)

where η is an accuracy parameter we kept at 0.025 as in the default Gadget-2 parametrisation.

Power et al. (2003) showed this choice of time-step gives robust results. For gas particles, the

time-step is the minimum of ∆ti and an additional Courant criterion:

∆tCourant
i = C

hi
maxj vsig ij

(4.2)

where C is another accuracy parameter and hi is the smoothing length of the particle i, vsig ij

is the signal velocity between i and a neighbour j.

In the version of the time-integration method we used for our simulations, particles are

synchronised: they all have time-steps that are equal to the smaller one multiplied by a

power of two, and can increase their time-step only if it synchronises them with the particles
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that have the desired larger time-step (this makes them have to wait to increase their time-

step). This way, the kick operations involve a larger fraction of particles each time they

happen, which optimises the computation time. This synchronisation scheme is represented

on Figure 4.2.

StepsK K K K K K K
1 2 3 4 5 6 7

Figure 4.2: Schematic view of individual time-steps. 3 particles are represented by the 3 lines

(solid, dashed and dotted). The Kn are kick operations. If the particle coded by a solid line

wants to increase its time-step to the next larger time-step at K4, it has to wait until K5 so

as to be synchronised with particles that have this larger time-step.

2 Code steps and implemented additions and changes

We detail here the steps of the computation and the additions we made. A graph repre-

senting functions and calls is shown in Appendix B.

2.1 Initialisation

The code �rst performs some initialisation steps. The main function calls begrun that

itself calls init. The two latter functions and their subfunctions:

� Read the parameters �le and initial conditions �le(s), set the internal units and convert

the input into internal units if needed.

� Perform an initial domain decomposition.

� Build an initial tree.

� Set up the smoothing lengths of gas particles.

� Read the cooling rates data at various temperatures we stored in a couple of �les and

initialise interpolation functions.

2.2 Main loop

The main function then calls run that contains the iteration on time-steps.
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2.2.1 Drift

The time integration is done with individual time-steps, which means that the particles

with long time-steps have a drift operation done in a fractional manner, over several succes-

sive iterations, without being kicked, so that the particles that are kicked in-between have

accelerations computed with all the drifted positions.

Next Kick time determination The next time tnext kick at which some particles will be

kicked is �rst determined. tnext kick is the smallest ending point of time-steps.

Drift operation The code then drifts all the particles to this time, i.e. updates their

position, and, for gas particles, also their predicted velocity, density, smoothing length and

pressure. At start up this drift is not applied. The code starts (and ends) with a Kick

operation on half a time-step of each particle.

With tcurr the current code time and ∆tdrift = tnext kick − tcurr, for a particle i that has

started its time-step of length ∆ti at tbegi and will �nish it at time tendi
(tbegi ≤ tcurr and

tendi
= tbegi + ∆ti ≥ tnext kick):

� The position xi is updated by:

xi
tnext kick = xi

tcurr + vi

tbegi+
∆ti
2 ∆tdrift (4.3)

� The predicted velocity vpi of a gas particle (used to compute the hydrodynamical

forces) is obtained by:

vpi
tnext kick = vpi

tcurr + ai
tbegi∆tdrift (4.4)

� The density ρi is updated by:

ρtnext kick
i = ρtcurri e−∇·v

tbegi ∆tdrift (4.5)

(This comes from the continuity equation written in the Lagrangian from.)

� The smoothing length hi is updated accordingly by:

htnext kick
i = htcurri e

1

3
∇·vtbegi ∆tdrift

(4.6)

so as to conserve a constant mass in a smoothing volume.

� The pressure Pi is updated by:

P tnext kick
i =

Atbegi + tendi

2
i +

dA

dt

tbegi
(tnext kick −

tbegi + tendi

2
)

 ργi tnext kick
(4.7)

The entropies, as for velocities, are indeed known at mid time-steps. The time di�erence

on which this last update is carried out can thus logically be negative in case the ending

point of the drift is anterior to the mid-point of the particle time-step.
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The soon to be kicked particles are named �active particles�. The current code time tcurr

is updated to tnext kick.

The �snapshot� �les are written at pre-set times or at constant time interval. To study

our simulations, we added the output of some useful data blocks in the snapshot �les amongst

which the date of creation of stellar particles and the H2 fraction in gas particles.

As the snapshot writing times do not necessarily coincide with tnext kick, the code may

drift particles in two steps, one to reach the snapshot writing time, and one to reach tnext kick.

For our disc simulations, we added the writing of the spatial Fourier components of the disc

density at constant smaller time-steps than our snapshot writing time-steps (the time-steps

of this analysis had to be constant so as to perform a time Fourier transform of them in a

post-run analysis). We thus added a potential additional splitting of the drift to perform the

Fourier analysis and write it in an output �le.

The code then writes timing diagnostics at the current time tcurr.

2.2.2 Star formation

The function star_formation forms stellar particles out of active gas particles. The star

formation is stochastic: if a particle satis�es conditions on its density, velocity divergence

and temperature, a random number r is drawn between 0 and 1 and the particle undergoes

star formation if r ≤ p, with p the probability used to form stars. We use the same function

for generation of random numbers as the one used elsewhere in the code, this function being

designed to be independent of the number of tasks.

A new stellar particle is given the position and velocity of the parent gas particle, as well

as its density and smoothing length that will both be used for stellar feedback. It is given

the same Tree �father� as its parent gas particle so that if the Tree is not re-built, it will be

properly dynamically kicked.

The new particles are stored at the end of the already existing particles on each task, and

they are given a unique identi�er (after communication of the number of new stellar particles

on each task).

If some gas particles are completely converted into stellar particles, we added a function

rearrange_particle_sequence that will be called before the next domain decomposition,

because such a decomposition requires the particles to be ordered in a continuous block of

gas particles �rst and then other particles. The functioning of this rearrangement is shown

on Figure 4.3.

2.2.3 Acceleration computation

The code then computes the accelerations, and the entropy gain generated by viscosity

using the updated positions of the particles. Newly formed stellar particles are not involved

in SPH computations, their acceleration is purely gravitational.
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Gas

DM Disc B Stars

Gas DM Disc B Stars

Figure 4.3: Schematic rearrangement of particles in memory when some gas particles are

completely converted into new stellar particles. Particles are stored according to their type:

gas, dark matter, disc, bulge, and new stars (the stellar particles created during a simulation

and named "stars" on the �gure).

A domain decomposition is made if needed, i.e. if a criterion of frequency of domain

decomposition and tree updates is met. If a domain decomposition is performed, the tree

will be updated.

The accelerations of the active particles are then computed:

� The gravitational acceleration is computed by either building a new tree if a new domain

decomposition has been made, or by using the dynamically updated tree computed

in the last kick operation. The new stellar particles are active and have thus their

gravitational acceleration computed.

� The density and smoothing length are computed with an iteration that aims at making

the mass in a softening kernel volume constant. Pressure of gas particles is computed,

and so are the hydrodynamical force and entropy change. We have added the compu-

tation of the gradient of the density, needed for the molecular hydrogen fraction, in the

function that computes the hydrodynamical forces.

2.2.4 SNII feedback computation

The function compute_snfeedback distributes feedback energy from SNII to the neigh-

bours of new stellar particles. So as to always input the same energy, we compute a smoothing

length for new stellar particles, without taking a possible remnant gas particle into account

(the latter restriction is just for simplicity, as we mainly used kinetic feedback with velocity

kicks given along the line joining a new stellar particle and a neighbouring gas particle). This

way, the weighting by the smoothing kernel is properly normalised. The velocity kick will be

added during the kick operation.

2.2.5 Kick, H2 fraction computation and cooling

New time-steps computation After some energy statistics performed with a pre-set time

interval, the code determines the new time-steps for the particles whose current time-step

ends at tnext kick, using their newly computed accelerations and smoothing lengths and signal

velocities for gas particles.
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Taking into account the velocity kick from SNII feedback without slowing down the code

is tricky because the signal velocity has been computed in the hydrodynamical forces loop.

Updating it properly would require another SPH loop on gas particles. We tried a very

simple additional time limiter for particles that are a�ected by feedback. In the case where

the feedback kick is higher than the maximal signal velocity, we replace the maximal signal

velocity by the feedback kick in the Courant time limiter of 4.2. This way, a large feedback

kick can reduce the time-step of a gas particle.

Kick operation The Kick operation for those particles is then performed.

The velocities of particles taking part in the Kick are updated by:

vi

tcurr+
∆tnewi

2 = vi

tcurr−
∆toldi

2 + ai
tcurr ∆tnewi + ∆toldi

2
(4.8)

with ∆toldi
the old time-step and ∆tnewi the newly determined time-step of the particle i.

In the case where we use kinetic supernova feedback, we add the velocity due to the

feedback to the a�ected particles.

The predicted velocities of gas particles are updated using these newly computed veloci-

ties:

vpi
tcurr = vi

tcurr+
∆tnewi

2 − ai
tcurr ∆tnewi

2
(4.9)

H2 fraction computation We compute the H2 fraction of gas particles with the function

make_h2. This computation could be done before the Kick operation because the Kick has

no e�ect on it. As it must be done after the density gradient has been computed, we inserted

it in this loop on particles for commodity. This is done before the cooling, so that the H2

fraction has been properly updated for the computation of the cooling rates.

Entropy update, cooling The code then updates the entropy A of gas particles. This is

done at this point of the code, with the same newly obtained time-step as the one with which

the velocity is updated. This way, in the absence of other cooling or heating processes than

the heating related to arti�cial viscosity, the change in internal energy exactly balances the

corresponding change in kinetic energy. The update is done by:

A
tcurr+

∆tnewi

2
i = A

tcurr−
∆toldi

2
i +

dAi
dt

tcurr ∆tnewi + ∆toldi

2
(4.10)

If we use the cooling we have added, we update the entropy in a modi�ed manner. The

function cool_evaluate evaluates the entropy loss due to cooling by the atom/ion/molecule

processes being considered. It computes the cooling rate according to the temperature,

molecular content and metallicity of a gas particle. The cooling rates are obtained through

interpolation using lookup tables, analytic �ts or numerical solution of equations for low

temperature metal cooling.
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We use a semi-implicit scheme in case the total entropy change �summing the gain from

viscosity heating and the loss from the added cooling� exceeds a tenth of the entropy (which

amounts to when the cooling time is less than ten times the time-step). In this case, the new

entropy is obtained by an iterative scheme.

3 Radiative cooling

We �rst present some basics of line-cooling we use to compute cooling functions of metals,

H2 and HD below 104 K, and then present these cooling functions as well as the cooling used

above 104 K.

3.1 Line cooling

Species with several energy levels can change level due to collisions or radiation. Collisions

with species of the same medium, whether they are elastic or not, do not make the gas lose any

energy globally. Radiation, in cases in which the medium can be considered as optically thin,

can however remove some energy from the gas by escaping. We do not consider stimulated

emission or absorption.

The volume cooling rate due to a system of N levels of populations n1...nN (number

densities in cm−3 of sum ntot) and energies E1...EN is the rate of escaping radiation due to

all the transitions (all the lines being considered as optically thin here):

Λ =
∑

1≤i<j≤N
njAji(Ej − Ei) (4.11)

where Aji is the probability of spontaneous de-excitation from level j to level i per unit time

(in s−1).

As species can be de-excited by radiation, it is not always possible to approximate the

populations of energy levels using their Boltzmann value, as they would have in the case of

Local Thermal Equilibrium (LTE):

nBi = ntot
gie
−
Ej − Ei
kT

Z
(4.12)

where gi is the multiplicity of level i and Z is the partition function:

Z =
N∑
i=1

gie
−
Ei
kT (4.13)

For low densities of the colliding species, the high energy levels are indeed not as occupied,

as their depopulation by spontaneous emission of radiation is of the same order or greater

than their depopulation by collisions. Populations of each energy level have to be computed.
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The principle of detailed balancing can be used to determine the populations. This

principle states that the number of transitions to a given energy level is equal to the number

of transitions from that level to others per unit time and volume, i.e. the population of an

energy level equals its depopulation by unit time and volume. For a level i, this detailed

balance can be written as:

ni
∑
i

Pi→j =
∑
j

njPj→i for i 6= j (4.14)

where ni is the number density of particles in level i, and Pi→j is the probability of transition

from level i to level j by unit time (in s−1). This probability can be the Einstein coe�cient

for spontaneous emission A or the probability of collisional transitions from level i to j. In the

case of collisions with a species X (hydrogen atoms or electrons for example) this probability

is:

P coll
i→j = nXγ

X
ij ≡ nX < vσXij >= nX

∫ ∞
0

vσXij f(v)d3v (4.15)

where γXij is a collision coe�cient (in cm3 s−1), σXij is the corresponding collision cross-section

(in cm2) and f is the distribution function for velocity v.

Two-level species The case of a two-level species X is useful to exhibit deviations from

the Boltzmann distribution. If X, with energy levels 1 and 2 of populations n1 (lower level)

and n2 (upper level), experiences collisions with a species Y that makes it change of energy

level with rates γY12 and γY21 (see Figure 4.4), the detailed balance principle can be written as:

dn2

dt
|coll−exc −

dn2

dt
|coll−deexc −A21n2 = 0 (4.16)

γY12n1nY − γY21n2nY −A21n2 = 0 (4.17)

where A21 is the Einstein coe�cient for spontaneous emission. As γY12 = γY21

g2

g1
e
−
E2 − E1

kT

(using the detailed balance principle in the absence of radiation), the equilibrium ratio of

populations is:

n2

n1
=
g2

g1

e−(E2−E1)/kT

1 +
A21

γY21nY

(4.18)

A critical density for the species Y can thus be de�ned as:

ncrit =
A21

γY21

(4.19)

If nY � ncrit, the populations ratio reduces to the Boltzmann ratio, while if nY . ncrit,

the depopulation of level 2 will be due mainly to radiation, leading to a reduced higher level

population.
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Figure 4.4: Energy levels with probabilities of excitation and de-excitation by collisions or

spontaneous radiation.

3.2 Cooling by metals under 104 K

Following Maio et al. (2007), we compute cooling functions of a few metals below 104 K:

ionised carbon CII, neutral oxygen OI, ionised silicium SiII and ionised iron FeII. These

are the most abundant heavy atoms released by stars in the ISM and thus are the main

ingredients for cooling. SNIIs expel mostly oxygen and carbon, and supernovae of type Ia

expel silicon and iron. Carbon, silicon and iron are assumed to be completely ionised as a

UV background below 13.6 eV escapes absorption from neutral hydrogen and can ionize these

metals that have a �rst ionisation potential below 13.6 eV. Oxygen is mainly neutral as its

�rst ionisation energy is at 13.62 eV.

For each species, we solve a system of equations including equations equalising the de-

populations and populations of energy levels, and the equation accounting for the conservation

of the number of particles. Collisions with hydrogen atoms and electrons are considered.

The collision rates and Einstein coe�cients are taken from Hollenbach & McKee (1989) and

Santoro & Shull (2006).

We write the systems of equations and solve them either analytically for CII and SiII, or

numerically for OI and FeII.

Carbon and silicium The CII system is modelled as a two-level system taking into account

the �ne structure transition between two states, so we have:{
n1 + n2 = ntot

− n1nHγ
H
12 − n1neγ

e
12 + n2nHγ

H
21 + n2neγ

e
21 + n2A21 = 0

(4.20)

The SiII system also consists of two levels, so the equation system is the same as for CII

(with the coe�cients speci�c to silicium).

Oxygen and iron OI and FeII are modelled with 5 energy levels. We write the equation

systems with the relevant transition coe�cients and solve them numerically to compute the

cooling functions.

We choose the same abundances as in Sutherland & Dopita (1993) (solar abundances

and primordial ratios) for the metals we consider here. As they did, we assume that the
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abundances are solar for a metallicity Z = [Fe/H] = log10

nFe

nH
− log10

nFe

nH
|� from 0 to

0.5, primordial for Z ≤ −1, and an interpolation between primordial and solar values for

−1 ≤ Z ≤ 0. The ratios are listed in Table 3.2.

Fe O Si C

Solar log10
n
nH

-4.33 -3.07 -4.45 -3.44

Primordial log10
n
nH

-4.33 -2.57 -4.05 -3.44

We take a �xed low electronic fraction of (
ne−

nH
= 10−5), assuming the cold gas is quasi

neutral.

The cooling functions of carbon, iron and silicium start saturating for densities of

104 − 105cm−3, which is of the order of magnitude of the highest densities we can have,

so the volume cooling rate is proportional to the density, not to its square. We represent

on Figure 4.5 the individual cooling rates for solar abundances and nH = 1cm−3, and on

Figure 4.6 the volume cooling rate for various densities for a solar metallicity. We solve the

equations in the code directly. We note that as we have all the data to solve for populations

in di�erent regimes, another possibility would be to write the cooling functions for individual

metals as an interpolation between the high density LTE regime and the low density regime

(in the spirit of what is done for the H2 cooling in the next section) for which we can obtain

analytic �ts.
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Figure 4.5: Volume cooling rates of metals for solar abundances, nH = 1cm−3 and
ne
nH

= 10−5
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Figure 4.6: Volume cooling rate for a solar metallicity and increasing densities. The dashed

lines are n2
HΛ(nH = 1cm−3) for nH = 102cm−3 and nH = 104cm−3 (in the colour corre-

sponding to the cooling function obtained from the resolution of levels populations). This

approximation starts breaking down at nH = 104cm−3

3.3 Cooling of H, He and metals above 104 K

We use the cooling functions computed by Sutherland & Dopita (1993) for an optically

thin plasma in collisional ionisation equilibrium (CIE). These cooling functions include cooling

due to H, He and metals, for di�erent metallicities. Di�erent cooling processes (collisional

excitation, recombination and ionisation, free-free radiation or bremsstrahlung), and heating

processes (photoionisation radiation and Compton heating) are included in the computation

of the cooling functions.

The functions taken directly from the tables of Sutherland & Dopita (1993) are plotted

on Figure 4.7. For intermediate metallicities, we used an interpolation on metallicity.

The full cooling functions for a gas with hydrogen only in atomic form is obtained by

combining the cooling functions with the same metal abundances to get cooling functions

from 10 K to 108.5 K and are shown on Figure 4.8 for nH = 1cm−3.

3.4 Cooling by molecular hydrogen

To compute the cooling due to H2, we use the approach of Glover & Abel (2008), remi-

niscent of Hollenbach & McKee (1979). The cooling function is written as an interpolation

between the LTE cooling function and the function for low densities.

ΛH2 = nH2

ΛH2,LTE

1 +
ΛH2,LTE

Λn→0

(4.21)
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Figure 4.7: Volume cooling rates normalised by n2
H,0 with nH,0 = 1cm−3 of Sutherland &

Dopita (1993) for di�erent metallicites Z = [Fe]/[H]
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Figure 4.8: Full cooling curves of metals at di�erent metallicities for nH=1cm
−3.

with ΛH2,LTE the LTE cooling rate per H2 molecule in erg s−1 and:

ΛH2,n→0 =
∑
k

ΛH2,knk (4.22)

where ΛH2,k is the cooling rate in erg cm3 s−1 (normalised by n2
H,0 with nH,0 = 1cm−3) due

to collisions of H2 with the species k and nk is the number density of the species k. For low

densities, this reduces to Λn→0 and for high densities, to ΛH2,LTE.

As the H2 molecule is symmetric, the allowed transitions are quadrupole ones with ∆J =
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0 ± 2. The LTE cooling rate per molecule is:

ΛH2,LTE =
∑

i<j,∆J=0,±2

fjAji(Ej − Ei) (4.23)

where fj is the fraction of molecules in the energy level j:

fj =
gje
−
Ej − E0

kT

Z
(4.24)

with E0 the energy of the non-degenerate ground state, and gj the multiplicity of level j.

There is a rotational degeneracy (2J + 1), with J the rotation quantum number of the

energy level in question, and another factor, 2S+ 1, due to nuclear spins that can be parallel

(�ortho-hydrogen�, S = 1) or anti-parallel (�para-hydrogen�, S = 0). This factor is 3 for

ortho-hydrogen, and to 1 for para-hydrogen. We calculated the LTE cooling rate per molecule

using energies and Einstein coe�cients for the allowed transitions from the Cloudy package

(Ferland et al. 1998).

The LTE approximation is correct only for high densities that are not reached in our

simulations. We used the ai coe�cients of Glover & Abel (2008) for the approximation of

the cooling function due to collisions with the species X for low densities:

log ΛH2,X =
∑
i

ai(log T3)i (4.25)

where T3 = T/1000 and ΛH2,X is in erg/cm3/s.

We assumed H2 cooling below 104 K takes place in an almost neutral medium and thus

considered collisions with the following species: other H2 molecules, H atoms and He atoms.

Collisions with H atoms are often the only one taken into account (e.g. Galli & Palla 1998),

however, collisions with H2 and He make a signi�cant contribution and, as we are interested in

describing media with a large fraction of H2 compared to the fraction of H atoms, taking into

account the collisions with H2 and He is necessary to compute cooling that would otherwise

be zero in regions poor in atomic hydrogen.

The �nal expression we use in the code is:

ΛH2 = nH2

ΛH2,LTE

1 +
ΛH2,LTE

nHΛH2,H + nH2ΛH2,H2 + nHeΛH2,He

(4.26)

where ΛH2,LTE is the LTE cooling rate per H2 molecule, in erg s−1, and ΛH2,H, ΛH2,H2 and

ΛH2,He, represented in Figure 4.9, are the low density normalised cooling rates in erg cm3 s−1

due to collisions with respectively H, H2 and He. We plot this cooling rate in Figure 4.11

for a hydrogen nuclei number density, nHnucl
= nH + 2nH2 , of 1 cm−3, and di�erent mass

ratios of molecular hydrogen over the total hydrogen component. In Figure 4.10, we plot the

cooling rate per molecule (without the pre-factor nH2 in 4.26) for a mass fraction fH2 = 0.1

and di�erent total hydrogen nuclei densities, so as to show the utility of the interpolation.
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Figure 4.9: Normalised volume cooling rates of H2 due to collisions with H atoms, H2

molecules and He atoms (respectively ΛH2,H, ΛH2,H2 and ΛH2,He).
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Figure 4.10: Volume cooling rates of H2 for a hydrogen nuclei number density of 1 cm −3

as a function of temperature for di�erent H2 to total hydrogen mass ratios fH2 . For high

fractions of H2, and at densities for which the cooling rate depends on collisions, the cooling

can become slightly more important just below 104 K as the mass fraction is reduced, because

the contribution of collisions with atomic hydrogen dominates in this domain of temperatures.
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Figure 4.11: Cooling rates of H2 per H2 molecule for a mass fraction fH2 = 0.1 and di�erent

hydrogen nuclei densities coded by colour. Coloured solid lines are the interpolated cooling

function per molecule, the black solid line is the maximal LTE cooling function, and the dotted

lines are the low densities approximations. For low nHnucl
, the cooling rate per molecule is

signi�cantly lower than the LTE one, while for nHnucl
> 102 cm−3, the interpolation must be

used so as not to overestimate the cooling.

3.5 Cooling by HD

Despite its lower abundance than molecular hydrogen, the molecule HD can help cool the

gas because of its permanent electric dipole. For HD dipolar transitions ∆J = + − 1 have

stronger probabilities than quadrupole ones of H2 and make the cooling function by molecule

much larger (the LTE cooling rates per molecule are shown on Figure 4.12).

We used data from Abgrall et al. (1982) extended to higher rotational levels (private

communication) to compute the LTE cooling function in a similar way than for H2.
1

For low densities, we took the function of Lipovka et al. (2005). This cooling function takes

into account the collisions of HD with H atoms and only dipolar transitions, which is justi�ed

by their much larger contribution to the cooling than quadrupole ones. The cooling function

of Lipovka et al. (2005) is valid for a hydrogen atom density between 1 cm−3 and 108 cm−3.

We have densities lower than 1 cm−3 in our simulations, so we followed Glover & Abel (2008)

by assuming that the cooling function is simply proportional to the H atoms density for low

densities, so that the cooling function (per molecule) is simply nHΛ(nH = 1cm−3).

1. Contributions from high energy levels play a noticeable role at high densities for temperatures from

around 103 K to 104 K. As in Coppola et al. (2011), we indeed notice our LTE function is slightly higher for

temperatures above 700 K, as we used the same data, than Lipovka et al. (2005) that do not include as many

transitions.
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Figure 4.12: LTE cooling rates per molecule for H2 and HD. HD has a higher cooling rate

because of its allowed dipole transitions.

We write, as for H2:

ΛHD =
ΛHD,LTE

1 +
ΛHD,LTE

Λn→0

(4.27)

which prevents errors in the estimation of the cooling function for high densities (more than

104 cm−3 2).

In our present simulations, we have set xHD = 10−5xH2 and the temperature cannot go

below 100 K so the HD cooling has no in�uence, as can be seen on Figure 4.13, but it would

have an impact in other conditions.

3.6 Total cooling

The total volume cooling rate we use is:

Λtot = ΛH2 + Λmet (4.28)

where Λmet is the volume cooling rate due to metals, that depends on the number density of

atomic hydrogen (as we did not include cooling due to collisions between H2 and metals).

This volume cooling rate is represented in Figure 4.14 for a number density of hydrogen

nuclei of 1cm−3, di�erent metallicities and H2 gas mass fractions. A small gas mass fraction

of H2 can signi�cantly increase the cooling between 103K and 104K.

2. This would also prevent errors for low temperatures (from log T = 1 to log T = 1.6, below our temper-

ature �oor) for which the Lipovka et al. (2005) �t is not valid and gives a stronger cooling than the maximal

LTE one.
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Figure 4.13: Volume cooling rates for nHnucl
= 1cm−3, for a H2 mass fraction of 0.1 (xH2=0.05)

and di�erent HD abundances.

3.7 Algorithm for cooling

The interstellar gas component is modelled as an ideal gas with an adiabatic index γ =
5

3
that we keep �xed.

Cooling in the entropy evolution equation The evolution of the speci�c entropy Ai of

a particle i is governed by:

dAi
dt

= −γ − 1

ργi
Λ(ρi, Ti) +

1

2

N∑
j=1

mjΠijvij .∇iW ij (4.29)

where Λ is the volume cooling rate in erg cm−3 s−1 (the sum of the contributions described

above) and Πij is the arti�cial viscosity tensor.

Semi-implicit time-integration As the cooling time can be lower than the time-steps,

we use a semi-implicit cooling scheme 3 to stabilise the resolution. We solve iteratively the

implicit equation:

Ai(t+ dt) = Ai(t) +

(
− γ − 1

ρi(t)γ
Λ(ρi(t), Ti(t+ dt)) +

1

2

N∑
j=1

mjΠijvij .∇iW ij

 dt (4.30)

where dt is the time-step.

3. we keep the density constant, so it is an isochoric scheme
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Temperature derivation from entropy As A =
P

ργ
and, for an ideal gas:

P =
ρkT

µmp
(4.31)

where mp is the proton mass and µ, the mean molecular weight, is:

µ =
∑
i

xi
mi

mp
(4.32)

with xi the number fraction of the species i, the relation between temperature and speci�c

entropy is:

T =
µmpρ

γ−1

k
A (4.33)

For a gas composed of atomic and molecular hydrogen and helium, neglecting the metals

contribution:

µ =
4

1 +

(
3− 4

nH2

nHnucl

+ 4
ne−

nHnucl

)
X

(4.34)

where nHnucl
is the number density of hydrogen nuclei and X is the hydrogen nuclei mass

fraction that we set to 0.76.

We do not compute the ionisation fraction
ne−

nHnucl

in the simulations. We assume the gas is

quasi neutral below 104 K. Above that temperature, we assume there is no molecular hydrogen

and the gas is fully ionised (H+ and He2+). Electronic neutrality then imposes numbers of

electrons, H and He ions related by Ne− = NH+ + 2NHe2+ , which gives a molecular weight:

µ =
4

3 + 5X
(4.35)

µ being higher for a neutral gas than for an ionised one, the temperature obtained con-

sidering the gas is neutral is higher than the one obtained considering the gas is fully ionised.

We simply set to 104 K the temperature of the gas in the entropy range for which the tem-

perature assuming a neutral gas is above 104 K but the temperature assuming a fully ionised

one is above it.

4 H2 fraction

As our goal was to determine the molecular abundance, but without a detailed chemical

scheme, we looked for a simple way of obtaining a realistic mass fraction of molecular hydrogen

as a function of the properties of the gas and its environment.

Krumholz et al. (2008, 2009b); McKee & Krumholz (2010) have derived a simple analytic

expression for the mass fraction fH2 (ratio of the molecular hydrogen mass on the total

hydrogen nuclei mass) for a two-phase equilibrium, taking into account H2 self-shielding and

dust shielding. We follow this approach in writing:

fH2 ' 1− 3

4

s

1 + 0.25s
(4.36)
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with:

s =
ln(1 + 0.6χ+ 0.01χ2)

0.6τC
(4.37)

fH2 is set to zero when s > 2.

� χ is a scaled UV radiation �eld proportional to the Lyman-Werner dissociating �eld

over the number density of hydrogen nuclei. χ can be viewed as the relative importance

of dust compared to H2 in the shielding (Krumholz et al. 2009b): for high radiation

�elds there is indeed little H2 so the shielding is predominantly due to dust, while for

low radiation �elds the higher fraction of H2 makes self-shielding important.

� τC is the dust optical length:

τC =
Σσd
µH

(4.38)

� Σ is a column density Σ = ρL obtained from a local scale height: L =
ρ

|∇ρ|
. We

compute (∇ρ)i, the gradient of the density of the particle i by:

ρi(∇ρ)i =
∑
j

mj(ρj − ρi)∇iW (rij , hi) (4.39)

The scale height takes the variation of the density into account: it increases with

density but is inversely proportional to its gradient, so it is lower in the case of large

gradients encountered on the outer parts of density features like clumps or spiral

arms. It is thus well adapted to compute the column density used to determine the

shielding from radiation, and interestingly does not depend on resolution as much

as other characteristic lengths sometimes used for the same purpose, such as the

smoothing length.

� σd is set, using the reference Milky Way value, to:

σd = Z ′10−21 cm2 (4.40)

with Z ′ the metallicity we normalise by the solar metallicity:

Z ′ = nFe/nH

nFe/nH|�
(4.41)

� µH is the mean mass per H nucleus.

We apply this expression of molecular hydrogen mass fraction to each gas particle.

As we want to to use the information of new stellar formation in the disc, the χ is

computed using a proxy for the radiation �eld from new stars G. We assume stars with age

inferior to 10 Myr radiate in the Lyman-Werner band and can dissociate the H2 molecules.

We do not consider that older stars radiate in this band, so they do not have any e�ect on

the fraction of H2 in our simulations. We take χ ∝ G

nHnuclei
, with a tunable scaling factor.

The radiation �ux produced by stars decreases with the distance r to a star in
1

r2
, as the

gravitational �eld. We insert the computation of the �ux received from stars younger than
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10 Myr by one gas particle in the Gadget-2 gravitational tree functions, as it is similar to

computing the gravitational force due to the young stars only and can be easily done by

adding a range of variables representing this contribution only.

This approach is simple and would require a more detailed comparison of the obtained

mass fractions for simulations directly comparable with observations. What we wanted was

to have a reasonable molecular hydrogen fraction that was allowed to change for each particle,

depending on the evolution of the galaxies, and therefore kept this method.

5 Star formation

In the stochastic star formation approach (Katz 1992) that we use, gas particles that

satisfy selection rules listed below in this section have the following probability of spawning

a stellar particle by time-step ∆t:

p∗ =
mg

m∗

(
1− e−c?∆t/t?

)
(4.42)

meaning that gas particle of mass mg can spawn a star particle of mass m∗ with this prob-

ability at each time-step, the mass of the gas particle being then reduced by m∗, until there

is no more mass in the gas particle. We used the free-fall time tff =

√
3π

32Gρ
for t? in most

of our simulations.

The number of Ng→? of star particles created by gas particle is a compromise between

a good mass and time resolution of star formation and CPU cost: if several stellar particles

are created from a single gas particle, star formation will be smoother, temporally better

resolved, but the total number of particles can increase signi�cantly, which slows down the

code. We follow Springel & Hernquist (2003) that take a number of 4 star particles created

by gas particle.

In the case where Ng→? is greater than one, we note that this spawning scheme implies

that gas particles will have di�erent masses, either the initial mg, or a smaller multiple

of
mg

Ng→?
. The density and smoothing length are computed by Gadget-2 so that the mass

contained in a sphere of radius hi is �xed, hi being the smoothing length of the particle i,

and we slightly modi�ed the algorithm to take into account the di�erent masses, so that this

mass condition is still satis�ed. The impact is minor, it makes the smoothing length slightly

higher for a given density if low mass gas particles are amongst the neighbours. It is more

useful if we want to monitor precisely the feedback energy that is given to the neighbours

(this was the initial motivation for such a change).

We use common selection rules for the particles that are allowed to spawn stars:

� They must have a density higher than a threshold nHmin. We set nHmin = 10−1cm3

for most of our simulations. The threshold can be increased to allow for an ISM with

more density structures, but if it is too high, the mass resolution must be increased for

the Jeans mass to still be resolved.
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� They must have a temperature lower than a maximum temperature Tmax. We use

Tmax = 30 000 K, which happens not to be selective as only a few di�use particles can

reach these temperatures in most of our simulations that use kinetic SNII feedback.

� They must be in a converging �ow (∇.v < 0).

We note that using a constant value for t? in the probability law (which amounts to

considering a Schmidt law with an exponent n = 1) can give a highly heterogeneous gas

medium, similarly to what is achieved by increasing the threshold density for star formation,

because as the SFR is proportional only to the density and not its square, high density peaks

can develop.

6 Supernova feedback

As stellar particles usually have a much larger mass than individual stars, they are con-

sidered as representing a whole stellar population. Assuming an IMF to determine which

fraction are expected to explode as SNII, it is possible to compute the energy released at or

after the formation of a stellar particle. If we take an IMF ψ(M) �such that ψ(M)dM is the

number of stars of mass betweenM andM +dM� the supernovae energy released by formed

stellar mass is:

εSN =

∫
SN mass range

ψ(M) dM∫
full mass range

Mψ(M) dM
ESN (4.43)

where ESN is the energy released by one supernova. We consider a supernova explosion

releases the canonical value ESN = 1051erg.

A fraction αfb of this energy is given to the ISM, while the rest is radiated away. Each new

stellar particle of mass m? will thus input an energy Einput = αfbεSNm?. We consider that

one SNII explodes for 100M� that are formed, which is of the order of the fractions obtained

from commonly used initial mass functions (such as a Salpeter IMF with slope −2.35 and

lower and upper limits of 0.1 and 40 M�, with stars more massive than 8 M� considered to

be supernovae), so we have εSN = 1049erg/M�.

We use the �momentum� version of kinetic feedback (Navarro & White 1993). Each

neighbour i of a new star particle 0 receives an energy weighted by its distance to the new

stellar particle:

Ei =
W (|ri0|, h0)∑

ngb kW (|rk0|, h0)
Einput (4.44)

so that the sum of the energies given to the neighbours is Einput. If the newly created stellar

particle has left a remnant gas particle, no feedback energy is given to the remnant. We

recompute the smoothing length and neighbours list at the position of a new stellar particle,

considering only the neighbouring gas that has not been turned into stars (and not considering

a possible gas particle remnant at the exact position of the new stellar particle). Therefore
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the sum of the fractions involving kernels is indeed unity, and the mass of the gas a�ected

by each supernova explosion is a constant.

The neighbours are given a velocity kick

√
2Ei
mi

, directed along the line joining the stellar

particle and the neighbour, and away from the new stellar particle.

The number Ng→? of stellar particles created out of one gas particle has an in�uence on

the distribution of feedback energy. Feedback energy is more gradually input for a larger

Ng→?.

Variations We tried a couple of variations in the exact implementation of SNII feedback.

We preferred keeping the simple approach of kinetic feedback in the momentum version we

described above, but we brie�y mention the attempts here:

� Thermal feedback can be chosen in our code. We have a tunable time during which the

cooling of particles a�ected by feedback is turned o�, allowing the particles to transfer

kinetic energy to others rather than being simply cooled by the strong cooling in dense

star forming regions.

� We implemented a hydrodynamical decoupling for particles a�ected by feedback, fol-

lowing Springel & Hernquist (2003). A kicked particle does not feel nor contribute to

hydrodynamical forces for a while, until a tunable amount of time has passed or the

density of the particle has fallen below a threshold. This increases signi�cantly the

e�ect of feedback, as gas particles are not braked by the arti�cial viscosity force for a

while, allowing them to go further away from the disc plane in our disc simulations.

� The e�ciency of a simple kinetic feedback is especially reduced in dense regions because

of our implementation in which we input energy to all the gas particles in a smoothing

kernel. To avoid strong clumping 4, we therefore implemented a scheme in which a

constant number of neighbours of a new stellar particle are kicked (or heated). The

neighbours are all given the same suitable probability of being chosen p =
Nfeedback

Nngb

where Nfeedback is the desired number of neighbours a�ected by feedback and Nngb is

the number of neighbours. In the case in which the smoothing kernel contains fewer

neighbours than Nfeedback, all the neighbours are a�ected by feedback. This scheme

requires more computation steps.

� We also tried to increase the feedback strength (limited to the maximum energy of

1051 erg per SN) for new stellar particles born in a specially dense region. In a simple

implementation, the feedback strength was multiplied by two for particles having a

density above a threshold given as a parameter to the code.

� Finally, we tried to input feedback both thermally and kinetically. This can lead to a

reduced feedback in the case where particles have their cooling stopped and are decou-

4. that can be very CPU consuming and can lead to a questionable validity of the simulation if too high

densities are reached, the Jeans length/mass are far from resolved and the SPH kernel leads to a potential

numerical artefactual clumping instability
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pled from hydrodynamics during the same amount of time. Indeed, if heated particles

are also hydrodynamically decoupled, their internal energy can not be transferred to

other particles in the form of kinetic energy because the hydrodynamical forces tem-

porarily exclude the decoupled particles. Once the decoupling ends, if the cooling is

turned on at the same time or rapidly, the thermal feebdack will be rendered poorly

e�cient as the cooling will quickly lower the internal energy of particles.
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Chapter 5

Simulations

We performed simulations mainly aiming at testing the e�ects of molecular hydrogen

cooling and SNII feedback on star formation in disc galaxies, using the method we described

in last chapter. In the present chapter, we �rst describe the initial conditions we used and

then show our results on the variation of feedback e�ciency and the impact of molecular

hydrogen inclusion. The last section describes a few variations in resolution, disc parameters,

or star formation and feedback implementation.

1 Initial Conditions

We generate initial conditions with a code we have adapted so that it uses gravitation

and hydrodynamics routines of Gadget-2 for consistency with the simulations.

We consider the case of a giant Sb galaxy consisting of stellar and gaseous discs, a stellar

bulge and a CDM halo.

1.1 Density pro�les

Gaseous and stellar discs The gaseous and stellar discs follow Miyamoto-Nagai density

pro�les (Miyamoto & Nagai 1975). This pro�le is derived from the following axisymmetric

potential, in cylindrical coordinates:

ΦMN(R, z) = − GM(
R2 + (a+

√
z2 + b2)2

)1/2
(5.1)

where M is the total mass and a and b are scale lengths that allow for a varying degree of

�attening: for a = 0, this potential reduces to the spherically symmetric Plummer potential,

while for b = 0, it reduces to the axisymmetric Kuzmin potential for an in�nitely thin disc.

The corresponding mass density, deduced from the Poisson equation, is:

ρg(R, z) =
b2M

4π

aR2 + (a+ 3
√
z2 + b2)(a+

√
z2 + b2)2(

R2 + (a+
√
z2 + b2)2

)5/2
(z2 + b2)3/2

(5.2)

79
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Sb Mh Md Mb Mg

in M� 1.7 1011 4.5 1010 1.1 1010 0.9 1010

rh ad hd rb ag hg

in kpc 12 5 0.5 1 11.8 0.2

Table 5.1: Sb galaxy parameters

Stellar bulge and dark matter halo The spherical stellar bulge and dark matter halo

have Plummer density pro�les, which are in spherical coordinates:

ρb(r) =
3M

4πrc

1(
1 + r2

r2c

)5/2
(5.3)

All the masses and characteristic lengths are speci�ed in Table 5.1. We use a total of

1 200 000 particles with 400 000 particles of each type: gas, stars, and dark matter. The

masses of particles that follow are shown on Table 5.2.

1.2 Velocities

Gaseous and stellar discs The radial velocity dispersion of the discs is derived from:

σr(r) =
3.36GQΣ(r)

κ(r)
(5.4)

with Q the Toomre parameter that we set to Q = 1 for both discs, Σ the total surface density

and κ the epicyclic frequency derived from the total potential Φ by:

κ2(R) =
∂2Φ

∂R2
|z=0 +

3

R

∂Φ

∂R
|z=0 (5.5)

The azimuthal velocity dispersion is obtained from:

σθ(R)

σr(R)
=

κ(R)

2Ω(R)
(5.6)

with Ω the circular frequency obtained by:

Ω2(R) =
1

R

∂Φ

∂R
|z=0 (5.7)

The vertical dispersion is set by assuming an isothermal equilibrium (e.g. Binney &

Tremaine 2008):

σz(R) =
√

2πGhΣ(R) (5.8)

We use the gravitation and hydrodynamics routines of Gadget-2 to obtain the forces acting

on particles. The circular velocity of disc particles are computed using these accelerations

and an asymmetric drift correction is added to have a more realistic velocity pro�le.

The Miyamoto-Nagai pro�les are chosen because the associated potential is analytic and

the initial velocity dispersions can thus be easily computed, but relaxation makes the pro�les

quickly exponential.
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Bulge and dark matter halo The velocity dispersion of the spherical components is

derived from one of the Jeans equations for a non-rotating spherical system with an isotropic

velocity dispersion. The dispersions σ2
i (r) where i is one of the spherical coordinates are thus:

σ2
i (r) =

1

ρ(r)

∫ ∞
r

ρ(u)
∂φ

∂u
du (5.9)

The velocity curve for this analytic model, with the contributions of the di�erent compo-

nents, is shown in Figure 5.1. The rotation is due mainly to the stellar components near the

centre of the galaxy, and to dark matter at large radii.
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Figure 5.1: Initial rotation curve. Top solid (blue) thick line: total rotation curve. Dashed

(purple) line: bulge. Dotted (green) line: stellar disc. Dash-dot (green) line: gas. Solid (red)

line: dark matter halo

1.3 Resolution

The number of particles should ideally be the largest possible to have a good mass reso-

lution, which allows the Jeans mass to be well resolved. We run simulations with 1 200 000

initial particles: a third are gas particles, a third are stellar particles and a third are dark

matter particles. Table 5.2 shows the particle masses we have in the particular case of our

galaxy model that will be detailed in 1. New stellar particles have a mass mnew ∗ =
mg

Ng→?

depending on the parameter Ng→?, the number of stellar particles produced out of one gas

particle. We typically chose Ng→? = 4 in our simulations, following Springel & Hernquist

(2003), as a compromise between a good time resolution for star formation and CPU cost.

The gravitational softening length ε depends on this number of particles: a too small

value for a given number of particles introduces unphysical two-body relaxation in media

that are collisionless (stellar components of galaxies and dark matter haloes), while a too

large one decreases the spatial resolution by �blurring� density features and does not allow
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Figure 5.2: Initial surface densities. Dotted line: gas. Dashed line: stars.

ε mDM m? mg

[pc] [M�] [M�] [M�]

100 3.7 105 1.4 105 2.5 104

Table 5.2: Resolution: gravitational softening and particle masses.

the Jeans length to be gravitationally resolved. Gravitational softening lengths ε are usually

taken as scaling with the mean inter-particle distance, therefore as the number of particles

to the power 1
3 for a 3-dimensional simulation. We take a softening length ε = 100 pc for

all particle types. This particular value is derived from the optimum found in the GalMer

simulations (eg Di Matteo et al. 2007) which took ten times less particles for a softening of

280 pc. The GalMer simulations were isothermal, at 104 K, and since here the temperature

reaches down to 100 K, we take a softening length that is a little inferior to the cubic root,

while still allowing for an e�cient computation on a few tens of computing cores.

1.4 Relaxation of initial conditions

If we start simulations directly from this point, the initial little departure from equilibrium

due to the inexact analytic combination of spherical and disc components will give rise to

an annulus instability: concentric annuli grow from the centre of the discs to their edges for

a while, until the velocity dispersions have adjusted themselves. We thus further prepare

the initial conditions by letting the galaxy evolve for 300 Myr with only gravitational forces

included for any type of particles. This allows us to start the simulations with dynamically

relaxed discs.

The initial surface densities of gas and stars are shown in Figure 5.2, and a snapshot of

the gas is shown on Figure 5.3.
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Figure 5.3: Initial density map of the gas disc. The box size is [40 kpc x 40 kpc]. Done with

the visualisation software SPLASH (Price 2007).

2 Feedback e�ciency variation in metal-cooling only simula-

tions

As we have not so far implemented any gas chemical enrichment by stars, we assumed

there is a metallicity gradient in the gas disc. We take a central metallicity Z = [Fe/H] such

that Z(R = 0) = Z� + 0.5 and assume the metallicity decreases of 1 dex per 10 kpc:

Z(R) = Z(R = 0)− R[kpc]

10
(5.10)

where R is the cylindrical radius.

We �rst present a range of simulations in which we set some star formation parameters:

� The star formation e�ciency per free-fall time c? in the Schmidt law dρ∗
dt = − c∗

tff
ρg is

set to c? = 0.1.

� The number density threshold for star formation nHmin is set to nHmin = 10−1 cm3.

� The number of stars spawned by gas particle Ng→? is set to Ng→? = 4.

We set the initial temperature to 100 K throughout the gas disc and forbid the tempera-

ture from being lower during the simulation.

We �rst perform simulations with no molecular hydrogen, with varying feedback e�cien-

cies αfb, representing the fraction of the 1051 erg that is input to the surrounding gas for

the explosion of one SNII. We have four di�erent feedback e�ciencies: either no feedback

(αfb = 0), αfb = 1%, αfb = 10% or αfb = 40%.

2.1 Gas and stars discs

Surface density maps of the gas discs for these runs are shown in Figures 5.4 and 5.5 at

three simulation times: 0.5 Gyr, 1 Gyr and 3 Gyr.
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Figure 5.4: Projections of the gas density after 0.5 Gyr, 1 Gyr and 3 Gyr of evolution. Box

sizes are [30 kpc x 30 kpc] for face-on views and [30 kpc x 20 kpc] for edge-on views. Each

row corresponds to a feedback e�ciency indicated on the top. The column integrated density

scale is the same for all plots.
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Figure 5.5: Projections of the gas density after 0.5 Gyr, 1 Gyr and 3 Gyr of evolution. Box

sizes are [30 kpc x 30 kpc] for face-on views and [30 kpc x 20 kpc] for edge-on views. Each

row corresponds to a feedback e�ciency indicated on the top. The column integrated density

scale is the same for all plots.
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The gas can reach smaller values of local volume density when feedback is included, as star

formation in dense regions inputs some energy in the gas and prevents it from getting denser.

The consequences of changing the feedback e�ciency are visible on the surface density maps:

� For the run without feedback, the central part of the galaxy exhibits a strong density

contrast on the snapshots at 0.5 Gyr and 1 Gyr, many small clumps and thin spiralling

�laments can be seen.

� For a feedback e�ciency αfb = 1%, only a few clumps can be seen. Spiral structures

are also smoother.

� For αfb = 10% and αfb = 40%, no clear clumps can be seen.

A central thin bar is formed in all the cases. After 3 Gyr, the bar is still clearly visible

for the higher feedback e�ciencies αfb = 10% and αfb = 40%, but is less obvious otherwise,

because the central parts have been depleted from gas by star formation. This bar is visible

in young stars, as will be seen in next section. The stellar component of the simulation with

αfb = 1% is shown on the top row of Figure 5.18.

Fourier analysis of the surface density It is possible to analyse quantitatively the

patterns (bars, spiral arms) and their speed by Fourier analyses (e.g. Bournaud & Combes

2002). We included in the code a spatial Fourier analysis every 1 Myr. We decompose the

surface density Σ the following way:

Σ(r, θ) = Σ0(r) +
∑
m

[am(r) cos(mθ) + bm(r) sin(mθ)] (5.11)

where the am and bm coe�cients for radius bins are computed by:

am(r) = 2

∫ 2π

0
µ(r, θ) cos(mθ) dθ (5.12)

bm(r) = 2

∫ 2π

0
µ(r, θ) sin(mθ) dθ (5.13)

We normalise the coe�cients by Σ(r), writing: Am(r) =
am(r)

Σ(r)
and Bm(r) =

bm(r)

Σ(r)

and we then compute Cm(r) =
√
A2
m(r) +B2

m(r). The phase of the mode m is de�ned by

φm(r) = arctan

(
am(r)

bm(r)

)
. A time Fourier transform of Cm(r)eiφm(r) gives the characteristic

frequencies of the mode m at radius r.

We are especially interested in the phase of the m = 2 mode (bar or two-arms spiral

patterns). We represent on Figure 5.6 the result of this time Fourier analysis for the case

αfb = 1%. The analysis is performed from a simulation time t = 0.5 Gyr to t = 2.5 Gyr,

allowing the determination of the speed of the gaseous and stellar bars in this period.

2.2 Thermal state of the gas

Figure 5.7 shows the speci�c energy-number density histograms after 0.5 Gyr of evolution,

a time at which gaseous discs are actively forming stars in all the simulations.
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Figure 5.6: Results of the time Fourier analysis of the m = 2 component performed between

t = 0.5 Gyr and t = 2.5 Gyr. The bar rotation speed is found to be ωbar=31 km/s/kpc.

Especially for the stellar component, a lagging pattern (spiral arms) can be seen at

ω=20 km/s/kpc.

On the top and right of each plot, the marginal probability density functions (PDFs)

of respectively hydrogen nuclei number density and temperature are shown. The fraction

of gas at T ' 104 K increases with feedback, while the cold dense gas fraction decreases.

On the density PDFs one can see that gas reaches smaller maximum densities for higher

feedback e�ciencies and there is an increasingly high fraction of di�use gas. In the low

feedback e�ciency runs, a signi�cant fraction of the dense gas has a temperature close to

the minimum: this is the dense gas of the central parts, subject to metal-line cooling. The

fraction decreases for higher feedback e�ciencies, because of the dissipation of energy by

feedback, making the densest gas of the simulations warmer. If the gas is heated by pressure

forces, viscous shocks or feedback, its temperature does not reach temperatures much beyond

10 4K because of the stronger H, He, and metals cooling it undergoes above.

The diagonal branches observed on the left of each plot account for gas that, away from

the centre of the disc, is subject to very little cooling because of the metallicity gradient, and

thus cools down adiabatically. For comparison, a simulation with cooling only above 104 K

and a feedback e�ciency of 10% has the temperature-density histogram of Figure 5.8. The

densest gas lies at 104 K.
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Figure 5.7: Temperature-density histograms of the gas after 0.5 Gyr of evolution for the

di�erent feedback e�ciencies. The 2D histograms and marginal 1D histograms are all mass

weighted and normalised to unity.
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Figure 5.8: Temperature-density histograms of the gas after 0.5 Gyr of evolution for a run

with αfb = 10% but no cooling below 104 K. The 2D histograms and marginal 1D histograms

are mass weighted and normalised to unity.
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3 Simulations including H2

We now study the impact of the inclusion of H2 on the gas physical state, star formation

and structure of the discs. We take the same metallicity gradient, star formation parameters

and temperature �oor than the ones described in the beginning of last section.

The temperature �oor we apply is more exactly a speci�c energy �oor, corresponding to

a temperature of 100 K for purely atomic gas, and going up to 186 K for gas with hydrogen

present only in the molecular form. Gadget-2 uses the speci�c entropy to evolve the gas

(notably to compute hydrodynamical forces). This speci�c entropy A is such that A ∝ T

µ
,

with T the temperature and µ the mean molecular weight. At a given simulation time, the

speci�c entropies only are known, and we deduce the temperatures needed to calculate the

adequate volume cooling rate with the method described in 3.7 of Chapter 4.

3.1 H2 fraction

We �rst set the feedback e�ciency to αfb = 1% and tune the χ factor in the H2 fraction

so that we �nd a global H2 fraction that is consistent with observations while having enough

molecular hydrogen fraction to study its e�ects. Our metallicity gradient implies that H2

will tend to be less present in the outer parts of the galaxy where the metallicity and dust

abundance are low and the gas is less shielded from Lyman-Werner radiation. However,

this is compensated by the lower star formation rate in these regions, which decreases the

ambient Lyman-Werner luminosity. We plot the evolution of the total mass fraction of H2 in

Figure 5.9 for four di�erent UV �ux scaling factors.

The global mass fraction �rst decreases with time because new stars are formed and

contribute to the dissociating radiation �eld and becomes stable when the SFR becomes

almost null (see the solid line of Figure 5.15 for the evolution of the gas mass). Figure 5.10

shows the surface density of H2 and atomic hydrogen gas HI after 0.5 Gyr of evolution for

the case χ × 50 that we choose. Such a surface density pro�le is similar to some observed

pro�les of local galaxies described in Young & Scoville (1991), and more recently in Bigiel

et al. (2008).

3.2 Gas physical state

Gas disc Figure 5.11 shows the aspect of the disc for αfb = 1% at the same simulation

epochs than in Figure 5.4, whose second column is the simulation for the same feedback

e�ciency but without H2.

Cooling by metals in the purely HI simulation or mainly by H2 in the now H2 dominated

central part make this region similar in both simulations. The di�erence is in the outer

parts of the galaxy for which metal-line cooling is poorly e�cient because of our assumed

metallicity gradient. In this case, the gas remains di�use with no other cooling processes, but



90 CHAPTER 5. SIMULATIONS

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time [Gyr]

0.0

0.2

0.4

0.6

0.8

1.0

H
2
 m

a
ss

 f
ra

ct
io

n

χ×1

χ×10

χ×50

χ×500

Figure 5.9: Global H2 mass fraction versus time for αfb = 1%. The UV �ux increases from

top to bottom.
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Figure 5.10: Radial distribution of the surface density of H2, atomic gas HI and total hydrogen

gas after 0.5 Gyr for αfb = 1% and the selected UV scaling factor.

the inclusion of H2 allows the gas to be clumpier: we see density features that were absent

in the purely atomic simulation. The surface density of H2 is also plotted. It indeed follows

the density features of the gas: the clumps and �lamentary structures can be seen in H2 gas.

The HI gas has a smoother surface density and extends further away from the disc plane.

The central parts are mostly depleted from HI.

Thermal state The temperature-number density histograms of Figure 5.12 and the

marginal PDFs show higher fractions of gas in the cold dense phase than for the corresponding
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Figure 5.11: Projections of the gas density (top row), H2 density (middle row) and HI density

(bottom row) after 0.5 Gyr, 1 Gyr and 3 Gyr of evolution. Box sizes are [30 kpc x 30 kpc]

for face-on views and [30 kpc x 10 kpc] for edge-on views. The column integrated density

scale is the same for all plots.
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feedback e�ciencies without molecular hydrogen. There is no clear diagonal branch because

there is some e�cient cooling in the whole disc. The presence of two mass concentrations at

low temperatures is due to our adopted threshold in speci�c energy, which correspond to a

temperature of 100 K for gas that is atomic, and to a temperature ∼200 K for gas that is

fully molecular. The densest gas is mostly in the molecular form, therefore concentrating at

this second temperature. We also see, as in the simulations without any molecular hydrogen,

a concentration of gas at a temperature of about 104 K.
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Figure 5.12: Temperature-density histograms of the gas in simulation with H2 after 0.5 Gyr

of evolution for the di�erent feedback e�ciencies. The 2D histograms and marginal 1D

histograms are all mass weighted and normalised to unity.

Gas phases We separate the gas in two ranges of temperatures, below and above 1000 K.

We study the evolution of the fractions of cold and warm gas (gas lying below or above this

threshold) depending on the feedback e�ciency, and with or without the inclusion of cooling

by molecular hydrogen. The majority of star formation happens in the �rst Gyrs in all the

simulations (especially when the feedback e�ciency is low and stars form quickly), so we focus

on this period and plot the cold gas fraction as a function of time on Figure 5.13 for two

feedback e�ciencies. All the gas is initially in the cold phase. For a given feedback e�ciency,
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the cold gas phase represents a much higher fraction of the gas if H2 cooling is taken into

account. Without H2, stars are formed from warmer and more di�use gas, reducing the star

formation e�ciency. Feedback decreases the fraction of cold gas: the kinetic energy given to

particles in dense star forming regions is transformed into thermal energy by pressure forces

and viscosity, all the more as the feedback e�ciency is high.
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Figure 5.13: Fraction of cold gas as a function of time for two di�erent feedback e�ciencies

αfb = 1% and αfb = 10%. Solid lines: with H2. Dashed lines: without H2.

Volume density vs radius As we are especially interested in studying the state of the

gas as a function of galactocentric radius, we plot the histograms of gas density versus radius

in Figure 5.14 for the atomic and molecular simulations, after 0.5 Gyr of evolution. The gas

exhibits density peaks at larger radii and has a mean higher density with the inclusion of H2,

with gas denser than the star formation threshold even at large radii. The e�ect is especially

visible for low feedback e�ciencies, but is also visible for high feedback runs: a small fraction

of the gas has densities higher than the threshold for star formation even at large radii.

4 Results on star formation

4.1 Gas mass depletion and total SFR

The e�ect of H2 cooling on the star formation e�ciency is visible in Figure 5.15 and

Figure 5.16.

We plot in Figure 5.15 the time evolution of the total mass of gas present in the simula-

tions. All the gas is originally in the disc but can leave it under the e�ect of gravitational

heating or stellar feedback. The characteristic time of consumption of the gas increases with

feedback e�ciency because of the moderating e�ect of feedback on gas density, regulating
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Figure 5.14: Hydrogen nuclei number density-galactocentric radius histograms after 0.5 Gyr

of evolution. For each plot, the top subplot is a run with no H2 and the bottom plot a run

with H2. Horizontal black dashed line: threshold density for star formation.

star formation, and the curves have increasing horizontal asymptotes y-values. This is due

to gas expelled from the disc, and also to the inability of the gas to reach the star formation

threshold. The gas in the outer parts of the disc remains di�use with almost no star formation

in all cases, as the lower abundance of metals does not allow the gas to cool down enough

to form stars. The depletion time of the gas decreases when molecular hydrogen cooling is

included for all the considered feedback e�ciencies. The total SFR is also shown.

4.2 SFR as a function of radius

Having inserted the formation time of stars in our simulation outputs, we can track star

formation spatially. Our outputs are temporally spaced by 10 Myr. We de�ne the SFR as

being the mass of stars formed during 10 Myr divided by this time, which is similar to the star
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Figure 5.15: Top: evolution of the gaseous mass of the galaxy. Bottom: evolution of the

corresponding SFRs (de�ned as the derivative of the left curves). For both plots, solid lines

are for runs with H2 and dashed lines for runs without H2.

formation rates obtained from observations in Hα. We plot the cumulative SFR averaged on

the �rst Gyr as a function of radius for these two simulations and other feedback e�ciencies

in Figure 5.16, and we see that about the same amount of star formation occurs in the central

parts, but molecular hydrogen starts playing a role at large radii. The di�erence occurs at

a larger radius for the simulation with no feedback, which can be explained by the already

high clumping in central parts of the disc, making star formation very e�cient even without

H2.

4.3 Stellar discs

Figure 5.17 shows the projected density of stars formed since the beginning of the simu-

lation for αfb = 1%: the disc of new stars is more extended if we include H2. There is a few

stellar clumps, and also a very clear stellar bar that is maintained in the stellar component

after a few Gyrs in both cases. Clumps of young stars can be seen on the density maps:
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Figure 5.16: Cumulative star formation rate as a function of galactocentric radius, averaged

on the �rst Gyr. Solid lines: run with H2. Dashed lines: run without H2

they follow the gas clumps. These stellar clumps gradually lose energy and are eventually

absorbed by the central bar. After 3 Gyr of evolution, a peanut-shaped instability of the bar

can be seen on edge-on views of young stars in both cases.

The new stars are only a small mass fraction of the total stars (at most 16% if all the

gas were turned into stars). On Figure 5.18, the corresponding total stellar components are

shown: old disc and bulge stars and new stars. They are similar in both runs.

4.4 Kennicutt-Schmidt diagrams

We further study the star formation by drawing Kennicutt-Schmidt (KS) diagrams repre-

senting the surface density of SFR as a function of the gas surface density. As we are limited

in mass resolution for star formation (stellar particles of a �xed mass of ∼ 104 M� are created

stochastically, completely di�erently from some smooth star formation), in order to have a

signi�cant amount of data to study, we add data points corresponding to 50 snapshots, from

t=200 Myr to t=700 Myr.

We use a polar grid with a given number nR of bins in cylindrical radius R and a given

number nθ of bins in azimuthal angle θ (nR=40 and nθ=20 for the results presented here).

Using this kind of grid allows for a more uniform signal/noise repartition than with an

orthogonal grid, and optimizes the number of new stars per cell.

On Figures 5.19 and 5.20, we have plotted KS diagrams for simulations without feedback,

and with di�erent feedback e�ciencies. These can be compared with Agertz et al. (2012) plots

of azimuthally averaged KS diagrams of disc galaxies for di�erent feedback intensities. Very

similarly, we observe a global diminution of the SFR surface density when we increase the
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Figure 5.17: Projection of the density of stars formed during the simulations after 0.5 Gyr,

1 Gyr and 3 Gyr of evolution. Top row: feedback e�ciency αfb = 1% and no H2. Bottom

row: feedback e�ciency αfb = 1% and H2.

feedback strength. The �gure quanti�es how, on average, for the same gas surface densities,

the SFR is lower with higher feedback. The feedback makes the gas more di�use and destroys

clumps. Two cells containing the same amount of gas but di�erent fractions of di�use gas

(cells are larger than the clumps size), will have di�erent star formation e�ciency. This also

explains the smaller scatter in the simulations with feedback: as the gas is more homogeneous,

the relation between surface densities of SFR and gas is better determined.

In Figures 5.19 and 5.20, lines of constant gas depletion time are indicated. The gas

depletion time is de�ned as tdep =
ΣGas

ΣSFR
. It can be seen that the high SFR and gas surface

density regions of the galaxies have a depletion time as low as a few hundreds of Myrs in the

simulations with no or little feedback, while the low SFR and density regions have depletion

times up to 10 Gyr. The outer parts of the disc with a low surface density form stars much

less e�ciently than the central parts.
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Figure 5.18: Projection of the density of all the stars after 0.5 Gyr, 1 Gyr and 3 Gyr of

evolution. Top row: feedback e�ciency αfb = 1% and no H2. Bottom row: feedback e�ciency

αfb = 1% and H2.

We also see a di�erence for low surface densities between atomic and molecular simula-

tions. The SFR is varying more linearly with molecular gas than with atomic gas. And the

low surface density regions form stars more e�ciently with molecular gas. This is explained

by the fact that H2 cooling allows the gas to be locally denser. It especially allows it to be

more concentrated in the disc plane as can be checked in the edge-on projections. Then the

gas is denser in volumic density, and forms stars more e�ciently, at a given surface density.

For simulations including H2, the SFR is shown separately as a function of atomic and

molecular components, on the bottom of Figures 5.19 and 5.20. The atomic hydrogen surface

density is con�ned to low values for our galaxies and the SFR-HI diagrams show a large scatter

because HI is too di�use to track the star forming gas. The fact that H2 is a better tracer of

star formation is also found in observations of nearby galaxies (e.g. Bigiel et al. 2008).
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4.5 Gas density pro�le variation

The galaxies we have considered have a rather low gas surface density. We also run sim-

ulations with smaller characteristic radii, and therefore higher surface densities. Figure 5.21

displays the surface density for a Miyamoto-Nagai gas radius rg of 3.6 kpc. The transition

radius between H2 dominated and HI dominated regions, the radius at which ΣH2 = ΣHI,

has then a value similar to the average observed by Bigiel & Blitz (2012) (their average value

for nearby spiral galaxies observations is 14 M�/pc
2). Previous galaxies belong to the lower

surface density group observed by Bigiel & Blitz (2012).

The e�ect of H2 cooling is reduced in these galaxies with higher surface density, since a

larger fraction of the gas belong to the central regions, with much more e�cient star formation

than the outer parts. H2 cooling is more important when there is more gas in the metal poor

outer regions.
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Figure 5.21: Radial distribution of the surface density of H2, atomic gas HI and total hydrogen

gas after 100 Myr for αfb = 40% and a χ× 500 UV scaling factor.

5 Vertical structure of the disc

The inclusion of molecular hydrogen has a signi�cant impact on the vertical structure of

the disc, �rstly because the cold and dense gas concentrates in the disc middle plane, and

secondly because of the impact of gas clumping on the distribution of feedback energy.

(Christensen et al. 2012b,a) include non-equilibrium formation of H2, self-shielding and

dust shielding of both HI and H2 in galaxies extracted from cosmological simulations and

explore the in�uence of including H2 formation, for a �xed feedback e�ciency. Similarly to

their results, we �nd that the introduction of H2 makes the outer parts of discs denser.

H2 cooling also enables the gas to be more e�ciently expelled from the plane, since the
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Figure 5.23: Fraction of gas beyond 1 kpc from the disc plane. Solid lines are runs with H2

and dashed ones are runs without H2. Blue lines: no feedback. Green lines: αfb = 10% , Red

lines: αfb = 40%
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Figure 5.24: Vertical mass pro�le of the disc for radii R > 15 kpc for runs with αfb = 40%.

Solid line: run with H2. Dashed line: run without H2. The two vertical lines mark the

characteristic vertical heights z1/2.

feedback has a stronger e�ect in dense regions: in our feedback scheme, particles get velocity

kicks weighted by the SPH kernel, so that the kicks are larger for particles closer to the new

stellar particles. We have performed simulations with various feedback e�ciencies, helping to
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check this e�ect. Figure 5.23 shows the fraction of gas that is expelled further than 1 kpc from

the disc (or radially further than 60 kpc from the centre of the galaxy): without feedback, the

gas is only gravitationally heated and the e�ect of denser gas and higher clumping factor due

to H2 makes the fraction of gas leaving the disc smaller than for a purely atomic hydrogen

gas. However, with feedback, there is a higher fraction of gas outside the disc when H2

is included. This is because the higher concentration of the gas makes the feedback more

e�cient. In our simulations, the e�ect is especially striking in the outer parts of discs when

H2 formation is taken into account, as the vertical restoring force is lower there.

We checked that the vertical density distribution is consistent with both a more concen-

trated disc and a higher fraction of gas leaving the disc. Figure 5.24 shows the vertical mass

pro�le of the gas at large radii for αfb = 40%: the gas is more concentrated in the disc plane,

but the distribution has higher density �tails� when more e�cient feedback in denser regions

allows the gas to be expelled from the disc. Figure 5.24 shows the characteristic height z1/2

of the gas, the distance from the disc plane for which the density equals half of the central

density, as a function of radius for the various simulations. Especially at large radii, the

characteristic height is lower for simulations with H2 for all feedbacks as H2 concentrates

the gas in the middle plane. The fraction of gas beyond this height however increases with

the feedback e�ciency at large radii when H2 is taken into account, as gas is then e�ciently

expelled by feedback. Without feedback, some di�erence remains, probably due to gravita-

tional heating produced by a higher clumping. We see indeed a slight di�erence in vertical

velocity dispersion.

In our simulations, the H2 gas disc remains very thin, as can be seen on Figure 5.11. The

thick discs that are obtained are composed of atomic hydrogen, because the density is too

low for H2 shielding to be e�cient. Some observations however indicate the presence of thick

H2 discs, for example in M51 (Pety et al. 2013). Our result on the thinness of the molecular

hydrogen disc could change in simulations of higher resolution in which clumps could be allow

to form further away from the disc plane.

6 Variations of parameters or baryonic physics methods

In this last section, we present some variations around the former simulations. Simulations

are sensitive to the adopted models and algorithms.

6.1 Resolution

We ran simulations with twice as many and twice as few particles (changing the number

of all particles: gas, stars and dark matter) for a feedback e�ciency αfb = 10%. The softening

length is usually taken as:

ε ∝ N−1/3 (5.14)



6. VARIATIONS OF PARAMETERS OR BARYONIC PHYSICS METHODS 105

with N the total number of particles. This makes it change according to the change in mean

inter-particle distance. We thus used ε = 130 pc for the low-resolution run and ε = 80 pc for

the high-resolution run. We keep all the star formation parameters constant.

We represent on Figure 5.25 the gas mass depletion and SFR for the di�erent runs. More

stars are formed when we increase the resolution. We have not adapted the star formation

e�ciency per free-fall time c∗, which maximises the di�erences between the di�erent runs.
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Figure 5.25: Left: evolution of the gaseous mass of the galaxy for αfb = 10%. Right: evolution

of the corresponding SFRs (de�ned as the derivative of the left curves). For both plots, solid

lines are for runs with H2 and dashed lines for runs without H2.

We plot on Figure 5.26 the global H2 mass fraction for these simulations. The parameters

of the H2 fraction recipe are the same for all simulations. We see the fraction increases with

decreasing resolution. This can be partly due to the slightly reduced SFR when resolution

decreases, and also to the estimation of the column density. For high resolution runs having

lower smoothing lengths, this column density, inversely proportional to the gradient of the

density computed, is smaller than for low resolution runs. As H2 is less shielded, its fraction

is reduced.

The number density PDFs for runs either without any H2 or with H2, keeping the same

parameters in the H2 fraction recipe as in our �ducial simulation, is shown on Figure 5.27.

They are similar for all the resolutions.

6.2 Threshold density for star formation

The threshold density for star formation has a strong impact on the density distribution

of the gas. If this threshold is augmented, gas reaches higher densities than if it were allowed

to be converted into stars sooner, and the obtained ISM can be much more heterogeneous.

While we do not have a very large particle number and may be subject to resolution artefacts,

we perform simulations with a threshold density 100 times higher than our �ducial one: we set

nHmin = 10 cm−3 and obtain the surface density maps such as the ones shown on Figure 5.28.
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Figure 5.26: Global H2 mass fraction versus time for αfb = 10% and di�erent resolutions.
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Figure 5.27: Hydrogen nuclei number density PDFs (mass-weighted and normalised to unity).

Left: runs with no H2. Right: runs with H2.

The gas is indeed very contrasted in density, as can also be seen on Figure 5.29.

We observe that, after a few Gyrs, more of the total gas is depleted for the case without

feedback or with a low feedback e�ciency αfb = 1% than with our �ducial threshold nHmin =

10−1 cm−3 (see Figure 5.30 compared to Figure 5.15). This is due to the higher clumping

e�ciency and also possibly to the lower e�ect of stellar feedback in very dense regions for

the case αfb = 1%. However, the depletion is lower for the two high feedback e�ciency

cases, because the gas reaches densities high enough for star formation more di�cultly, and

is strong enough to lower the density below the star formation threshold. The SFRs on

the right panel of Figure 5.30 exhibit peaks hundreds of Myrs after the beginning of the

simulations, contrarily to what was observed for a lower threshold for star formation (see

�gure 5.15). This can be explained by the time needed to reach densities higher than the

threshold so as to form stars. The SFR peaks happen all the later as the feedback e�ciency
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Figure 5.28: Projections of the gas density at t=0.5 Gyr for runs with nHmin = 10 cm−3.

Box sizes are [30 kpc x 30 kpc].

is higher, because in high feedback cases, the little initial amount of star formation prevents

the gas more e�ciently from clumping.

6.3 Recipe for feedback

As we mentioned in 6 of Chapter 4, we tried several techniques to input energy from SNII

explosions to the surrounding gas of new stellar particles.

We compare the results of our simulation with a kinetic feedback of e�ciency αfb =

10% and molecular hydrogen to two simulations with the same feedback e�ciency and the

same parameters for the computation of the molecular hydrogen fraction but other feedback

methods.

A simulation is run with gas particles dynamically decoupled for at most 10 Myr once

they are given a velocity kick. They can be re-coupled either once this time has passed or

once their density has become lower than 10−1 cm3 (following Springel & Hernquist (2003)).

A snapshot is shown on the middle panel of Figure 5.31.
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Figure 5.29: Hydrogen nuclei number density-galactocentric radius histograms after 0.5 Gyr

of evolution. For each plot, the top subplot is a run with no H2 and the bottom plot a run

with H2. Horizontal black dashed line: threshold density for star formation.
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Figure 5.30: Left: evolution of the gaseous mass of the galaxy. Right: evolution of the

corresponding SFRs (de�ned as the derivative of the left curves). For both plots, solid lines

are for runs with H2 and dashed lines for runs without H2.

Another simulation is run with a thermal feedback with cooling stopped for 30 Myr each

time a particle is a�ected by feedback. A snapshot is shown on the right panel of Figure 5.31.

The gas mass depletion and SFRs are shown on Figure 5.32. The star formation is

sensitive to the adopted method. Both the decoupling case and thermal case are more

e�cient at preventing clumping leading to star formation than our �ducial scheme.

We also notice that our scheme, while impacting the star formation if the feedback e�-

ciency is modi�ed, keeps the gas dynamically cooler than other schemes. The gas disc we

obtain for these other methods are more similar to the stellar discs we have shown. In the

decoupling case, many gas particles are decoupled from hydrodynamics and therefore do not
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Figure 5.31: Projections of the gas density at t=1 Gyr for runs with αfb = 10%. Left:

simple kinetic feedback. Middle: kinetic feedback with decoupled particles. Right: Thermal

feedback. Box sizes are [30 kpc x 30 kpc].
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Figure 5.32: Left: evolution of the gaseous mass of the galaxy. Right: evolution of the

corresponding SFRs (de�ned as the derivative of the left curves). For both plots, solid lines

are for runs with H2 and dashed lines for runs without H2.

experience hydrodynamical forces and viscosity while in the thermal feedback case, particles

a�ected by feedback have a high pressure for a while. The temperature-density diagram on

Figure 5.33 shows the dense gas is partly in a hot phase, above 104 K, while in our �ducial

kinetic feedback scheme, dense gas was mostly cold (see the bottom-left panel of Figure 5.7).

This hot gas is the gas a�ected by feedback and that has its cooling stopped. The high

pressure reduces the clumping of the gas, hence the smoother aspect.
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Figure 5.33: Temperature-density histogram of the gas in simulation with H2 after 0.5 Gyr

of evolution for the di�erent feedback e�ciencies. The 2D histograms and marginal 1D

histograms are mass weighted and normalised to unity.



Chapter 6

Conclusion and perspectives

To explore the in�uence of baryonic physics on the evolution of spiral discs, we have im-

plemented some models and algorithms for cooling, determination of the molecular hydrogen

fraction, star formation and SNII feedback in Gadget-2.

The cooling functions we use include cooling by metals, for temperatures as low as 100 K,

and cooling by H2 due to collisions with H, He and other H2 molecules. The determination of

the H2 density is inspired by the work of Krumholz et al. (2008, 2009b); McKee & Krumholz

(2010), using the stellar UV �ux from young stars. Star formation is done with a stochastic

method, and our �ducial feedback from SNII is done by imposing velocity kicks to particles

surrounding newly formed stellar particles. The exact models chosen for baryonic physics is

found to have a signi�cant impact on the physical state of the gas and star formation.

The e�ciency of the kinetic feedback was varied in simulations including cooling by

atomic/ionised gas and/or molecular hydrogen. We �nd that including molecular hydrogen

allows some slow star formation to occur in the low metallicity outer parts of galaxies for

all feedback e�ciencies. Correlating SFR and gas surface density, it is found that molecular

gas is a much better tracer of star formation than atomic gas, as is also observed in nearby

galaxies.

Molecular hydrogen in�uences the vertical structure of the discs, especially when there is

some strong stellar feedback: H2 makes the gas more concentrated in the middle layer of the

disc plane, but the gas is also more susceptible of being ejected far from the disc, due to the

higher e�ciency of feedback in high density regions. This gives rise to thick gas discs.

If gas is accreted by the outer discs, molecular hydrogen may help store some cold gas with

a low star formation e�ciency. It is thus interesting to perform simulations with either some

gas accretion, or isolated disc simulations with a varying fraction of gas in the external disc.

We are currently pursuing this second possibility. We change the fraction of gas in the outer

disc and study the possible impact on the structure of the disc and star formation. The gas

fraction with respect to dark matter can indeed be modi�ed while keeping the same rotation

curve, using the degeneracy between gas and dark matter that allows for a high fraction of

111
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unobservable cold gas, possibly cooled by molecular hydrogen, at large radii (Hoekstra et al.

2001). Revaz et al. (2009b) studied the e�ect of additional dark baryons to the morphology

and dynamics of discs but without detailed cooling and without stellar feedback. It is also

possible to study the impact of the variation in the gas fraction on the dynamical state of

the discs, especially on resonances using a spectral analysis of trajectories based on Binney

& Spergel (1982).



Appendix A

In�uence of baryonic physics in

galaxy models: a semi-analytic

treatment of the molecular component

Some of the results presented in Chapter 4 have been submitted to A&A, http://arxiv.

org/abs/1212.4433.

Abstract

Recent work in galaxy formation has enlightened the important role of baryon physics,

to solve the main problems encountered by the standard theory at the galactic scale, such as

the galaxy stellar mass functions, or the missing satellites problem. The present work aims

at investigating in particular the role of the cold and dense molecular phase, which could play

a role of gas reservoir in the outer galaxy discs, with low star formation e�ciency. Through

TreeSPH simulations, implementing the cooling to low temperatures, and the inclusion of

the molecular hydrogen component, several feedback e�ciencies are studied, and results on

the gas morphology and star formation are obtained. It is shown that molecular hydrogen

allows some slow star formation to occur in the outer parts of the discs. This dense and

quiescent phase might be a way to store a signi�cant fraction of dark baryons, in a relatively

long time-scale, in the complete baryonic cycle, connecting the galaxy discs to hot gaseous

haloes and to the cosmic �laments.
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Appendix B

Graph of the functions of the code
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Figure B.1: Left part of the graph of functions of Gadget-2 and their calls. Added functions

are coloured in red, while modi�ed functions are coloured in blue. A few functions have been

taken o� for simplicity. Graph generated with the free software egypt by Andreas Gustafsson

(http://www.gson.org/egypt/egypt.html).
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Figure B.2: Right part of the graph of functions of Gadget-2 and their calls. Added functions

are coloured in red, while modi�ed functions are coloured in blue. A few functions have been

taken o� for simplicity. Graph generated with the free software egypt by Andreas Gustafsson

(http://www.gson.org/egypt/egypt.html).
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