Optical and infrared observations of the young SMC "blob" N26 and its environment*

G. Testor^{1**}, M. Heydari-Malayeri¹, C.-H. R. Chen^{2,3}, J.L. Lemaire¹, ^{4**}, M. Sewiło^{5,6}, S. Diana⁴

¹ LERMA, UMR 8112 du CNRS, Observatoire de Paris, 92195 Meudon, France e-mail: gerard.testor@obspm.fr

 2 Department of Astronomy, University of Virginia , PO Box 400325, Charlottesville, VA 22904, USA

³ Max-Planck-Institut fur Radioastronomie, D-53121 Bonn, Germany

⁴ Université de Cergy-Pontoise, 95031 Cergy Cedex, France

⁵ The Johns Hopkins University, Department of Physics and Astronomy, 366 Bloomberg Center, 3400 N. Charles Street, Baltimore, MD 21218, USA

⁶ Space Science Institute, 4750 Walnut St. Suite 205, Boulder, CO 80301, USA

Received ...; accepted ...

ABSTRACT

Context. High-excitation compact H II regions of the Magellanic Clouds are sites of recent massive star formation in low metallicity environments.

Aims. Detailed study of these regions and their environments using high-spatial resolution observations is necessary to better understand massive star formation, which is still an unsolved problem. We aim at a detailed study of the Small Magellanic Cloud compact H II region N26, which is only $\sim 4''$ in diameter.

Methods. This study is based on high spatial resolution imaging (~ 0".1-0".3) in JHKs and L' bands, using the VLT equipped with the NAOS adaptive optics system. A larger region (~ 50 × 76 pc) was also imaged at medium-spatial resolution, using the ESO 2.2m telescope in optical wavelengths. We also used the *JHKs* archival data from the IRSF survey and the *Spitzer* Space Telescope SAGE-SMC survey.

Results. Our high-resolution JHKs data of the compact high-excitation H II region N26 reveal a new, bright component (C) between the two already known optical components A and B. Components A and C are resolved into several stars. Component A is the main ionization source of N26 and coincides with the radio continuum source B0046-7333. A new compact H II region with very faint $[O III] \lambda 5007$ emission is discovered. In the mid-IR, our field resembles a shell formed by filaments and dust clumps, coinciding with the molecular cloud SMCB2. N22, located in the center of the shell, is the most excited H II region of the complex and seems to have created a cavity in SMCB2. We derive nebular parameters from spectra, and using color-magnitude and color-color diagrams, we identify stellar sources that show significant near-IR excess emission, in order to identify the best YSO candidates.

Key words. galaxies: Small Magellanic Cloud – ISM: individual objects: N26 – ISM: H II regions– ISM: dust extinction – Stars: formation – Stars: massive

1. Introduction

Although they are rare and short-lived, massive stars (> $8 M_{\odot}$) play a key role in several fields of astrophysics. However, their formation process is still an unsolved problem in spite of progress, both in theory and observation, in recent years. The Magellanic Clouds offer valuable opportunities for this study since they are seen nearly face-on and have well-determined distances (Keller & Wood 2006; Schaefer 2008). This facilitates obtaining accurate absolute magnitudes and fluxes. Moreover, their overall extinction is low (Westerlund 1992, Massey et al. 1995, Bonanos et al. 2010). Being metal-poor (Peña-Guerrero et al. 2012), they provide important templates for studying star formation in distant metal-poor galaxies which cannot be observed with comparable spatial resolution.

The youngest massive stars in the Magellanic Clouds accessible to infrared and optical observations are found in High-Excitation Blobs (HEBs, Heydari-Malayeri & Testor 1982, Heydari-Malayeri et al. 2010 and references therein). This is a rare class of H II regions in the Magellanic Clouds; so far only six members have been detected in the LMC and five in the SMC. For massive stars the accretion time-scale is larger than the Kelvin-Helmholtz time-scale. This means that massive stars reach the main sequence while accretion is still going on. Moreover, they evolve very fast. Therefore, obtaining the physical parameters of massive stars "at birth" may be an unattainable task! Consequently, HEBs offer a compromise between stars inside ultra-compact H II regions and the exciting stars of evolved H II regions.

In contrast to the typical H II regions of the Magellanic Clouds, which are extended structures (sizes of several arc minutes corresponding to more than 50 pc, powered by a large number of exciting stars), HEBs are very dense and small regions ($\sim 4''$ to 10" in diameter corresponding to $\sim 1-3$ pc). They have a higher degree of excitation ([O III]/H β]) with respect to the typical H II regions, and are, in general, heavily affected by local dust. In compar-

 $^{^{\}star}$ Based on observations obtained at the European Southern Observatory, El Paranal, Chile

 $^{^{\}star\star}$ Visiting astronomer at VLT Paranal

ison with Galactic regions, some of the HEBs are similar to classical H_{II} regions and some look like compact H_{II} regions (Martin-Hernandez 2005). However, HEBs should be considered in the context of massive star formation in the MCs. Compared with other compact H_{II} regions of the same sizes in the MCs, they constitute a distinctly detached group with high excitations and luminosities (Meynadier et al. 2007).

This paper is mainly focused on N26 (LHA 115-N26, Henize 1956), a HEB situated in the SMC, the first study of which was presented by Testor (2001). Its (J2000) coordinates are $\alpha = 0h$ 48m 08s.60, $\delta = -73^{\circ}$ 14' 54".69. N26 is a compact H II region of $\sim 4''$, or 1 pc, in diameter composed of two components, A and B. This object is highly excited, with a ratio of $[O III] \lambda \lambda 4959 + 5007/H\beta$ reaching 8 in component A (Fig. 6 in Testor 2001). N26 has an ultra-compact HII region counterpart detected at highresolution 6 cm radio continuum observations (Indebetouw et al. 2004). From optical spectra, the exciting source of component A was classified to be O7-9 V (Testor 2001). The extinction in N26 is relatively high, reaching an E(B-V) of ~ 1 mag in the direction of component B. That first study used relatively low resolution observations and only in the optical range.

N26 is located in the south-west part of the bar of the SMC, where several HII regions are visible in its close vicinity. Figure 1a shows N25 to the north and N22, N21, and N23 to the south of N26. The largest and the most diffuse H II region of the group is N22 around which the other HII regions are distributed. These HII regions are associated with embedded clusters (Bica & Dutra, 2000), and also detected in the H α survey conducted by Davies et al. (1976). N26 is the most compact and smallest HII region of the group, which suggests it to be the youngest among them. A giant molecular cloud labelled SMCB2 (Fig. 1b) is detected toward this area of the SMC (Rubio et al. 1993). The molecular cloud presents three 12 CO(1-0) peaks, one to the north and two to the south, the velocities of which range from 108 to 126 km s⁻¹; this suggests that they are likely physically associated. Bot et al. (2010) observed SMCB2 with the LABOCA camera on the APEX telescope at 870 μ m and found a dust temperature of 12 K, a mass of $M_{H}^{870} = 8.5 \times 10^5$ M_{\odot} for the northern peak SMCB2-N and 65 $\times 10^4 M_{\odot}$ for the southern peak SMCB2-S, respectively (Fig. 1). Far infrared and millimeter observations of the region have been performed by Wilke et al. (2003) and Mizuno et al. (2001), respectively. The Spitzer data base has also been used to study point sources in the IRAC and MIPS data (Bolatto et al. 2007, Lawton et al. 2010) of our region, as part of the Spitzer Survey of the Small Magellanic Cloud (S3MC).

Star forming regions like the N26 area are expected to be associated with young stellar objects (YSOs). The use of JHK color-magnitude and color-color diagrams are useful tools to detect the candidates. A more suitable wavelength to determine the nature of the IR-excess is the *L*-band, which increases the IR-excess and reduces the contribution of extended emission from reflection nebulae and H II regions (Lada et al. 2000). However, near- and mid-IR color-magnitude and color-color diagrams obtained

 Table 1. Log of VLT near-infrared CCD images of SMC N26

-				
Filter	$\begin{array}{l} Exposure \\ t(s) \times n \end{array}$	Mode	seeing ('')	FWHM (")
	$\begin{array}{c} 20 \times 30 \\ 4 \times 30 \\ 5 \times 30 \\ 60 \times 1 \\ 0.18 \times 30 \end{array}$	S54 " S27	0.6-0.9 " 0.9-1.2 0.9-1.2	$\begin{array}{c} 0.35 \\ 0.27 \\ 0.21 \\ 0.10 \\ 0.10 \end{array}$

from IRAC data are still better tools for identifying the origin of the reddening of embedded stars (Allen et al. 2004, Bolatto et al. 2007). In this paper we present the results for the whole area using BVJHKs, 3.6, 4.5, 5.8, 8.0, 24, 70, and 160 μ m bands in mid-spatial resolution photometry, as well as the JHK- and L'-band high spatial resolution observations from adaptive optics.

The paper is arranged as follows. In Section 2, we present the instruments employed for these observations, the reduction procedures used as well as the archival data. In Section 3 we describe the results and analysis of the observations. In Section 4, we discuss the results. Concluding remarks are given in Section 5.

2. Observations and data reduction

2.1. Imaging and photometry

2.1.1. VLT/NACO

Near-infrared observations of a small area centered on the SMC compact H II region N26 were obtained at the ESO VLT in 2004, October 9 and 10. Images and spectra were taken using NACO on UT4, composed of the Nasmyth Adaptive Optics System (NAOS) and the High Resolution IR Camera and Spectrometer (CONICA). The detector was a 1026 \times 1024 SBRC InSb Aladdin 3 array. The cameras S54 (Fig. 2a) and S27 (Fig. 2b) were used in the range of 1.0-2.5 μ m and the L27 camera in the range 2.5-5.0 μ m.

The field-of-view (FOV) of the S54 camera was 54" x 54" with a pixel size of 0".05274, corresponding to 0.015 pc at the distance modulus of m - M = 18.93 mag for the SMC (Keller & Wood 2006). The FOV of the S27 and L27 camera was 27".15 x 27".15 with a pixel size of 0".02637, corresponding to 0.0075 pc. As adaptive optics (AO) reference source for wavefront sensing we used the 2MASS star (J200004809.84-731518.5) of magnitude K = 10.370 (Cutri et al. 2003). The conditions were photometric, and the seeing ranged from 0".65 to 1" in the visible.

Broadband JHKs images were obtained with the S54 camera. Images with higher spatial resolution in the Ks and L' bands were also obtained with the S27 camera. The L' photometry was extracted only for the three brightest components of N26 (Fig. 4). The L' magnitudes for all other stars are the 3.6 μ m data taken from the IRAC catalog (see Sect. 2.3). The log of the NIR imaging observations is given in Table 1. The AutoJitter mode was used:

Fig. 1. *a*) False-color composite image of SMCB2-H II from Spitzer IRAC bands 3.6 μ m (blue), 4.5 μ m (green), and 8 μ m (red). The various H II regions detected by Henize (1956) in this part of the SMC are labeled, as well as the YSO candidates (Sect. 4.6). The image center is $\alpha = 0h$ 48m 01s.85, $\delta = -73^{\circ}$ 16' 03''.75. Total field size 168'' × 251'' or 50 × 76 pc. *b*) The MIPS 24 μ m image of the SMCB2-HII region with the CO contours overlaid. The contours outline the molecular cloud SMCB2 (Bot et al. 2010). The bright stars are labeled.

that is, the telescope moves at each exposure according to a random pattern in a $6'' \times 6''$ box. Table 1 lists the stellar full-width-at-half-maximum (FWHM) in final images of different observed bands. The adaptive optics image is affected by anisoplanatism when the reference star is not on axis and leads to a degradation of the point spread function (PSF) becoming more elongated as the angular offset from the reference star increases. The data were reduced mainly with the ESO software packages MIDAS and ECLIPSE. A false-color image of N26 combining the J (blue), H (green), and Ks (red) bands is shown in Fig. 2.

The high resolution of NACO allowed us to separate the crowded components in N26. However, its distance from the the AO reference star, ~ 30", increases the anisoplanatism effects. That is why photometry will be performed on a small area ($30'' \times 25''$) around N26. In that area the instrumental magnitudes of the stars were derived, using the DAOPHOT multiple-simultaneous-profile-fitting photometry routine (NSTAR) (Stetson 1987), which is well adapted for photometry in crowded fields. The uncertainties of the instrumental magnitudes (m_e) in the $J,\ H$ and Ks bands are less than 0.03 mag for stars with Ks < 16.5 mag, less than 0.06 for stars with 16.5 < Ks < 18 mag, and greater than 0.1 for stars 18 < Ks < 20 mag. In this small area, the anisoplanatism effects become negligible but due to the m_e of about 0.04 mag on the faint isolated stars used as PSF, the accuracy of the photometry is slightly degraded.

In the small area centered on N26 (Fig. 2, inset), we show for the first time the presence of six stars embedded in the H II region N26. These stars, shown in Fig. 3 (inset), do not have IRSF counterparts. Two IRSF stars (Kato et al. 2007) of identities 0481111-73145210, corresponding to our star #207, and IRSF 0481032-731459, our star #202, were available. As their colors are the same, we could not calculate color correction, which adds uncertainty to the YSO SED calculation. The resulting photometry for these six stars in all bands has errors of 0.02 to 0.04 mag for Ks < 15.5 and 0.04 to 0.09 for Ks > 15.5 mag. These are square root errors derived from IRSF accuracies available only for star #207 (Kato et al. 2007) and our instrumental uncertainties. More specifically, we applied the IRSF inaccuray of star #207 to the six stars of the sample. This

Fig. 2. a) False-color image of the N26 H II region composed of J (blue), H (green), and K (red) bands obtained with the S54 camera. The very faint cluster enhanced by the DDP technique seen in the inset (top right) is located between component A and #160 (see Fig. 3). The field size is $58'' \times 53''$ or 18×16 pc and the small area is shown in dashed lines. Star 207 is the IRSF source 0481111-73145210 used in the photometry calibration (Sect. 2.1.1). b) Image of N26 in the Ks band, obtained with the S27 camera, also processed with the same technique. The field size is $10'' \times 9''.5$ or $3.0 \text{ pc} \times 2.7 \text{ pc}$. The inset of size $1''.6 \times 1''.6$ shows an enlarged view of component C. North is up and East left.

means that since #207 is weaker than stars #170, #172, and #173, we overestimate the final uncertainties on these stars. The other *JHKs* magnitudes of the whole field are extracted from the IRSF catalog (see Sect. 2.3).

Table 2 presents the data set that includes our *JHKsL'* NACO photometry (Sect. 2.1.1), *BV* data (Sect. 2.1.2), as well as the archival data from IRSF (*JHKs*) and SAGE-SMC (3.6-160 μ m, Sect. 2.3). This table contains only sources brighter than J = 18.8 both for IRSF and NACO photometry, corresponding to a S/N of > 10. Column 1 gives the identifications, which are our serial numbers. The various identifications in the archival data for each star can be obtained from the corresponding coordinates. The main stars dealt with in this study (Table 2) do not have other identifications. Columns 3 and 4 list the corresponding J2000.0 coordinates. Columns 5 to 28 gives the magnitudes B, V, J, H, Ks, 3.6, 4.5, 5.8, 8.0, 24, 70, and 160 μ m with their uncertainties.

2.1.2. 2.2m telescope

We used *B* and *V* broad bands as well as narrow emission line bands (H β , [O III] λ 5007) to observe the regions N21, N22, N23, N25 and N26. The observations were made in October 1987 using the 2.2m telescope at La Silla. The detector was a 1000 × 1000 CCD (GEC) with a pixel size of 0".26 on the sky. The seeing was ~1".5 and exposure times ranged from 90 to 900 s.

The BV data reduction of the two overlapping frames containing our field (Fig. 3) was done using DAOPHOT/ALLSTAR. The photometric calibration was carried out using 8 bright and isolated stars extracted from Massey's (2002) catalog. They belonged to two samples situated toward the regions N22 in the south and N26 in the north. The V magnitudes ranged from 13.06 to 15.03 and the corresponding B-V colors had a value between -0.06 to 1.59 mag. The zero point and color correction relationships, derived from the linear regression method, were: $V = v + 0.05 (B-V) - 0.03 (\text{s.d.} \pm 0.04)$, and $B-V = 0.98 (b-v) - 0.02 (\text{s.d.} \pm 0.03)$. The total square root errors on B and V (Table 2) were obtained using our instrumental errors and the corresponding average statistical errors given in Table 2 of Massey (2002).

2.2. Spectroscopy

2.2.1. NACO spectroscopy

Spectroscopy of N26 was performed (October 9, 2004) in the S54-4-SHK mode. The spectral range was 1.30 to 2.60 μ m, the linear dispersion 1.94 nm/pixel, and spatial scale 53 mas/pixel. The seeing varied between 0".6 and 0".9. One EW long-slit spectrum S1 crossing the component A of N26 was taken with NACO. The slit width was 172 mas and the spectral resolution ~ 400. For each exposure the detector integration time (DIT) was 100s. Ten exposures were obtained in the AutoNod on Slit mode, which allows the spectroscopy of moderately extended objects. In order to remove telluric absorption features, stars with a similar airmass were observed as telluric standards. Spectroscopy was reduced with the MIDAS software package LONG.

2.2.2. Boller & Chivens Spectroscopy

The optical spectroscopic observations were performed at the ESO 1.5m telescope (September 1987) with the Boller & Chivens spectrograph (Heydari-Malayeri et al. 1989). The grating #25 covered from 4300 to 6800Å with a dispersion of 170Å/mm or 1".27/pix (binned \times 2). The spectra were obtained through a 4" slit width oriented east-west, in the directions a, b, c, d, and e (Fig. 7) (see sect. 4.4.1). Exposure

Fig. 3. An optical image in the V band obtained with the ESO 2.2m telescope. The numbers refer to Table 2. The field size is $153'' \times 264''$ or ~ 46 pc × 80 pc. A section of the field containing the H II region N26 is outlined. It is 9''.6 × 9''.6 and shows a blow-up of the J and V images obtained with the NACO (S54 camera) and the 2.2m telescope, respectively.

times were 1800 s. The flux was calibrated using observations of two spectrophotometric standard stars, LTT7987 and L870-2.

2.3. Archival data and matching

The *Spitzer* observations of the working field were obtained as part of the Legacy Program "Surveying" the Agents of Galaxy Evolution in the Tidally-Disrupted, Low-Metallicity Small Magellanic Cloud (SAGE-SMC; Gordon et al. 2011). These observations include images taken with the IRAC 3.6, 4.5, 5.8, and 8.0 μ m bands and MIPS 24, 70, and 160 μ m bands. The *L*-band photometry used in this work refers to the 3.6 μ m band. The details of observations

and data processing are given in Gordon et al. (2011). The IRAC and MIPS 24 μ m photometry of sources in the working field are adopted from the SAGE-SMC point source catalog. The IRAC resolution ranged from 1".7 to 2" (0.5 to 0.6 pc), those for MIPS images from 6" to 40" (1.8 to 12 pc).

We also used the data obtained with the InfraRed Survey Facility (IRSF) (Kato et al. 2007). The IRSF has a pixel scale of 0".45, average seeing of 1".3, 1".2 and 1".1 in the JHKs bands respectively, and limiting magnitudes of J = 18.5, H = 18.2 and Ks = 17.4 mag for the SMC. For star #169, BV and JHK data were extracted from the catalogs of Massey and 2MASS respectively. Table 2 presents the data set that includes our BV (see Sect. 2.1.2) and JHKsL' NACO photometry and archival data from IRSF (JHKs) and SAGE-SMC (3.6-160 μ m).

The matching of the new data with those of older data from different catalogs was not carried out automatically. Due to the crowding as well as low magnitudes in some wavelengths, the star labels (identification numbers) were matched manually. To do this, we used the Aladin tool¹ to visualize our images in different wavelengths and superimpose the labels of the stars. Thus, for each star we obtained a table line including several labels corresponding to the star in different wavelengths.

The transformation from the chip x, y positions to the equatorial right ascension (RA) and declination (Dec) coordinates, listed in Table 2, was carried out using three stars in each V frame. To calibrate the coordinates, we used Massey's catalog (2002), which has an astrometric accuracy of ~ 0".4. Our final coordinates are accurate within ~ 0".5. For stars with no counterpart in the V frame, as identified by eye, we adopted the coordinates given by Kato et al. (2007) and the IRAC catalog, which have an accuracy of 0".1 and 0".25, respectively. In the particular case of stars #170, #172, and #173, the transformation was obtained using neighboring stars of the Kato catalog, leading to an accuracy of ~ 0".2.

3. Results

3.1. General morphology of N26

The high spatial resolution provided by NACO reveals N26 as a compact H II region of radius $\sim 2''$, that is one of the most compact HEBs so far detected. It also confirms the presence of two bright nebular components, A and B, separated by 2''.7, as first detected by Testor (2001) in optical wavelengths.

¹ http://aladin.u-strasbg.fr

e Remarks	$N26A-B^t\\N26-A^c\\N26-C^c\\N26-B^c\\\mathsf{N26-$	
Type		as d
err	t 0.02	nsity. hot. ar use
[160]	-5.24	inter Jaopl
err	8 0.02 8 0.02 5 0.01 9 0.01	2007) rated sing I isolat
[70]	-0.63 -0.63 -1.06 -3.51	only. al. (5 integr ges us gring
err	$\begin{array}{c} 0.03\\ 0.03\\ 0.10\\ 0.01\\ 0.01\\ 0.01\\ 0.02\\ 0.02\\ 0.004 \end{array}$	to et to et the the imag
[24]	1.43^d 1.43^d 1.43^d 1.43^d 1.05 1.05 1.05 1.05	andid se Ka alf of n the a ne
err	$\begin{array}{c} 0.01 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.01 \\ 0.$	SO cs SF se be h d fron r and
8.0]	(7.02)	he YS on to (3. erivee e stal
err [$\begin{array}{c} 0.08 \\ 0.01 \\ 1.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.01 \\ 0.$	for t II); f <i>JHK</i> ere d whol
[5.8]	$\begin{array}{c} 0.90 \\ 0.96 \\ 0.96 \\ 0.96 \\ 0.44 \\ 0.27 \\ 0.$	data . (201 . (201
err [$\begin{array}{c} .09 \\ .01 \\ .02 \\ .02 \\ .02 \\ .02 \\ .02 \\ .02 \\ .02 \\ .01 \\ .02 \\ .01 \\ .02 \\ .01 \\ .02 \\ .01 \\ .02 \\ .01 \\ .02 \\ .01 \\$	s the et al intena MAS MAS n bar ossing
4.5]	$\begin{array}{c} 1.42 \\ 0.40 \\ 3.38 \\ 3.38 \\ 3.38 \\ 1.25 \\ 0.50 \\ 0.50 \\ 0.57 \\ 0.27 \\ 0 \end{array}$	clude prdon heir j and 2 24μ I les cr
err [11212 11212 11212 11312 11312 11312 11312 11312 1141	the interval BV and D and D and D profile
3.6]	2.660 0.700 1.9700 1.9700 1.4300 1.2200 1.20	vn he PS, s ^s e assu for IRAC m of
err [$\begin{array}{c}11 \\11 \\03 \\03 \\03 \\03 \\13 \\03 \\13 \\03 \\13 \\03 \\13 \\03 \\13 \\04 \\13 \\04 \\13 \\04 \\13 \\04 \\13 \\04 \\13 \\04 \\13 \\04 \\13 \\04 \\13 \\04 \\13 \\04 \\13 \\05 \\13 \\05 \\13 \\05 \\13 \\$	a shov d MII ls. W (2002 (2002 es of ts t a su
K e	$\begin{array}{c} .04\ 0\\ .104\ 0\\ .100\ 0\\ .100\ .100\ 0\\ .148\ 0\\ .140\ 0\\ .140\ 0\\ .140\ 0\\ .140\ 0\\ .140\ 0\\ .140\ 0\\ .140\ 0\\ .140\ 0\\ .131\ 0\\ $	ortion C an band ussey aitud fron
rr .	$\begin{array}{c} 14\\ 14\\ 0.02 \\ 14\\ 0.02 \\ 14\\ 0.05 \\ 15\\ 10 \\ 16\\ 12\\ 0.04 \\ 13\\ 0.04 $	he po 1 IRA 1
H e	$\begin{array}{c}$	aal. T .2; foi and 7 and 7 d fro , the lete e ere de
r ı	$\begin{array}{c} 0.5 \ 16 \\ 0.05 \ 15 \\ 0.02 \ 14 \\ 0.03 \ 16 \\ 0.03 \ 16 \\ 0.01 \ 17 \\ 0.01 \ 13 \\ 0.01 \ 13 \\ 0.01 \ 14 \\ 13 \\ 0.01 \ 14 \\ 13 \\ 0.01 \ 14 \\ 14 \\ 13 \\ 0.01 \ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 1$	journ t.2.1. t.2.1. topte dopte dopte comp tes we
J e	$\begin{array}{c}$	are averate av
err	$\begin{array}{c}17\\16\\16\\17\\16\\17\\16\\17\\16\\12\\13\\14\\12\\13\\15\\12\\12\\12\\12\\12\\12\\12\\12\\12\\12\\12\\12\\12\\$	be or BV se in th in th N26 O dat is no tar is tar is
V	.00 0. .45 0. .45 0. .45 0.	y on t ; for] olved 39 or NACor talog this s this s), the
rr	$\begin{array}{c} 19\\ 08\ 18\\ 02\ 14\\ 15\\ 04\ 15\end{array}$	thiret 2.1.1 2.1.1 2.1.1 f # 10 f #
В е	.570. .760. .870.	its er Sect. rre nc ides c des c s SAC ometu
	$\begin{array}{c} 24\\ 24\\ 119\\ 558\\ 558\\ 6918\\ 6918\\ 531\\ 15\\ 531\\ 15\\ 7016 \end{array}$	le in nties #29 g aber gpitu the photo the]
(00	$\begin{array}{c} 6 \ 41. \\ 7 \ 12. \\ 7 \ 25. \\ 24. \\ 25. \\ 221. \\ 28. \\ 24. \\ 28. \\ 24. \\ 28. \\ 24. \\ 28. \\ 24. \\ 28. \\ 24. \\ 28. \\ 24. \\ 28. \\ 24. \\ 28. \\ 24. \\ 28. \\ 24. \\ 28. \\ 24. \\ 24. \\ 28. \\ 24. $	/ailab eertaii N26. and g nur ed ma udes etry than than than
δ (20	-73	e is a s unc ht of #19 atalo agnit agnit agnit argance
(00)	522.08 552.39 552.39 554.96 001.37 001.39 0	tablé JHK JHK ponel ponel stars stars stars sey c e inte he ph he ph his c Λ is la ti led in led in
α (20	$\begin{array}{c} 0 \ 47 \\ 0 \ 47 \\ 0 \ 47 \\ 0 \ 48 \\ 0 \ 4$	This For . Com The Com JHk JHk As th Mas JHk VHN WHN WHN WHN Cabe
No ^m	6900	* + o 7 E E 2 a à F1 K+
IJ	2^{ph}_{2n}	
N_{O}	1112465 521005332 10 8200 100000000000000000000000000000	

Table 2. B, V, and infrared photometry of sources in SMCB2

Table 3. Relative intensities of IR spectral lines toward N26

Fig. 4. An underexposed image of N26 in the L' band (3.6 μ m) showing the three components A, C, and B. They correspond to stars #170, #172, and #173 respectively. The field size is 3".4 x 3".4; North is up and East right.

Moreover, the NACO observations uncover a wellresolved red component located between A (#170) and B (#173), which we call C (#172) (Fig. 4). Up to now, no optical counterpart has been detected for component C. Using a Digital Development Process (DDP)², a very faint star cluster of diameter ~ 4" (Fig. 2a) appears between component A and the faint red star #160. On the Ks image (Fig. 2b) this cluster is not detected and component A seems to be formed mainly by two bright stars, A1 and A2, separated by 0".39. The new component C, at 1".48 to the east of A1, seems to be surrounded by at least two faint stars, as shown in the inset of Fig. 2b.

The east-west NACO spectrum S1 (Fig. 5) crossing components A and C gives the distribution of the intensity in the Br γ 2.17 μ m, He I 2.05 μ m, and H₂ lines along the slit. The large profile of A allows the assumption that it contains more than two stars. The H₂ emission is mainly centered on the red component C and spans over 3".5. Fig. 6 shows the intensity profiles of the emission lines Br γ 2.17 μ m, He I λ 2.05 μ m, and H₂ λ 2.12 μ m for each component. These 1D spectra are extracted by summing 8 and 4 pixels centered on the maximum intensity of A and C along the slit of S1. The corresponding relative intensities are listed in Table 3.

Fig. 5. The intensity profiles of near-IR emission lines from a NACO long-slit spectrum in an east (left)-west (right) direction crossing stars #170 (component A) and #172 (component C). Star #173 (component B) does not appear because it is not situated on the E-W cross-cut. The red line represents the H₂ 2.121 μ m emission line. The green line represents the He I 2.113 μ m and the black one the Br γ emission line. The position of the radio source B0046-7333 is indicated. The plot extension is 7".07 (1 pix = 0".05273).

Fig. 6. Spectra of the component A (#170) and C (#172) extracted from S1.

3.2. Ionizing source of N26

From the above-mentioned spectrum S1 a He_I $\lambda 2.11/\text{Br}\gamma$ $\lambda 2.17$ ratio of ~ 0.033 is derived for component A (Table 3). According to Hanson et al. (2002), this ratio corresponds to an ionizing source of type between O7V and late O stars. This is in agreement with the result obtained by Testor (2001), who, on the basis of optical spectroscopy, derived a spectral type O7-O9 V, from the integrated light for components A, B, and the newly detected component C. Note that this integrated entity will be labeled #169 on the color-magnitude and color-color diagrams presented in the following section. It appears that the main ionizing

² http://www.asahi-net.or.jp/~rt6k-okn/its98/ddp1.htm

source should be embedded in component A and that the ionization of B and C is negligible. Another piece of support for this deduction comes from high-resolution radio continuum observations by Indebetouw et al. (2004). Their work reveals the presence of a compact, radio continuum source (B0046-7333) at R.A. $0^{h}48^{m}8^{s}.5$, Decl. $-73^{\circ}14'55''$, i.e. the position of component A. These authors estimated an equivalent spectral type of O7.5 V for the ionizing source of component A.

3.3. Distribution of H_2

The H₂ emission measured toward N26, in particular component A (Fig. 5), is much weaker than that of $Br\gamma$ and He I. The H_2 profile is composed of two shallow bumps centered around the position of component C. At this position, the profile of H_2 decreases slightly. According to Black & Van Dishoeck (1987), the flux ratios 2-1(S1)/1-0 (S1) and 1-0 (S1)/1-0 (S0) for radiative excitation should range from 0.5 to 0.6, and from 0.4 to 0.7, respectively. Our measured ratios are 0.44 for 2-1(S1)/1-0 (S1) and 0.53 for 1-0 (S1)/1-0 (S0) (Fig. 6), i.e. not far from the predicted values. This suggests that component C may be a photodissociation region (PDR). These two weak peaks of H₂ emission discovered toward N26 probably belong to a more extended flat distribution of H_2 , as detected by Leroy et al. (2007). The presence of such an extended H_2 is in line with the result by Israel & Maloney (2011), who in a study of the $\lambda 158 \ \mu m \ C II \ line \ emission, found \ PDR \ parameters for the$ whole star forming region labeled N22+N25+N26, corresponding to almost the whole SMCB2-H $\scriptstyle\rm II.$ Rubio et al. (2000) show that H₂ knots are associated with clumps of molecular clouds traced by CO (2-1) and peaks of dust emission, and suggest that massive star formation could be taking place.

3.4. The environment of N26

3.4.1. Morphology in the optical and Spitzer images

N26 is located in the northern part of the molecular cloud SMCB2-HII complex, 50 pc x 76 pc in size, mapped in the ${}^{12}CO(1-0)$ line (Rubio et al. 1993). The H II region lies south of N25, a bright extended circular region $\sim 30''$ in diameter (Figs. 1a & 7). The central part of SMCB2-HII is occupied by N22, the bright, circular and the most extended H II region of the field, which has a size of $\sim 50''$. N22 is centered roughly on the bright blue star #86 of V = 14.39, B - V = -0.09 mag and fills the cavity between the northern and southern molecular cloud components SMCB2-N and SMCB2-S, respectively. This cavity seems to have been created by hot stars in N22. According to Rubio et al. (1993), the N22 region is comparable to Orion A as far as the ${}^{12}CO(1-0)$ flux is concerned. These authors give for SMCB-N and SMCB2-S a mean radial velocity of 120 km⁻¹ and 126.7 km⁻¹ respectively, slightly smaller than that of N22. We remark that N26 is boxed in by the regions N25 and N22. The southern part of SMCB2-HII is composed of N23 and N21. The HII region N23 has a size of $\sim 25''$ and contains the faint blue stars #35, #45,and #54. N21, situated west of N23, is $\sim 15''$ in diameter and includes the blue stars #3 and #8. A faint and compact HII region of radius 2".6 is detected between N21 and N23 in the H β frame (Fig. 7). This region, that we la-

Fig. 7. A mosaic of two [O III] λ 5007 images showing the SMCB2-H II field. The numbers refer to Table 2. The delineated area in the lower frame does not show nebular emission in [O III] while the same area extracted from the H β image and displayed on the left, shows the new object N23A ~ 10" south of #28 (Fig. 3). The whole [O III] mosaic has a size of the 138" × 264" or ~ 42 pc × 80 pc, while the extracted H β image is 28" x 30". The H II regions N21, N22, N23, N25, N26, and the new one N23A are indicated. Horizontal lines show the positions *a*, *b*, *c*, *d*, and *e* of the ESO B&C long-slit spectroscopic observations. The brighter stars of V < 15.5 mag and $B - V \leq 0$ mag are labeled.

bel N23A, is not detected in the $[O \text{ III}] \lambda 5007 \text{ Å}$ band (Fig. 7). The spectrum presented in Fig. 8(a) confirms the faint [O III] emission compared to H β . This object is probably a low-excitation, compact H II region (Meynadier & Heydari-Malayeri (2007). Since its spectral lines do not show a significant velocity shift with respect to those of neighboring H II regions, it should be part of the SMCB2 complex.

3.4.2. Physical parameters of the HII regions

The spectral types of the main ionizing sources of the H II regions in the field (Fig. 7) were estimated from UBV

Table 4. Main ionizing stars of the neighboring HII regions*

ID	V	B - V	' U - E	$A_V A_V$ (sp) (phot	M_V	Spectra Type [§]	l Spectral Type [†]
$\begin{array}{c} N21 \ \#3 \\ N22 \ \#86 \\ N22 \ \#92 \\ N22 \ \#97 \\ N22 \ \#13 \\ N22 \ \#15 \\ N22 \ \#15 \\ \end{array}$	15.414.314.216.4615.4515.9	$\begin{array}{c} 0\\ 0 & -0.09\\ 5 & -0.19\\ 4 & -0.02\\ 4 & -0.10\\ 8 & -0.19\\ \end{array}$	-0.96 -0.96	$\begin{array}{c} 0.69 \\ 0.480.63 \\ 0.570.27 \\ 0.42 \\ 0.57 \\ 0.42 \end{array}$	-4.22 -5.11 -5.25 -2.91 -4.06 -3.37	2 O9 1 O7 5 O7 1 B1 5 BO 7 B0	08.5 05.5 05 09
N23 #35 N25 #18	17.6 214.2	0-0.24 5-0.13	-0.95	0.330.48	-5.01	В 107	O5.5

* U - B values in column 4 are taken from Massey's catalog. In col. 5, A_V values are derived from the $H\alpha/H\beta$ ratios (Table 2). In col. (6) A_V values are calculated using the Q parameter (Massey et al. 1995). In col. 7, M_V values are estimated using A_V from col. 5.

 § Spectral types (luminosity class V) derived from Schmidt-Kaler (1982).

[†] Spectral types from Martins et al. (2005).

Fig. 8. Optical spectra (sky unsubtracted) crossing the H II regions N21, N22, N25, N26, and the faint compact nebula N23A at the positions a, b, c, d, and e (Fig. 7).

photometry (Table 4). We used the main sequence OB star parameters tabulated by Schmidt-Kaler (1982) and Martins et al. (2005)'s calibration. We notice that the O stars classified with Martins et al. are 0.5 to 2 type hotter. It should be underlined that the classifications, based only on color indices, are uncertain and must be considered as a first attempt. Indeed the intrinsic color indices of the O stars are degenerated, that is they hardly differ among themselves and are similar to the values of the earliest B main sequence stars (Conti et al. 1986). Moreover, (B - V) and (U - B) values belong to different data sets. The extended HII region N22 contains 11 blue stars with $B - V \leq 0$, of which the two brightest, #86 and #92, of type O7 and O5.5 V respectively, should be the main ionizing sources of N22. The HII region N25 is centered on the bright star #182 whose spectral type is O5.5 V according to Martins et al.'s calibration (Table 4). However, using spectroscopy, this star was classified as

Fig. 9. Infrared photometric diagrams for sources measured toward the SMCB2-H II complex. See Table 2 for uncertainties. **a**) J-H versus H-K. The blue line is the main sequence isochrone for stars of 1.4 Myr old, and the red line shows the loci of red giants aged 10 Gyr. The black solid line is the reddening vector up to $A_V = 5$ mag. The red empty circles correspond to YSO candidates selected using Whitney et al. (2008)'s criterion and the blue filled triangles correspond to Bolatto et al. (2007)'s criterion (see Sect. 3.5.1). The stars #170, #172, and #173, which are components of the compact H II N26 or #169, are indicated, as well as the object #169, which is the integration of the three mentioned components. **b**) J-H versus K-L. The colors and symbols are the same as those used in panel **a**. The solid line is the reddening vector up to $A_V = 15$ mag. **c**) IRAC [8.0] versus [4.5]-[8.0]. Same colors and symbols as in **a**.

O9 V (Hutchings & Thompson 1988) and O8 V (Testor 2001). In this particular case the spectroscopic result must be privileged. Moreover, the discrepancy between color index and spectroscopic methods point to the uncertainty inherent in using color indices. The main ionization source of N21 seems to be star #3 of type O9 or O8.5 V. In N23 the V magnitudes of eight detected stars (Fig. 3) range between 15.93 and 18.10 mag. Among them stars #31, #35 and #59 have a B - V range from -0.23 to 0.01 mag, and star #35 may be the main ionization source of the region.

In addition to the stellar content, we investigated the physical properties of the HII regions using Boller & Chivens spectroscopy. From a homogeneous set of CCD frames, one-dimensional spectra of N21, N22, N23, N23A, N25, and N26A were extracted by summing a range of pixels along the 4" east-west slit. Each range corresponds to the FWHM of the nebula along the slit of the spectra a, b, c, d and e. (Fig. 7). Table 5 gives the line ratios from which we derived the physical parameters, such as electron density (N_e) and temperature (T_e) of the HII regions. All the line fluxes were corrected using the coefficient $c(H\beta)$ derived from the $H\alpha/H\beta$ ratio of each spectrum (Fig. 8). We estimate N_e using the 5-level atom program by Shaw & Dufour(1995) from the [S II] doublet $\lambda\lambda 6717/6731$ line ratios, assuming $T_e = 10^4$ K. We estimate the T_e using the $[O III]\lambda\lambda 4363/(4959+5007)$ ratio. N22, with an $[O III](\lambda\lambda)$ 5007+4959/H β ratio of 6, appears more excited than N21 and N23 of about 2.15. The ratio $H\alpha/H\beta$ ranges from 3.27 to 4.30. In Table 5 several other physical parameters are also given.

3.5. Stellar populations

The photometric data at our disposal (B, V, J, H, K; 3.6,4.5, 5.8, 8.0 and 24 μ m) allow us to identify and study the stellar populations lying toward the N26 complex. We also use these data to search for possible young stellar object (YSO) candidates. YSOs are enshrouded in dust that absorbs stellar UV and optical radiation and re-radiates in the IR. YSOs can be distinguished from normal stars, i.e., main sequence, giant, and supergiant stars, by their excess of IR emission. Indeed they are positioned in redder parts of the color-color and color-magnitude diagrams. However, the interpretation is not straightforward, since foreground Galactic evolved stars and background external galaxies can display colors similar to those of YSOs, and also since the distribution of circumstellar dust around massive stars is not well known (Stahler et al. 2000; Gruendl & Chu 2009).

3.5.1. Photometric diagrams

On the color-color J - H versus H - K diagram (Fig. 9a) the distribution of the sample stars may be divided into three main groups. The first one appears along the main sequence and red giant branch stars with a concentration at $H - K \sim 0.15$ and $J - H \sim 0.65$ mag. Theoretical models (Lejeune & Shaerer 2001) indicate the ages of 1.4 Myr and 10 Gyr for the main sequence and red giants stars, respectively. The 10 Gyr isochrone might indicate an intervening population not physically related to the young massive star region. The second group is a small concentration of faint stars to the right of the reddening vector centered at $H - K \sim 0.2$ mag. And the third one is composed of 13 stars with an IR-excess H - K > 0.6 mag. In particular, #169 includes the sources #170, #172, and #173. Among these 12 red sources, the three reddest, i.e. #19, #118, and #127, have IR excess consistent with those of a circumstellar disk, a protostellar envelope, or a dusty HII region. The YSO candidates, shown in red empty circles, comply with the following selection criterion: $[3.6] < 6.76 + 1.10 \times ([3.6]-[24])$ and $[3.6] < 13.86 - 0.91 \times ([3.6]-[24])$ (Whitney et al. 2008). Also are indicated candidate carbon stars (Bolatto et al. (2007)'s criterion) with filled triangles.

To understand the origin of the dust emission, we include the *L*-band photometry and compare their locations in the *J* - *H* versus *K* - *L* color-color diagram (Fig. 9b) to known YSO candidates (e.g., Maercker & Burton 2005), where the blue and red lines represent 3 Myr and 10 Gyr isochrones, respectively (Lejeune & Shaerer 2001). All 12 red sources have large (*K* - *L*) color excess similar to YSO candidates. Four additional sources without excess in *JHK* colors are found to have (*K* - *L*) color excess: #12, #45, #55, #136; these sources could be AGB or p-AGB stars. To better assess the nature of these red sources, i.e. the origin of dust emission, it is necessary to include mid- and far-IR photometry.

We try now to confirm these YSO candidates using other diagnostic tools consisting of mid- and far-IR color-magnitude and color-color diagrams. This method has already been employed in several works dealing with YSO candidates (Meixner et al. 2006, Bolatto et al. 2007, Whitney et al. 2008, Gruendl & Chu 2009, Gordon et al. 2011). Gruendl & Chu (2009) showed that evolved stars and background galaxies can be excluded from the initial selection of massive YSOs using two simple selection criteria, i.e. [4.5]-[8.0] ≥ 2 and [8.0] < 14-([4.5]-[8.0]) respectively. Following these criteria, we select eight YSO candidates (Fig. 9c).

All these candidates fall in the loci of class 0 to class II YSOs, following Bolatto et al. (2007). Note that the red object #18 has no B, V, and JHKs data; this is why it is absent in Figs. 9 a & b. For the same reason, it is not listed in Table 6, although the [8.0] versus [4.5]-[0.8] plot suggests it as a possible YSO candidate (Fig. 9c). The enclosed area shows the sample that does not include normal and asymptotic giant branch stars, neither background galaxies. The eight YSO candidates are found in the upper right wedge. The red dots are the YSO candidates selected using the above-mentioned criterion by Whitney et al. (2008).

It should also be mentioned that we had to calculate the IRAC photometry of star #18, because in the SAGE catalog only 4.5 and 5.8 μ m values were available. Therefore, we obtained the photometry of the 3.6 to 8.0 μ m bands using profiles instead of apertures, because #18 is a blended source, as indicated by its FWHM which is much larger than the IRAC PSF. Indeed the profile method yields more accurate sky subtraction in the wings. The method consisted of crossing several cuts through #18 along rows and integrating the fluxes in each band.

Spect	rum H 11 region	[Ο 111] λ4363	$\mathrm{H}\beta$	$\begin{bmatrix} O & III \end{bmatrix} \\ \lambda\lambda4959 + 5007 \end{bmatrix}$	$H\alpha$	$\frac{H\alpha}{H\beta}$	$\frac{[Oiii]}{H\beta}$	$\frac{[Oiii]}{\lambda 4363}$	$c(\mathrm{H}\beta)$	E(B-V)	$\frac{1}{\log F(\mathrm{H}\beta)}$ $\frac{1}{\mathrm{erg \ cm^{-2} \ s^{-1}}}$	FWHM (")	$\frac{\lambda 6717}{\lambda 6731}$	$\begin{array}{c} T_e \\ (\mathrm{K}) \end{array}$	$\frac{N_e}{(\mathrm{cm}^{-3})}$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
d	N26A-B	693	8019) 52616	44374	15.53	6.56	76	0.84	0.58	-12.09	2.5	0.83	12950	1216
е	N25	172	6597	7 30949	21605	53.28	4.69	180	0.16	0.11	-12.18	30	1.31	10394	110
с	$N22 north^*$	177	3736	5 22241	12492	23.34	5.95	129	0.19	0.13	-12.42	37	1.27	11685	182
b	N22S	150	2841	15327	10190	3.59	5.40	102	0.29	0.19	-12.54	50	1.31	12658	110
a	N23		909	2341	3143	3.46	2.58		0.23	0.16	-13.04	30	1.25		176
a	N23A		1014	4 375	3818	3.77	0.37		0.34	0.23	-12.99	8	1.34		80
a	N21		990	2074	3705	3.74	2.10		0.33	0.23	-13.00	18	0.89		948

Table 5. HII region parameters derived from optical emission lines

*centered at the position of stars #125 and #155

In order to calibrate the photometry, the operation was carried out also for star #67 (Table 2). The uncertainties in the 3.6 to $8\,\mu\text{m}$ bands are ≤ 0.05 mag. We note that the 24 μm measurement of #18 might include nearby #14 source as these IRAC sources are unresolved by the MIPS 24 μm PSF.

The red stars #75 and #127 in Fig. 9c are slightly outside the limits of the YSO area. However, in the [3.6]-[8.0] versus [8.0]-[24] color-color diagram (not shown), they are inside the area and may therefore be classified as YSO candidates. Moreover, the objects #170, #172, and #173 are absent in Fig. 9c, because they lack mid-IR data. Fig. 9c shows also that most of the stars are located along a vertical band with [4.5]-[8.] ranging from ~ 0 to 0.6. According to Gordon et al. (2011), most of these stars occupy the loci of O and early B stars.

3.5.2. Massive YSO candidates

We have selected 12 possible YSO candidates after applying several diagnostics tools, but only 9 of them, those with mid-IR detection, will be further investigated with spectral energy distribution (SED) fitting. Most of these objects should not be low-mass protostars, but rather massive YSOs. The absolute magnitudes in the L band for our candidates range from -8.4 to -4.5. In comparison, the L absolute magnitudes for 58 low-mass YSO candidates in the Orion Trapezium cluster are found to be between -3.5 and 4.2. These comparatively large magnitudes and the red colors that characterize massive YSOs are also notable in the color-magnitude diagrams, for example the [8.0] versus [4.5]-[8.0] (Fig. 9c). It should be underlined that the YSO SED fitting, and consequently the parameters obtained, are formal results, i.e. mere suggestions from the physical point of view.

Low-mass YSOs are divided into classes based on their observed spectral indices (Lada 1987). In contrast, we do not yet have a well-defined classification system for massive YSOs. Therefore, we use the commonly accepted scheme of low-mass YSOs as a starting point to look into the physical parameters of high mass YSOs. The geometry of dust disk and envelope applicable to low-mass YSOs has been adopted in radiative transfer models of high-mass YSOs, e.g., Whitney et al. (2004) and Robitaille et al. (2006).

Robitaille et al. (2006) suggested a physical classification scheme for YSOs of all masses. This classification is analogous to the Class scheme for low-mass YSOs, but uses physical quantities, instead of the slope of the spectral energy distribution (SED) to define the evolutionary stage of the models. This classification scheme, while physical, is model dependent, and the comparison with observations requires data taken with sufficient angular resolutions to separate among individual sources and from backgrounds, which is not always the case for Magellanic Cloud objects. Chen et al. (2009) suggested an empirical classification of the observed SEDs of massive YSOs, and used a "Type" nomenclature for distinction from the "Classes" for lowmass YSOs and the "Stages" for model YSOs. According to this empirical classification, massive YSOs are divided into Types I, II and III.

Type I YSOs have SEDs with a steep rise from the NIR to 24 μ m, which is caused by radiation from their circumstellar envelopes. They are visible in the K band and bright at 24-70 μ m, but generally not visible in the optical or J band. Type I YSOs are often found in, or behind, dark clouds.

Type II YSOs have SEDs with a low peak in the optical and brighten up from J to 8μ m. Type II has a high peak at 8-24 μ m and then faint again at 24 μ m.

Type III YSOs have bright SEDs in the optical, with a modest emission of dust in the NIR to MIR, corresponding to remnant circumstellar material. Their brightness fades in the longer wavelengths, and they are often surrounded by H II regions.

Following the same procedure detailed in Chen et al. (2009) to infer the physical parameters for the YSOs, we compare the observed SEDs to model SEDs and select best-fit models based on minimum χ^2_{min} . We use a large model grid containing 20,000 pre-calculated dust radiative transfer models and a fitting code from Robitaille et al. (2007). The fitting requires input parameters including the fluxes of a YSO and uncertainties of the fluxes. The uncertainties of the fluxes are specified in Sect. 2.1.1 and 2.1.2 and listed in Table 2.

Figure 10 shows the best-fitting model (plotted in black lines) for each source, but typically there is a range of models that are nearly as consistent with the data, i.e. χ^2 not significantly greater. We have used a cutoff of $\chi^2 - \chi^2_{\min} \leq 3$ per data point for these acceptable models,

Table 6. Parameters derived from SED fits to the YSO candidates

ID	$lpha$ δ	M_* (M_{\odot})	ΔM_* (M_{\odot})	L_{tot} (L_{\odot})	$\begin{array}{c} \Delta L_{tot} \\ (L_{\odot}) \end{array}$	M_{disk} (M_{\odot})	$\Delta M_{disk} \ (M_{\odot})$	Stage	Δ Stage	Type	Remarks
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
$ \begin{array}{r} 19 \\ 29 \\ 33 \\ 75 \\ 108 \\ 118 \\ 127 \\ 154 \\ 169 \\ \end{array} $	$\begin{array}{c} 004752.37\text{-}731712.85\\ 004753.61\text{-}731710.22\\ 004754.96\text{-}731724.72\\ 004801.27\text{-}731659.22\\ 004804.39\text{-}731521.60\\ 004804.90\text{-}731755.92\\ 004805.68\text{-}731744.36\\ 004805.68\text{-}731744.36\\ 004807.61\text{-}731428.19\\ 004808.60\text{-}731454.69\\ \end{array}$	$\begin{array}{c} 17.4\\ 14.0\\ 9.6\\ 7.1\\ 12.7\\ 15.4\\ 9.9\\ 10.5\\ 24.8\end{array}$	$\begin{array}{r} 3.0\\ 2.7\\ 1.0\\ 1.1\\ 1.3\\ 3.4\\ 1.7\\ 1.0\\ 1.4 \end{array}$	$\begin{array}{c} 22000\\ 9300\\ 3100\\ 1300\\ 13000\\ 19000\\ 5800\\ 7300\\ 80000 \end{array}$	$\begin{array}{c} 8400.\\ 3700.\\ 1100.\\ 350.\\ 4400.\\ 17000.\\ 2100.\\ 2100.\\ 12000. \end{array}$	$\begin{array}{c} 5.2\text{E-}02\\ 8.1\text{E-}02\\ 5.3\text{E-}02\\ 6.0\text{E-}02\\ 1.3\text{E-}01\\ 1.1\text{E-}01\\ 8.9\text{E-}02\\ 9.3\text{E-}03\\ 1.6\text{E-}01 \end{array}$	$\begin{array}{c} 1.4\text{E-01} \\ 1.7\text{E-01} \\ 1.1\text{E-01} \\ 4.4\text{E-02} \\ 2.6\text{E-01} \\ 2.1\text{E-01} \\ 1.3\text{E-01} \\ 7.7\text{E-03} \\ 2.8\text{E-01} \end{array}$	$1.0 \\ 1.1 \\ 1.1 \\ 1.0 \\ 1.4 \\ 1.0 \\ 1.5 \\ 2.0 \\ 1.5$	$\begin{array}{c} 0.0\\ 0.2\\ 0.2\\ 0.0\\ 0.5\\ 0.2\\ 0.5\\ 0.0\\ 0.5\\ \end{array}$	I I II I I II II II	between N21 and N23 " between N22 and N23 N border of N22 S-E border of N23 S-W border of N25 N26, H II region, multiple

and plot them in grey. The results of the model fits are given in Table 6 that lists selected physical parameters: weighted averages and standard deviations of central stellar mass (M_{\star}) , total luminosity $(L_{\rm tot})$, and disk mass $(M_{\rm disk})$. These averages and standard deviations, shown with the Δ sign, are calculated from best-fit and acceptable models using the inverse square of χ^2 as the weight; they show a possible range of the physical parameters of a YSO. For each accepted model, the evolutionary stage is determined using $\dot{M}_{\rm env}/M_{\star}$ and $M_{\rm disk}/M_{\star}$ ratios as defined in Robitaille et al. (2006) and the range of the evolutionary stage, Stage Range, is determined from the standard deviation of all Stages inferred for a YSO.

It turns out that seven candidates have a mass $\geq 10 M_{\odot}$ (Table 6). The most remarkable massive YSO candidates of the sample are #19, #29, and #118 with estimated masses of ~ 17, 14, and 15 M_{\odot} , respectively, and all of Type I. These are very bright objects in the IRAC bands. They are situated in the southern concentration of the molecular cloud shell. #19 and #29 are adjacent objects lying near the newly detected H II region N23A (Figs. 3 & 1). As to the object #118, it is situated east of N23. Table 6 also includes the object #169 which is the integration of the three sources #170, #172, and #173 comprising the compact H II region N26. We will address this object in the next section.

4. Discussion

The main object of this study, N26, is situated in the northern part of the molecular cloud surrounding the central cavity. N26 probably represents the youngest massive star formation accessible to optical and infrared wavelengths in this region. It belongs to a small class of compact, high-excitation blobs (HEBs) in the Magellanic Clouds of which only five other examples are presently known in the SMC: N88A (Testor et al. 2010), N81 (Heydari-Malayeri et al. 1999), N66A (Heydari-Malayeri & Selier 2010), N33 (Selier et al. 2011), and N77A (Selier & Heydari-Malayeri 2012). N26 has the particularity of being one of the most compact members of this class. Several observational data, presented in this paper, suggest that the H II region is powered by a massive star of spectral type O7-O9 V.

In comparison with Galactic regions, some of the HEBs are similar to classical HII regions and some look like compact HII regions detected in the radio continuum (Martin-Hernandez et al. 2005). However, HEBs and their low-excitation counterparts, called LEBs (Meynadier & Heydari-Malayeri 2007), should be considered in the context of massive star formation in the MCs. It would be interesting to know in what physical conditions these vounger and less populous massive star forming regions are born adjacent to typical giant HII regions in the MCs. Given the difficulty in observing the MC HEBs and LEBs, hence the small known sample, it would be helpful to study similar objects in our Galaxy for which higher resolution observations are possible. To our knowledge, no research works have been undertaken yet to find and study compact HII regions in the vicinity of Galactic giant HII regions, such as NGC 3603, M8, M17, and others (Damineli et al. 2005). As a first step, it seems helpful to identify Galactic high-excitation H_{II} regions in the peripheral zone of giant H_{II} regions and look into their physical characteristics. Such a study will constitute a research project on its own, to which enough time and effort should be devoted. This study may, however, face two notable handicaps: distance uncertainties involved in Galactic HII region studies and the difficulty of measuring the total luminosity of Galactic objects extending over several arcminutes on the sky. Note that Galactic HII regions like Orion, Sh2-156, Sh2-152, Sh2-269, and RCW34 (Heydari-Malaveri 1988; Heydari-Malayeri & Testor 1981; Simpson 1973; Heydari-Malayeri et al. 1980,1982) have the same physical size and excitation as the MC LEBs. It remains to identify their higher excitation counterparts in the adjacent areas of giant HII regions.

N26 may be associated with three YSOs: #170 (component A), #173 (component B), and #172 (component C), the latter a massive one, as suggested by SED fitting of the available data (not shown in Fig. 10). However, the problem is that the *Spitzer* IRAC bands do not have the necessary spatial resolution and moreover the SEDs lack data in the near- and mid-IR spectral ranges. The absence of the [4.5], [5.8], [8], [24] and [70] μ m for the components A, B and C and also *BV* bands for C (Table 2) makes the construction of the SED incomplete and hence difficult to compare with models.

Since we lack mid-IR *Spitzer* data for the SED fitting of each of the N26 components A, B, and C, we tried

Fig. 10. Spectral density distribution (SED) of nine YSOs obtained using the YSO models of Robitaille et al. (2006). Filled circles are the flux values converted from magnitudes listed in Table 2. The thin black line represents the best fitting SED, and the gray lines show all models that also fit the data well (defined by $\chi^2 - \chi^2_{best}$ where χ^2 is the value per data point). The dashed line represents the stellar photosphere model (corrected for the foreground extinction). The derived masses are indicated; see Table 6 for other parameters.

to perform the SED fitting on the whole integrated object #169, which contains the three components #170, #172, and #173. The whole #169 measures $\sim 4'' \ge 2''.5$, corresponding to $1.2 \ge 0.8$ pc. The mass of the associated YSO turns out to be $24.8 \pm 1.4 \ M_{\odot}$ (Table 6), which is much higher than the individual masses of the three YSO candidates in components A, B, and C. The model fitting to the SED of combined fluxes from several YSOs would result in a higher inferred stellar mass than that to each of these individual YSOs, as demonstrated in Chen et al. (2010). In addition, extra uncertainties could incur in fitting to these individual YSOs due to their lack of 24 μ m measurements, as the very young ones have SEDs peaking at 24 μ m or even longer wavelengths (Chen et al. 2009, 2010). Most interestingly, the inferred mass of 24.8 ± 1.4 M_{\odot} from the integrated SED is consistent with that of the O7-9V ionizing star determined from our NIR spectra. It appears that the MIR luminosity is dominated by this compact HEB ionized by the most massive star (O7-9V) in this group of stars.

In any case, It is not surprising that N26 hosts a massive YSO in its component C, because N26 is a very young massive star formation region. In similar cases, YSOs have already been reported to be associated with other HEBs, for example the LMC objects N159-5 (Chen et al. 2010) and N11A (Vaidya et al. 2009), in spite of a spatial resolution of ≥ 0.5 pc. Moreover, thanks to a high spatial resolution of ~ 0.06 pc, YSO candidates have been located in the SMC HEB N88A (Testor et al. 2010). Hence, the presence of this YSO is compatible with the fact that HEBs are sites of ongoing massive star formation.

As far as a broader view of the environment in which N26 lies is concerned, this area of the SMC is a very interesting site of massive star formation. This statement is supported by the presence of several HII regions and numerous OB stars associated with a giant molecular cloud, as presented in the preceding sections. Massive

star formation has probably developed from the main H II region N22, which, with its several OB stars, has disrupted the molecular cloud and has created a central cavity in the SMCB2-H II complex. This suggests that the formation of massive stars has probably propagated from N22 in both north and south directions.

This picture is consonant with the detection of the eight YSOs candidates toward the SMCB2-H II complex, among which seven massive ones. The most massive candidate of the sample, object #19, has a mass of $17.4 \pm 3.0 \ M_{\odot}$ (Table 6) and lies in the direction of the southern molecular ridge, between the H II regions N21 and N23. This object is situated at about 4".5 from #29, which is the second most massive candidate of the sample, with a mass of $14.0 \pm 2.7 \ M_{\odot}$. There are four other YSO candidates in that direction: #33, #75, #118, and #127. The presence of these massive YSOs supports the observation that the southern concentration of the SMCB2 molecular cloud bordering the central N22 cavity is an active site of massive star formation.

The other YSO candidates belong to the northern concentration of the molecular cloud, where the compact HII region N26 is located. The most massive object of this group, i.e. #108, lies about 30''(9 pc) south of N26 and has a mass of $12.7 \pm 1.3 M_{\odot}$ (Table 6). Interestingly, this object lies at the northern border of the central cavity. Although geometrical coincidence cannot be firmly excluded, and we cannot reject the possibility that N22 simply erodes the less dense part of the clump that forms YSOs, there is a probability that the formation of this object be related to northward expansion of the HII region N22. The absence of YSOs in the direction of N22 is due to the fact that there is no notable concentration of molecular gas and dust there. Indeed massive stars of N22 have disrupted the molecular cloud, creating the cavity visible on the Spitzer images (Fig. 1).

More generally, apart from the lack of data, some words of caution are in order as to the method used in describing the characteristics of the YSOs. The point spread function (PSF) of the IRAC bands at the SMC distance of 61 kpc is $\sim 2''$, corresponding to $\sim 0''.6$ pc. The angular resolution for the MIPS bands is even worse, ranging from ~ 1.8 pc to 12 pc for the 24 μ m and 160 μ m bands respectively. Even with a resolution of 0.6 pc, which is the size of a whole cluster, we may be probing the combined effects of the embedded components. For comparison, the Orion core, which includes lots of various components, among which the Trapezium cluster and BN/IRc2 (YSO), has a size of only ~ 0.5 pc. Moreover, since we are dealing with H II regions, an HII region, taken globally, should contain several components such as strong nebular emission, UV photons acting on dust concentrations (accompanied by secondary IR emission), radio emission, embedded clusters, etc. More specifically, the contribution from PAH emission to the emission at IRAC wavelengths is significant, particularly in the 8 μ m band, making the sources easy to confuse with YSOs. Therefore, we must be very cautious in interpreting the present data.

With the above precautions in mind, we now underline another point in favor of the presence of the YSO candidates. The SMCB2-H II complex is a star forming region enclosing strong ionized hydrogen emission, dust concentrations, and hundreds of stars. We have detected only eleven YSOs toward this complex. The massive candidates are moreover associated with the most recent massive star formation events detectable in the optical and infrared bands. It appears that massive stars tend to form where massive star formation has occurred before, a trend seen in other LMC H II regions (Chen et al. 2009, 2010). Such sites already had the conditions to form massive stars in the past and hence unsurprisingly continue to form new massive YSOs.

5. Concluding remarks

N26 is a member of the rare category of high-excitation blobs in the SMC. We have presented high spatial resolution imaging of this object in the JHKsL'-bands with a FWHM of \sim 0".1-0".35. Imaging with a lower spatial resolution is also presented in B, V, near-IR, mid-IR, 24 μ m, and 70 μ m for both N26 and its surrounding regions, which are associated with the molecular cloud SMCB2. Component A, which is $\sim 1''$ in size, contains at least two stars, one of which, A1, with a spectral type of O7-O9, might be the main exciting source of N26. Moreover, component A coincides with the radio continuum source B0046-7333. On the other hand, a bright component, C, which lies between A and B and has no optical counterpart, is uncovered for the first time. In general, N26 appears to contain at least five stars superimposed on a very small cluster of faint hardly resolved stars between component A and star #160 in a $\sim 4''$ area. Components A and C are also found to be associated with several stars each. Massive star formation is probably still going on in N26, if the detection of the massive YSO (#172) is confirmed. This object is the most massive member of the massive YSOs candidates in the SMCB2.

Mid-IR images of the molecular cloud SMCB2 at a larger scale of 50 pc x 76 pc display a shell structure of gas and dust surrounding a central cavity created by N22, the main H II region of the molecular complex. N26, which is associated with the northern concentration of the shell, is the most compact and excited HII region of the complex. To check the presence of massive YSOs in other parts of the molecular cloud, we used selection criteria based on color-magnitude and color-color diagrams in various bands (B, V, L, J, H, Ks, 3.6, 4.5, 8.0, 24, 70, and 160 μ m), and then SED fitting on the qualified objects. All the YSO candidates are associated with the two northern and southern concentrations or shells of the molecular complex SMCB2 bordering the central cavity. The southern concentration, notably N23, harbors more massive YSO candidates than the northern concentration. A faint and compact HII region with weak [O III] $\lambda 5007$ emission is also detected toward this part of the complex.

We are aware that the low spatial resolution at the distance of the SMC, in addition to contamination by dust and gas emission, makes the detection and classification of YSOs questionable. However, taking the necessary precautions, we have to push the exploitation of the data to their limit in order to study massive star formation in metal deficient galaxies, the nearest example of which is the SMC.

Acknowledgements. M.S. acknowledges financial support from the NASA ADAP award NNX11AG50G.

References

- Allen, L.E., et al. 2004, ApJS, 154, 363
- Bica, E.D., Dutra, C.M. 2000, AJ, 119, 1214
- Black, J.H., van Dishoeck, E.F. 1987, ApJ, 322, 412
- Bolatto, A.D., Simon, J.D., Stanimirovic, S., van Loon, J.Th., and 11 authors. 2007, ApJ, 655, 212
- Bot, C., Rubio, M., Boulanger, F., et al. 2010, A&A, 524, 52
- Bonanos, A.Z, Lennon, D.J., Kohlinger, F., et al. 2010, AJ, 140, 416 Chen, C.H.R., Chu, Y.-H., Gruendl, R. A., Gordon, K.D., Heisch, F. 2009, ApJ, 695, 511
- Chen, C.H.R., Indebetouw, R., Chu, Y.-H., Gruendl, R. A., Testor, G., Heisch, F., Seale, J., Meixner, M., Sewilo, M. 2010, ApJ, 721, 1206
- Conti, P. S., Garmany, C. D., Massey, P. 1986, AJ, 92, 48 Cutri, R. M., et al. 2003, The IRSA 2MASS Point Source Catalog, NASA/IPAC Infrared All-Sky 2MASS Infrared Science Archive. http://irsa.ipac.caltech.edu/applications/Gator/
- Damineli, A., Blum, R. D., Figueredo, E., & Conti, P. S. 2005. in: R. Cesaroni et al. (eds.), Massive Star Birth: A Crossroads of Astrophysics (Cambridge: CUP); Pros. IAU Symp. 227, 407.
- Davies, R. D., Elliot, K. H., Meaburn, J. 1976, MmRAS, 81, 89
- Dufour, R. J. 1984, IAU Symp. 108: Structure and Evolution of the
- Magellanic Clouds, 108, 353 Gordon, K. D., Meixner, M., Meade, M. R., Whitney, B., et al. 2011, AJ, 142, 102
- Gruendl, R. A., Chu, Y. 2009, ApJS, 184, 172
- Hanson, M., Luhman, K., Rieke. 2002, ApJS, 138, 35
- Henize, K. G. 1956, ApJS, 2, 315
- Heydari-Malayeri, M., Testor, G., & Lortet, M. C. 1980, A&A, 84, 154
- Heydari-Malayeri, M., & Testor, G. 1981, A&A, 96, 219
- Heydari-Malayeri, M., & Testor, G. 1982, A&A, 111, L11
- Heydari-Malayeri, M., Testor, G., Baudry, A., et al. 1982, A&A, 113, 118
- Heydari-Malayeri, M. 1988, A&A, 202, 240
- Heydari-Malayeri, M., Jarvis, B., Gilliotte, A. 1989, The Boller & Chivens Spectrographs, ESO Operating Manual 9
- Heydari-Malayeri, M., Rosa, M.R., Charmandaris, V., Deharveng, L., Zinneker, H. 1999, A&A, 352, 665
- Heydari-Malayeri, M., Rosa, M. R., Charmandaris, V., et al. 2010, The Impact of HST on European Astronomy, F. D. Macchetto (ed.), Astrophys. and Space Sci. Proc., p. 31
- Heydari-Malayeri, M., Selier, R. 2010, A&A, 517, 39
- Hutchings, J.B., Thompson, I.B. 1988, ApJ, 331, 294
- Indebetouw, R., Johnson, K., Conti, P. 2004, AJ, 128, 2206
- Israel, F.P. 1997, A&A, 328, 471
- Israel, F.P., Maloney, P.R. 2011 arXiv:1104.2047v1
- Kato, D., Nagashima, C., Nagayama, T., et al. 2007, PASJ, 59, 615
- Keller, S. C., Wood, P. R. 2006, ApJ, 642, 834
- Lada, C.J. 1987, in IAU Symp. 115: Star Forming Regions, ed. M. Peimbert & J. Jugaku
- Lada, C.J., A.A Muench, Haisch, Karl E., Jr, et al. 2000, ApJ, 120,3162
- Lawton, B., Gordon, K.D., et al. 2010, ApJ, 716, 453
- Lejeune, T., Shaerer, D. 2001, A&A, 366, 538
- Leroy, A., Bolatto, A., Stanimirovic, S., Mizuno, N., Israel, F., Bot, C. 2007, ApJ658, 1027
- Maercker, M., Burton, G. 2005, A&A, 438, 663
- Martin-Hernandez, N.L., Vermeij, R., van der Hulst, J.M. 2005, A&A, 433.205
- Martins, F, F., Shaerer, D., Hillier, D.J. 2005, A&A 436, 1049
- Massey, P., Lang, C., Degi-Eastwood, K., Garmany, C. 1995, ApJ, 438, 188
- Massey, P. 2002, ApJS, 141, 81
- Meixner, M., et al. 2006, AJ, 132, 2268
- Meynadier, F., Heydari-Malayeri, M. 2007, A&A 461, 565
- Mizuno, N., Rubio, M., Mizuno, A., Yamaguchi, R., Onishi, T., Fukui, Y. 2001, PASJ, 53L, 45
- Peña-Guerrero, M. A., Peimbert, A., Peimbert, M., Ruiz, M. T. 2012, ApJ, 746, 115

- Rieke, G., et al. 2004, ApJS, 154, 25
- Robitaille, T., P., Whitney, B. A., Indebetouw, R., Wood, K., Denzmore, P. 2006 ApJS, 167, 256
- Robitaille, T., P., Whitney, B. A., Indebetouw, R., Wood, K. 2007 ApJS, 169, 328
- Rubio, M., Lequeux, J., Boulanger, F., et al. 1993, A&A, 271, 1
- Rubio, M., Contursi, A., Lequeux, J., Prost, R., Barba, R., Boulanger, F., Cesarsky, D., Maoli, R. 2000, A&A, 359, 1139
- Schaefer, B. E. 2008, AJ 135, 112
- Selier, R., Heydari-Malayeri, M., Gouliermis, D. A. 2011, A&A, 529, A40
- Selier, R., Heydari-Malayeri, M. 2012, A&A, 545, A29
- Shaw & Dufour 1995, PASP, 107, 896
- Schmidt-Kaler, T. 1982, Landolt-Bornstein, New Series, Group VI 2, p. 14
- Simpson, J. P. 1973, PASP, 85, 479
- Stahler, S., W., Palla, F., HO, P. T. P. 2000, Protostars and Planets IV, 327
- Stetson, P. B. 1987, PASP, 99, 191
- Testor, G. 2001, A&A, 372, 667
- Testor, G., Lemaire, J.L., Heydari-Malayeri, M., Kristensen, L.E., Diana, S., Field., D. 2010, A&A, 510, 95
- Vaidya, V., You-Hua Chu., Gruendl, R., Chen C.-H.R., Looney, L.W. 2009, ApJ, 707, 1417
- Westerlund, B.E. 1997, The Magellanic Clouds (Cambridge: Cambridge Univ.Press), pp. 28-34
- Whitney, B. A., Indebetouw, R., Bjorkman, J.E., Wood, K. 2004, ApJ, 617, 1177
- Whitney, B., Sewilo, M., Indebetouw, R., et al. 2008, AJ, 681, 1341
- Wilke, K, Stickel, M., Hass, M., Herbstmeier, U., Klaas, U, Lemke, D. 2003, A&A, 401, 873

Table 7. B, V, and infrared photometry of sources in SMCB2

$\mu m err Type HII region$					I I N21		I N21	I N21		
um err $24\mu m$ err $70\mu m$ err 160	33 0.08			32 0.06	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		45 0.08 7 0.06 3.43 0.02 -0.63 0.02	15 0.12 4.63 0.10		33 0.17
r 8.0µ	0 12.3	90	60	74 10.0	9.9 10 7.0		$\begin{array}{ccc} 03 & 10.^{\prime} \\ 02 & 8.7 \end{array}$	1 11.	1	06 12.9 .8
un er:	21 0.1	48 0.0	18 0.0	74 0.0′ 38 0.1			36 0.0 6 0.0	22 0.1	12 0.1	19 0.0
r 5.8μ	9 14.2	3 13.4	$\frac{3}{0}$ 13.3	$\begin{array}{c} 7\\ 2\\ 1\end{array}$	$\begin{array}{c} 2 & 11.^{\prime} \\ 1 & 8.2 \end{array}$	ŭ	2 10.6 2 9.9	8 12.5	6 14.1 7	$\begin{array}{c} 5 & 13 \\ 0 & 14 \\ 0 & 9 \end{array}$
um er	.11 0.0	.55 0.0	.30 0.C .97 0.1	$.13\ 0.0$ $.80\ 0.0$ $.12\ 0.1$.660.1	.66 0.0	.71 0.0 .18 0.0	.38 0.0	.98 0.C .35 0.C	.36 0.0 .41 0.1 .77 0.0
err 4.5,	04 15	04 13	$\begin{array}{ccc} 33 & 13 \\ 39 & 15 \end{array}$	$\begin{array}{c} 0.7 & 1.4 \\ 0.2 & 1.0 \\ 0.5 & 1.4 \\ 0.5 & 1.4 \\ \end{array}$	$\begin{array}{ccc} 11 & 13 \\ 01 & 9 \end{array}$	03 14	03 10 02 11	13 13	$\begin{array}{ccc} 04 & 13 \\ 04 & 15 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
θµm e	5.53 0.1	3.71 0.1	3.260.6	4.350.0 0.680.0 3.920.0	4.040.0	4.66 0.0	0.65 0.1 1.97 0.1	3.78 0.	3.940.6	3.340.1 4.450.1 6.050.1
$No^m \alpha (2000) \delta (2000)$ B err V err J err H err K err 3.6	$\begin{array}{c} 0 \ 47 \ 47.33 \ -73 \ 17 \ 46.25 \ 18.48 \ 0.10 \ 18.42 \ 0.09 \\ 0 \ 47 \ 47.57 \ -73 \ 17 \ 27.96 \ 18.26 \ 0.08 \ 18.35 \ 0.09 \\ 9251 \ 0 \ 47 \ 47.62 \ -73 \ 17 \ 27.10 \ 15.31 \ 0.02 \ 15.37 \ 0.03 \ 15.55 \ 0.02 \ 15.57 \ 0.02 \ 15.60 \ 0.06 \ 1^{\circ} \\ 0 \ 47 \ 48.55 \ -73 \ 17 \ 29.58 \ 16.25 \ 0.03 \ 16.22 \ 0.04 \ 16.12 \ 0.02 \ 16.10 \ 0.03 \ 16.07 \ 0.10 \\ 0 \ 47 \ 48.55 \ -73 \ 17 \ 29.58 \ 16.25 \ 0.03 \ 16.22 \ 0.04 \ 16.12 \ 0.02 \ 16.10 \ 0.03 \ 16.07 \ 0.10 \\ \end{array}$	$\begin{array}{c} 0 & 47 & 48.02 \\ 0 & 47 & 48.02 \\ -73 & 16 & 18.60 \\ 17.70 \\ 0 & 0 & 47 & 49.05 \\ -73 & 16 & 33.00 \\ 14.66 \\ 0 & 0.07 \\ 17.50 \\ 0 & 17 & 49 \\ -72 & 18 \\ -73 & 18 \\ -73 \\ 18 \\ -73 \\ 18 \\ -73 \\ 18 \\ -73 \\ 18 \\ -73 \\ 18 \\ -73 \\ 18 \\ -73 \\ 18 \\ -73 \\ 18 \\ -73 \\ 18 \\ -73 \\ -73 \\ 18 \\ -73 \\ -73 \\ 18 \\ -73 \\ -73 \\ 18 \\ -73$	$0\ 47\ 49.57\ 73\ 17\ 06.15\ 17.51\ 0.04\ 18.37\ 0.10\ 17.43\ 0.05\ 17.31\ 0.09\ 0.01\ 13.45\ 0.02\ 11.00\ 0.47\ 49.66\ 73\ 16\ 44.10\ 0.41\ 17.50\ 0.04\ 17.72\ 0.06\ 17.23\ 0.08\ 16.93\ 0.05\ 16.98\ 0.02\ 11.00\ 0.47\ 50\ 0.01\ 17\ 50\ 0.01\ 17\ 50\ 0.01\ 17\ 50\ 0.00\ 17\ 70\ 0.02\ 100\ 0.00\ 0.01\ 0.00\ 0.01\ 0.00\ 0.01\ 0.00\ 0.01\ 0.00\ 0.01\ 0.00\ 0.01\ 0.00\ 0.01\ 0.00\ 0.01\ 0.00\ 0.01\ 0.00\ 0.01\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.01\ 0.00\ 0.$	$\begin{array}{c} 9350\ 0\ 47\ 50.33\ -73\ 16\ 41.57\ 15.12\ 0.06\ 14.93\ 0.03\ 14.70\ 0.01\ 14.57\ 0.02\ 14.48\ 0.03\ 1\\ 9387\ 0\ 47\ 51.31\ -73\ 17\ 14.80\ 15.46\ 0.02\ 14.04\ 0.03\ 11.68\ 0.01\ 11.00\ 0.01\ 10.87\ 0.02\ 1\\ 0\ 47\ 51.85\ -73\ 16\ 2006\ 18.87\ 0.02\ 1\\ 15.22\ 0.02\ 14.48\ 0.02\ 14.30\ 0.02\ 1\\ 130\ 0.02\ 1\\ 12.22\ 0.02\ 14.48\ 0.02\ 14.30\ 0.02\ 1\\ 130\ 0.02\ 1\\ 130\ 0.02\ 1\\ 130\ 0.02\ 1\\ 12.22\ 0.02\ 14.48\ 0.02\ 14.30\ 0.02\ 1\\ 130\ 0.02\ 1\\ 130\ 0.02\ 1\\ 12.22\ 0.02\ 14.48\ 0.02\ 14.30\ 0.02\ 1\\ 130\ 0.02\ 1\\ 12.20\ 0.02\ 1\\ 130\ 0.02\ 1\\ 130\ 0.02\ 1\\ 130\ 0.02\ 1\\ 130\ 0.02\ 1\\ 130\ 0.02\ 1\\ 130\ 0.02\ 1\\ 12.22\ 0.02\ 14.48\ 0.02\ 14.30\ 0.02\ 1\ 1\\ 14.30\ 0.02\ 1\ 14.30\ 0.02\ 1\\ 14.30\ 0.02\ 1\ 1\ 14.30\ 0.02\ 1\ 1\ 14.30\ 0.02\ 1\ 14.30\ 0.02\ 1\ 1\ 14.30\ 0.02\ 1\ 1\ 14.30\ 0.02\ 1\ 1\ 14.30\ 0.02\ 1\ 1\ 14.30\ 0.02\ 1\ 14.30\ 0.02\ 1\ 1\ 14.30\ 0.02\ 1\ 14.30\ 0.02\ 1\ 1\ 14.30\ 0.02\ 1\ 14.30\ 0.02\ 1\ 1\ 14.30\ 0.02\ 1\ 14.30\ 0.02\ 1\ 14.30\ 0.02\ 1\ 14.30\ 0.02\ 1\ 14.30\ 0\ 14.30\ 0\ 14.30\ 14.30\ 0\ 14.30$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.4752.85-731743.0618.310.0617.880.0816.620.0216.240.0416.260.11 0.4752.85-731743.0618.310.0617.880.0816.620.0216.240.0416.260.11 0.4752.88-731622.30 $15.730.0214.970.0214.760.0310.4753.03-731629.2417.900.1218.030.09$	$\begin{array}{c} 0 \ 47 \ 53.26 \ -73 \ 17 \ 35.21 \ 18.87 \ 0.06 \ 18.55 \ 0.09 \\ 0 \ 47 \ 53.31 \ -73 \ 17 \ 56.52 \ 17.63 \ 0.04 \ 17.69 \ 0.05 \ 17.84 \ 0.09 \ 17.60 \ 0.14 \ 17.58 \ 0.20 \\ 0 \ 47 \ 53.34 \ -73 \ 16 \ 17.70 \ 17.78 \ 0.05 \ 17.84 \ 0.07 \\ 0 \ 47 \ 53.45 \ -73 \ 17 \ 23.75 \ 15.80 \ 0.02 \ 14.25 \ 0.03 \ 11.65 \ 0.01 \ 10.95 \ 0.01 \ 10.82 \ 0.02 \ 10.00 \\ 0 \ 47 \ 53.55 \ -73 \ 17 \ 23.75 \ 15.80 \ 0.02 \ 14.25 \ 0.03 \ 11.65 \ 0.01 \ 10.95 \ 0.01 \ 10.82 \ 0.02 \ 10.00 $	$\begin{array}{c} 0 \ 47 \ 54.14-73 \ 18 \ 13.22 \ 18.06 \ 0.04 \ 17.77 \ 0.06 \\ 0 \ 47 \ 54.51 \ -73 \ 17 \ 44.11 \ 18.01 \ 0.07 \ 18.07 \ 0.07 \\ 0 \ 47 \ 54.84 \ -73 \ 17 \ 16.07 \ 18.07 \ 0.04 \ 18.13 \ 0.08 \\ 0 \ 47 \ 55.02 \ -73 \ 17 \ 25.20 \\ \end{array} \right. \\ \left. 16.00 \ 0.02 \ 14.97 \ 0.02 \ 14.55 \ 0.03 \ 17 \\ \end{array}$	$\begin{array}{c} 0\ 47\ 55.54\ -73\ 16\ 36.38\ 17.56\ 0.04\ 17.00\ 0.04\\ 0\ 47\ 55.82\ -73\ 17\ 48.04\ 17.33\ 0.03\ 17.56\ 0.07\ 17.20\ 0.10\ 17.21\ 0.08\ 16.93\ 0.20\\ 0\ 47\ 55.89\ -73\ 16\ 43.00\ 18.51\ 0.06\ 17.31\ 0.05\ 14.35\ 0.02\ 14.30\ 0.02\ 14.12\ 0.02\ 1\\ 9565\ 0\ 47\ 55.89\ -73\ 16\ 14.10\ 17.02\ 0.04\ 18.81\ 0.16\ 13.10\ 15.46\ 0.06\ 1\\ 9565\ 0\ 47\ 55\ 0.02\ 15.54\ 0.03\ 15.46\ 0.06\ 1\\ 0\ 47\ 56\ 0.9\ -73\ 16\ 8.25\ 0.07\ 19\ 8.90\ 0.07\ 19\ 0.01\ 41\ 8.10\ 16\\ \end{array}$	$\begin{array}{c} 9614 \ 0\ 47\ 56.90\ -73\ 18\ 12.15\ 16.36\ 0.03\ 16.41\ 0.03\ 16.67\ 0.02\ 16.75\ 0.05\ 16.82\ 0.08\\ 9582\ 0\ 47\ 56.95\ -73\ 16\ 45.54\ 16.82\ 0.03\ 16.41\ 0.03\ 16.67\ 0.02\ 17.66\ 0.01\ 17.64\ 0.19\\ 0\ 47\ 56.95\ -73\ 16\ 58.30\ 18.60\ 0.10\ 18.63\ 0.11\ 14.65\ 0.01\ 13.53\ 0.01\ 17.64\ 0.19\\ 9636\ 0\ 47\ 57.02\ -73\ 18\ 10.15\ 17.8\ 0.04\ 17.77\ 0.08\ 17.53\ 0.04\ 17.67\ 0.11\ 17.67\ 0.18\\ 9636\ 0\ 47\ 57.61\ -73\ 17\ 49.76\ 16.61\ 0.03\ 16.47\ 0.04\ 16.41\ 0.02\ 16.50\ 0.01\ 13.53\ 0.02\ 17.67\ 0.18\\ 9636\ 0\ 47\ 57.61\ -73\ 17\ 49.76\ 16.61\ 0.03\ 16.47\ 0.04\ 16.41\ 0.02\ 16.40\ 0.05\ 17.67\ 0.18\\ 9638\ 0\ 47\ 57.61\ -73\ 17\ 49.76\ 16.61\ 0.03\ 16.47\ 0.04\ 16.41\ 0.02\ 16.44\ 0.05\ 17.67\ 0.18\\ 9638\ 0\ 47\ 57.61\ -73\ 17\ 29.14\ 16.14\ 0.03\ 16.18\ 0.03\ 16.44\ 0.02\ 16.44\ 0.05\ 16.40\ 0.06\ 19.64\\ 9638\ 0\ 47\ 57.61\ -73\ 17\ 29.14\ 16.14\ 0.03\ 16.18\ 0.03\ 16.44\ 0.02\ 16.44\ 0.05\ 16.40\ 0.06\ 19.64\\ 9638\ 0\ 47\ 57.61\ -73\ 17\ 29.14\ 16.14\ 0.03\ 16.18\ 0.03\ 17.65\ 0.05\ 17.47\ 0.00\ 17.47\ 0.00\ 17.17\ 0.05\ 17.45\ 0.05\ 17.47\ 0.00\ 17.47\ 0.00\ 17.45\ 0.05\ 17.47\ 0.00\ 17.47\ 0.00\ 17.46\ 0.05\ 17.47\ 0.00\ 17.47\ 0.00\ 17.46\ 0.05\ 17.47\ 0.00\ 17.46\ 0.05\ 17.47\ 0.00\ 17.47\ 0.00\ 17.47\ 0.00\ 17.46\ 0.05\ 17.47\ 0.00\ 17.46\ 0.05\ 17.47\ 0.00\ 0.00\ 0$
No		∽∞~∞o	1110	116 116 116 116 116 116 116 116 116 116	18^{ph}	52327	5841 5842 5842 584	8 2 2 8 8	822 822 822 827 82	4447 447 47 47 47 47 47 47 47 47 47 47 4

$:160 \mathrm{m}\mu \mathrm{err} \mathrm{Type} \mathrm{HII} \mathrm{region}$		II N22		
$8.0 \mathrm{m}\mu$ err $24 \mathrm{m}\mu$ err $70 \mathrm{m}\mu$ er	12.71 0.17 4.65 14.12 0.19 13.07 0.19	10.53 0.08 6.79 0.01	11.22 0.06	
ιμ err	$\begin{array}{c} 4 & 0.11 \\ 8 & 0.02 \\ 2 & 0.16 \\ 7 & 0.07 \\ 3 & 0.07 \\ \end{array}$	6 0.10 5 0.04	4 0.04	20.0 5 20.0 7
r 5.8m	$\begin{array}{c} 5 & 14.3 \\ 6 & 13.8 \\ 6 & 13.8 \\ 3 & 12.6 \\ 5 & 14.0 \\ 3 & 13.4 \\ 2 & 9.56 \\ 2 & 9.56 \end{array}$	$5 \\ 5 \\ 13.9 \\ 4 \\ 11.9$	$\begin{array}{c} 3 \ 11.4 \\ 6 \ 14.5 \end{array}$	$\begin{array}{c} 4 \ 13.5 \\ 3 \ 12.9 \end{array}$
imμ eri	$\begin{array}{c} 5.77\\ 5.77\\ 1.600\\ 5.1600\\ 1.370.0\\ 1.370.0\\ 3.940.0\\ 3.940.0\\ 3.960.0\\ 3.510.0\\ 9.700.0\\ \end{array}$	$4.48\ 0.0$ $3.92\ 0.0$ $4.25\ 0.0$	1.530.0 4.740.0	3.640.0 3.060.0
err 4.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.04 14 0.05 13 0.07 14	0.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	.04 1: .03 1:
$.6m\mu$	$\begin{array}{c} 116.06\\ 114.59(\\ 114.59(\\ 114.34(\\ 114.34(\\ 113.97(\\ 113.97(\\ 113.07(\\ 114.01(\\ 114.13\\ 113.44(\\ 9.58(\\ 9.58(\\ 19.58(\\ 10.12)\\ 114.13\\ 113.44(\\ 10.12)\\ 114.13\\ 113.44(\\ 10.12)\\ 114.13\\ 113.44(\\ 10.12)\\ 114.13\\ 114.1$	14.54 (13.90 (14.43 (11.50 (14.78 (13.62 (13.02 (
r K err 3	$\begin{array}{c} 2 \\ 2 \\ 2 \\ 15.29 \\ 0.02 \\ 2 \\ 15.29 \\ 0.02 \\ 2 \\ 15.29 \\ 0.02 \\ 2 \\ 14.91 \\ 0.02 \\ 0.02 \\ 0.17 \\ 12.83 \\ 0.01 \\ 11.12 \\ 0.12 \\ 0.12 \\ 0.12 \\ 0.12 \\ 0.12 \\ 0.02 \\ 0.03 \\ 0.12 \\ 0.03 \\ 0.04 \\ 0.04 \\ $	$\begin{array}{c} 7 \ 16.95 \ 0.10 \\ 2 \ 14 \ 74 \ 0.02 \\ 3 \ 15.92 \ 0.04 \\ 6 \ 17.00 \ 0.11 \\ 2 \ 13.99 \ 0.02 \\ 3 \ 15.45 \ 0.03 \\ 3 \ 16.73 \ 0.22 \\ 2 \ 16.73 \ 0.22 \\ 2 \ 16.73 \ 0.22 \\ 2 \ 15.45 \ 0.03 \end{array}$	6 16.64 0.07 7 17.58 0.08 0 11 11.68 0.01 8 17.20 0.12 3 17.67 0.18 2 14.92 0.02 0 17.42 0.15	$\begin{array}{c} 617.730.19\\ 617.730.09\\ 017.810.25\\ 0517.810.25\\ 2515.1300.11\\ 2515.1300.08\\ 817.180.08\\ 817.710.10\\ 1\\ 1\\ 213.180.02\\ \end{array}$
H er	$\begin{array}{c} 1.10\\$	2.010.0	7.500.0 7.500.0 7.140.1 1.860.0 7.380.0 7.850.1 1.850.0 7.450.1	8.020.1 8.020.1 7.210.0 7.220.0 5.020.0 7.290.0 8.260.1 8.320.0
err	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	0.0317 0.0214 0.0216 0.0816 0.0114 0.0717 0.0117	$\begin{array}{c} 0.0316\\ 0.0517\\ 0.0417\\ 0.0417\\ 0.0817\\ 0.0817\\ 0.0214\\ 0.0417\\ \end{array}$	0.0818 0.0818 0.0917 0.0917 0.0917 0.0917 0.0917 0.0917 0.0917
ſ	$\begin{array}{c} 15.57\\ 15.57\\ 15.56\\ 15.56\\ 15.26\\ 15.26\\ 15.26\\ 15.26\\ 15.26\\ 15.26\\ 17.34\\ 14.97\\ 14.97\\ 14.39\\ 15.00\\ 16.69\\ 15.00\\ 16.39\\ 15.00\\ 16.43\\ 15.00\\ 16$	$\begin{array}{c} 17.08\\ 15.06\\ 16.42\\ 17.20\\ 14.66\\ 16.21\\ 17.74\\ 16.06\\ 16.06\end{array}$	$\begin{array}{c} 17.14\\ 17.84\\ 17.84\\ 12.51\\ 172.59\\ 18.44\\ 18.44\\ 18.75\\ 117.39\end{array}$	$\begin{array}{c} 18.31\\ 18.31\\ 17.75\\ 17.63\\ 17.63\\ 14.96\\ 17.80\\ 17.80\\ 19.15\\ 19.15\\ 13.97\\ 13.97 \end{array}$
err	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	70.03 00.02 10.06 00.04 60.04 60.05 30.13	30.04 30.04 90.04 70.03 70.03 00.03 60.03 30.06 30.06	$\begin{array}{c} 60.07\\ 60.04\\ 00.02\\ 40.03\\ 10.04\\ 70.03\end{array}$
r V	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	$egin{array}{c} 317.5 \ 317.5 \ 316.3 \ 316.3 \ 317.7 \ 317.7 \ 317.7 \ 317.7 \ 317.7 \ 316.9 \ 316.9 \ 316.9 \ 316.9 \ 316.9 \ 317.8 \ 317.$	0718.4 0517.6 0517.6 0517.6 0518.3 0517.6 0316.6 0317.5 0317.5 0414.3 0617.6)5 18.3 13 16.2 05 14.4 04 17.3 05 17.9 03 16.3
Ber	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	$.79\ 0.0$ $.97\ 0.0$ $.87\ 0.0$ $.74\ 0.0$ $.57\ 0.0$ $.06\ 0.0$.72 $.91\ 0.1$	100.0 $100.$	$\begin{array}{c} .62\ 0.0\\ .25\ 0.1\\ .72\ 0.0\\ .59\ 0.0\end{array}$
	$\begin{array}{c} 0.0617\\ 0.0178\\ 0.0018\\$	0.8217 0.8217 0.8217 0.9416 0.5518 0.5517 0.5117 0.5117 0.208 0.218 0.6118	2.2419 5.3419 5.3419 7.9616 5.7016 5.7016 5.7016 2.260 2.260 2.260 1.017	7.10 7.10 7.10 7.2216 7.2216 7.216 7.60 7.60 7.60 7.618
2000)		$\begin{array}{c} 14 \\ 15 \\ 15 \\ 16 \\ 16 \\ 16 \\ 17 \\ 16 \\ 17 \\ 16 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 2$	$\begin{array}{c} 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 $	152572
) δ (33332622522 2444 2444	2215 22 23 25 25 25 25 25 25 25 25 25 25 25 25 25	01 - 73 01 - 73 01 - 73 02
(2000	447 59 447 59 447 59 50 50 60 50 </td <td>$\begin{array}{c} 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 1.5 \\ 48 \\ 1.5 \\$</td> <td>$\begin{array}{c} 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 2 \\ 2 \\ 4 \\ 4 \\ 2 \\ 2$</td> <td>$\begin{array}{c} 48 \\ 48 \\ 2.5 \\ 48 \\ 2.5 \\ 48 \\ 2.5 \\ 48 \\ 2.5 \\ 3.1 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\$</td>	$\begin{array}{c} 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 1.5 \\ 48 \\ 1.5 \\$	$\begin{array}{c} 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 2 \\ 2 \\ 4 \\ 4 \\ 2 \\ 2$	$\begin{array}{c} 48 \\ 48 \\ 2.5 \\ 48 \\ 2.5 \\ 48 \\ 2.5 \\ 48 \\ 2.5 \\ 3.1 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $
$No^m \alpha$	$\begin{array}{c} \begin{array}{c} & & \\ $	$\begin{array}{c} 0 \\ 97370 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{c} 0 \\ 9792 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	98390 98450 98450 98450 98340
No 1	$\begin{array}{c} \begin{array}{c} & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \end{array} $	886 87 87 87 88 87 87 87 88 87 88 87 88 87 87	96 52 52 58 88 88 88 88 88 88 88 88 88 88 88 88

Type HII region		I N22	I N23	F	=	
err $160 \mathrm{m}\mu\mathrm{err}^{'}$			0.01			
$24m\mu err 70m\mu$		3.60 0.01	3.06 0.01 -1.06	2000 1000 1000	10.0 02.6	
err $8.0m\mu$ err	0.05 13.39 0.16 0.05 13.14 0.09	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.03 12.43 0.06	0.04 12.77 0.06	0.09 13.86 0.15
$5m\mu \text{ err } 5.8m\mu$	13.120.03 13.12	11.570.0210.44 $13.050.0313.00$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.50 .03 12.44	14.94 14.94 12.82 0.03 12.76 13.55 13.48	14.650.07 14.34
rr $3.6m\mu$ err 4 .	05 04 01 13.08 0.03 01 13.26 0.03 14 15 15	03 12.50 0.03 1 03 15 01 12.98 0.03 1 01	$\begin{array}{c} 10\\ 01\\ 13\\ 01\\ 13\\ 06\\ 12.76\\ 0.03\\ 0.03\\ 12.76\\ 0.03\\ 0.$	05 08 11 02 01 12.47 0.03	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 00\\ 20\\ 05\\ 14.85\\ 0.04\\ 16\\ 18.18\\ 03\\ 15\\ 13.79\\ 02 \end{array}$
H err K e	.23 0.03 16.020 .70 0.03 15.590 .39 0.01 13.220 .37 0.01 13.300 .14 0.16 18.01 0 .82 0.14 17.400.	(170.0514.840) (170.0514.960) (320.0917.330) (440.0113.220) (550.0214.420)	$\begin{array}{c}$	2200316.210. 2800616.750. 2800817.000. 2800215.060. 7600112.610.	(200, 100, 100, 100, 100, 100, 100, 100,	
r J err	$\begin{array}{c} 216.31\ 0.02\ 16\\ 516.05\ 0.02\ 15\\ 314.11\ 0.01\ 13\\ 2213.83\ 0.01\ 13\\ 2213.83\ 0.01\ 13\\ 0\\ 6\\ 18.49\ 0.11\ 18\\ 18.49\ 0.11\ 18\\ 55\ 17.64\ 0.04\ 17\\ 55\ 17.64\ 0.04\ 17\end{array}$	$\begin{array}{c} 0\\ 016.900.0316\\ 16.900.0316\\ 217.180.0417\\ 314.270.0113\\ 0\\ 9\\ 0\\ 315.200.0214\end{array}$	$\begin{array}{c} \hline 318.740.0918\\ \hline 314.850.0214\\ 18.690.1017\\ \hline 18.690.1017\\ \hline 414.450.0113\\ 17.870.0816\\ \hline 4\end{array}$	$\begin{array}{c} 0 \\ 216.22\ 0.02\ 16 \\ 316.96\ 0.02\ 16 \\ 17.62\ 0.04\ 17 \\ 15.95\ 0.02\ 15 \\ 313.38\ 0.01\ 12 \\ 0 \\ 0 \\ 16\ 06\ 0.02\ 14 \end{array}$	$\begin{array}{c} 10000071\\ 10000717\\ 18.1000717\\ 18.30000113\\ 18.3000917\\ 17\\ 18.1000617\\ 18.1000617\\ 18.1000617\\ 18.1000617\\ 18.10000612\\ 18.100000612\\ 18.100000612\\ 18.100000000\\ 18.10000000\\ 18.10000000\\ 18.10000000\\ 18.1000000\\ 18.1000000\\ 18.1000000\\ 18.1000000\\ 18.1000000\\ 18.1000000\\ 18.1000000\\ 18.1000000\\ 18.1000000\\ 18.1000000\\ 18.1000000\\ 18.1000000\\ 18.10000000\\ 18.1000000\\ 18.10000000\\ 18.10000000\\ 18.1000000000000\\ 18.1000000000\\ 18.10000000000\\ 18.1000000000000000000\\ 18.100$	$\begin{array}{c} (317.890.0217\\ (317.860.0417\\ (315.680.0515\\ 18.180.0617\\ 18.180.0617\\ 1415.930.0215\\ 317.660.0717\\ 6\\ 117.690.0517\\ 6\\ 15.890.0115\\ 15.890.0115\end{array}$
err V e	130.03 16.41 0.0 320.05 17.07 0.0 380.03 16.40 0.0 360.07 15.49 0.0 400.07 18.00 0.1 250.05 18.33 0.0 460.05 18.22 0.0 580.04 17.50 0.0	$\begin{array}{c} 390.0818.390.0\\ 19,000.1\\ 520.0316.710.0\\ 540.0517.210.0\\ 370.0818.270.0\\ 460.0517.380.0\\ 460.0517.380.0\\ \end{array}$	570.0716.680.0 560.0917.070.0	$\begin{array}{c} 11.2820.0\\ 330.0215.920.0\\ 7\\ 17.040.0\\ 390.0315.420.0\\ 290.0818.350.1\end{array}$	32 0.04 18.35 0.0 32 0.04 16.01 0.0 29 0.08 18.36 0.0	27 790.03 17.73 0.0 800.02 15.40 0.0 55 0.04 17.65 0.0 34 0.03 17.59 0.0 34 0.03 17.42 0.0 56 0.10 18.81 0.1 37 0.08 18.39 0.0
(2000) B	$\begin{array}{c} 73 & 16 \ 4.57 & 16. \\ 73 & 17 \ 56.91 \ 17.6 \\ 73 & 15 \ 56.91 \ 17.6 \\ 73 & 15 \ 58.83 \ 17.6 \\ 73 & 15 \ 32.52 \ 16.6 \\ 73 & 18 \ 10.39 \ 18.4 \\ 73 & 14 \ 01.00 \ 18.4 \\ 73 & 15 \ 13.30 \\ 73 & 15 \ 13.30 \\ 73 & 14 \ 04.38 \ 18.5 \\ 73 & 17 \ 03.18 \ 17.5 \\ 73 & 18.5 \ 17.5 \ 17.5 \ 18.5 \ 17.5 \ 18.5 \ 17.5 \ 18.5 \ 17.5 \ 17.5 \ 17.5 \ 17.5 \ 18.5 \ 17.5 \ 17.5 \ 17.5 \ 18.5 \ 17.5 \ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 7.3 \\ 7.3 \\ 7.3 \\ 16 \\ 15.72 \\ 17.3 \\ 16 \\ 44.29 \\ 18.86 \\ 73 \\ 17 \\ 17 \\ 55.92 \\ 73 \\ 18 \\ 16 \\ 318.1 \\ 18.88 \\ 18.88 \\ 18.1 \\ 18.88 \\ 18.1 \\$	$\begin{array}{c} 73 \ 15 \ 15 \ 10 \ 18.00 \ 18\\ 73 \ 15 \ 53.12 \ 15\\ 73 \ 15 \ 53.12 \ 15\\ 73 \ 15 \ 1230\\ 73 \ 15 \ 03.60\\ 73 \ 15 \ 03.67 \ 18\\ 73 \ 17 \ 23.67 \ 18\\ 73 \ 17 \ 23.67 \ 18\\ 73 \ 17 \ 23.67 \ 18\\ 73 \ 17 \ 23.67 \ 18\\ 73 \ 17 \ 23.67 \ 18\\ 73 \ 17 \ 23.67 \ 18\\ 73 \ 17 \ 23.67 \ 18\\ 73 $	$\begin{array}{c} 73 & 16 & 45.00 \\ 73 & 14 & 59.70 \\ 73 & 14 & 519.818.6 \\ 73 & 16 & 24.48 & 17.6 \\ 73 & 14 & 53.50 \\ 73 & 16 & 10.31 & 18.2 \\ 73 & 16 & 57.25 \\ 73 & 16 & 57.25 \\ 73 & 16 & 57.25 \\ 74 & 57.25 & 96.6 \\ 74 & 57.25 & 96.6 \\ 75 & 16 & 57.25 \\ 75 & 16 & 57.25 \\ 76 & 16 & 57.25 \\ 76 & 16 & 57.25 \\ 77 & 16 & 57.25 \\ 78 & 10 & 57.25 \\ 78 & 10 & 57.25 \\ 7$	$\begin{array}{c} (3 \ 15 \ 15 \ 15 \ 15 \ 15 \ 15 \ 15 \ 1$
No ^m α (2000) δ	$\begin{array}{c} 0 \ 48 \ 3.31 \\ 0 \ 48 \ 3.31 \\ 0 \ 48 \ 3.71 \\ 0 \ 48 \ 3.71 \\ 0 \ 48 \ 3.85 \\ 0 \ 48 \ 3.87 \\ 0 \ 48 \ 3.87 \\ 0 \ 48 \ 3.91 \\ 0 \ 48 \ 3.91 \\ 0 \ 48 \ 4.01 \\ 0 \ 48 \ 4.01 \\ 0 \ 48 \ 4.01 \\ 0 \ 48 \ 4.01 \\ 0 \ 48 \ 4.01 \\ 0 \ 48 \ 4.01 \\ 0 \ 48 \ 4.01 \\ 0 \ 48 \ 4.01 \\ \end{array}$	$\begin{array}{c} 0.48 \ 4.30 \\ 0.48 \ 4.39 \\ 0.48 \ 4.43 \\ 0.48 \ 4.50 \\ 0.48 \ 4.56 \\ 0.48 \ 4.76 \\ 0.48 \ 4.76 \\ 0.48 \ 4.76 \\ 0.48 \ 4.78 \\ 0 \end{array}$	$\begin{array}{c} 0.48\ 4.75\ 0.48\ 4.75\ 0.48\ 4.75\ 0.48\ 4.86\ 0.48\ 4.86\ 0.48\ 4.86\ 0.48\ 4.88\ 0.48\ 4.90\ 0.48\ 4.80\ 0.48\ 4.80\ 0.48\ 4.80\ 0.48\ 4.80\ 0.48\ 4.80\ 0.48\ 4.80\ 0.48\ 4.80\$	$\begin{array}{c} 0.48 & 4.95 \\ 0.48 & 5.11 \\ 0.48 & 5.37 \\ 0.48 & 5.37 \\ 0.48 & 5.40 \\ 0.48 & 5.43 \\ 0.48 & 5.58 \\ 0.48 & 5.$	0 48 5 5 6 7 1 0 48 5 7 5 6 7 1 0 48 5 7 5 6 7 1 0 48 5 7 5 6 7 1 0 48 6 0 2 1 4 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	$\begin{array}{c} 0.48 \ 6.25 \\ 0.25 \\ 0.48 \ 6.37 \\ 0.48 \ 6.57 \\ 0.48 \ 6.54 \\ 0.48 \ 6.51 \\ 0.48 \ 6.65 \\ 0.48 \ 6.65 \\ 0.48 \ 6.93 \\ 0.48 \ 6.93 \\ 0.48 \ 6.93 \\ 0.48 \ 6.95 \\ 0.95 \\ 0.$

: K err 3.6m μ err 4.5m μ err 5.8m μ err 8.0m μ err 24m μ err 70m μ err 160m μ err Type HII region		114:20.02 14:010.03 14:04 0:04 14:01 0.10 917.630.08		$13.410.03 \ 13.530.05 \ 13.45 \ 0.06 \ 13.30 \ 0.09$	817.260.13	817.260.13	517.460.10	
err	1 10 0	0.091			0.081'	0.081'	0.151'	
H	1 25	17.37			17.15	17.15	18.01	
err	1 0.05	1 0.03 0.03			90.03	90.03	20.04	2 0.07
r J	317.8	3 17.2	s	2	217.2	517.2	18.3	418.9
r eı	33 0.0	690.0	310.0	650.0	470.0	180.0		970.0
Tr V	03 17.	03 16.	0718.	0416.	03 16.	08 18.		15.
B B	.260.	59 0.1	.190.0	.010.	.61 0.	.580.		.34
	.2617	.7816	.82 18	.1118	.0116	.85 18	.90	.7317
2000)	15 11		16 43	15 42	15 04	15 03	14 44	14 44
) § (0	.15 -73	. 25 - 73 . 25 - 73	.27-73	.34-73	.46-73	.57-73	.55-73	.59 - 73
No ^{m} α (200	0 48 7	9989 0 48 7	0 48 7	0 487	0 487	0 487	0 487	0 487
	$No^{m} \alpha (2000) \delta (2000) B \text{ err } V \text{ err } J \text{ err } H \text{ err } K \text{ err } 3.6m \mu \text{ err } 4.5m \mu \text{ err } 5.8m \mu \text{ err } 2.6m \mu \text{ err } 24m \mu \text{ err } 160m \mu \text{ err } 150m \mu \text{ err } 160m \mu \text{ err } 100m \mu err$	No ^m α (2000) δ (2000) B err V err J err H err K err 3.6m μ err 4.5m μ err 5.8m μ err 8.0m μ err 70m μ err 160m μ err Type HII region 0.48 7.15-73 15 11.2617.26 0.0317.33 0.0317.81 0.05	No ^m α (2000) δ (2000) B err V err J err H err K err 3.6m μ err 4.5m μ err 5.8m μ err 2.4m μ err 70m μ err 160m μ err Type HII region 0.48 7.15-73 15 11.26 17.26 0.03 17.33 0.03 17.81 0.05 0.48 7.22-73 15 13.40 18.62 0.04 17.45 0.03 15.01 0.02 14.35 0.0114.20 0.02 14.010.03 14.04 0.04 14.07 0.10 9989 0.48 7.25-73 17 01.78 16.59 0.03 16.69 0.03 17.26 0.03 17.37 0.0917.63 0.08	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	No ^m α (2000) δ (2000) B err V err J err H err K err 3.6m μ err 4.5m μ err 5.8m μ err 8.0m μ err 70m μ err 160m μ err Type HII region 0 48 7.15-73 15 11.26 17.26 0.03 17.33 0.03 17.81 0.05 0.03 17.81 0.05 0.03 17.35 0.0114.20 0.02 14.010.03 14.04 0.04 14.07 0.10 0 48 7.22-73 15 13.4018.62 0.04 17.45 0.03 15.01 0.02 14.35 0.0114.20 0.02 14.010.03 14.04 0.04 14.07 0.10 0 48 7.22-73 15 0.17816.59 0.03 16.69 0.03 17.37 0.09 17.63 0.08 0.08 17.37 0.09 17.63 0.08 17.37 0.09 17.63 0.08 0.03 17.37 0.09 17.63 0.03 17.37 0.09 17.63 0.08 0.00 14.07 0.10 0 48 7.27-73 15 42.1118.01 0.04 16.65 0.02 11.37 0.09 17.63 0.08 13.53 0.05 13.45 0.06 13.30 0.09 0.00 0.00 0.00 0.00 0.00 0.00	No ^m α (2000) δ (2000) B err V err J err H err K err 3.6m μ err 4.5m μ err 5.8m μ err 7.0m μ err 160m μ err 150m μ err 150m μ err 150m μ err 70m μ err 150m μ err 150m μ err 70m μ err 150m μ err 1500m μ err 15000m μ err 1	No ^m α (2000) δ (2000) B err V err J err H err K err 3.6m μ err 4.5m μ err 5.8m μ err 8.0m μ err 70m μ err 160m μ err Type HII region 0 48 7.15-73 15 11.2617.26 0.0317.33 0.0317.81 0.05 0 48 7.22-73 15 11.2617.26 0.0317.33 0.0317.81 0.05 0 48 7.22-73 15 13.4018.62 0.0417.45 0.0315.010.02 14.35 0.0114.20 0.02 0 48 7.25-73 15 43.818.19 0.0718.669 0.0317.37 0.0917.63 0.08 0 48 7.27-73 15 42.118.01 0.0418.65 0.03 0 48 7.34-73 15 42.118.01 0.0418.65 0.02 0 48 7.46-73 15 0.3.1818.000316.729 0.0317.15 0.0817.26 0.13 0 48 7.46-73 15 0.3.8518.58 0.0818.18 0.0517.29 0.0317.15 0.0817.26 0.13 0 48 7.57-73 15 0.3.8518.58 0.0818.18 0.0517.29 0.0317.15 0.0817.26 0.13	No ^m α (2000) δ (2000) B err V err J err H err K err 3.6m μ err 4.5m μ err 5.8m μ err 8.0m μ err 70m μ err 160m μ err Type HII region 0.48 7.12 - 73 15 11.2617.26 0.0317.33 0.0317.81 0.05 0.048 7.22 - 73 15 13.4018.62 0.0417.45 0.0315.010.02 14.35 0.0114.20 0.02 14.010.03 14.04 0.04 14.07 0.10 0.48 7.25 - 73 17 01.78 16.59 0.03 15.010 0.214.35 0.0114.20 0.02 14.010.03 14.04 0.04 14.07 0.10 0.00 0.48 7.25 - 73 15 0.110 0.01 16.65 0.03 17.37 0.0917.63 0.08 0.48 7.25 - 73 15 0.401 0.0416.65 0.03 17.37 0.0917.63 0.08 0.03 17.37 0.0917.63 0.08 0.48 7.25 - 73 15 0.401 0.0416.65 0.03 17.26 0.03 17.37 0.0917.63 0.08 0.03 17.15 0.0817.26 0.03 0.09 0.48 7.57 - 73 15 0.401 0.0416.65 0.02 0.03 17.15 0.0817.26 0.13 0.03 0.09 0.48 7.57 - 73 15 0.401 0.03 16.47 0.02 17.29 0.03 17.15 0.0817.26 0.13 0.03 0.04 0.05 13.45 0.06 13.30 0.09 0.03 0.00 0.48 7.55 - 73 14 44.90 0.03 16.47 0.02 17.29 0.03 17.15 0.0817.26 0.13 0.00 0.03 0.00 0.00 0.00 0.00 0.00

Type HII region		67 N 11		2 I N26 III N26-A II N26-C III N26-C			
: 4.5m μ err 5.8m μ err 8.0m μ err 24m μ err 70m μ err 160m μ err			4.04 0.00	3 10.270.04 8.73 0.03 7.02 0.09 0.05 0.01 -3.51 0.01 -5.24 0.02	14.06 13.85 5 14.27 0.06		
$.6m\mu$ err	14.010.03		14. / 1 0.04	$ \begin{array}{c} 11.220.06\\ 11.78\\ 11.43\\ 12.78\\ 12.78\end{array} $	13.97 $14.290.05$		
No No ^m α (2000) δ (2000) B err V err J err H err K err 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 134 \\ 155 \\ 100340 \ 48 \ 7.65 \ -73 \ 16 \ 21.05 \ 15.75 \ 0.06 \ 15.94 \ 0.04 \ 16.51 \ 0.020 \ 16.72 \ 0.06 \ 16.70 \ 0.77 \\ 155 \\ 156 \\ 100360 \ 48 \ 7.73 \ -73 \ 17 \ 22.03 \ 16.80 \ 0.04 \ 16.91 \ 0.04 \ 16.74 \ 0.03 \ 17.50 \ 0.01 \ 10.77 \ 0.02 \\ 157 \\ 100460 \ 48 \ 7.73 \ -73 \ 17 \ 22.03 \ 16.80 \ 0.04 \ 16.91 \ 0.04 \ 17.47 \ 0.03 \ 16.52 \ 0.06 \ 16.70 \ 0.22 \\ 157 \\ 100460 \ 48 \ 7.81 \ -73 \ 17 \ 22.03 \ 16.80 \ 0.04 \ 16.91 \ 0.04 \ 17.47 \ 0.03 \ 16.52 \ 0.07 \ 16.67 \ 0.12 \\ 158 \\ 0 \ 48 \ 7.81 \ -73 \ 16 \ 22.04 \ 19.32 \ 18.45 \ 0.04 \ 16.83 \ 0.03 \ 16.83 \ 0.04 \ 16.83 \ 0.01 \ 16.67 \ 0.11 \\ 159 \\ 0 \ 48 \ 8.18 \ -73 \ 14 \ 57.36 \ 17.30 \ 16.92 \ 0.03 \ 16.90 \ 0.03 \ 16.76 \ 0.01 \ 16.83 \ 0.00 \ 16.83 \ 0.00 \ 16.80 \ 0.01 \\ 160^{n} \\ 0 \ 48 \ 8.18 \ -73 \ 14 \ 57.36 \ 17.30 \ 16.92 \ 0.03 \ 16.90 \ 0.03 \ 16.76 \ 0.01 \ 16.90 \ 0.03 \ 16.76 \ 0.01 \ 16.90 \ 0.01 \ 16.90 \ 0.01 \ 16.90 \ 0.00 \ 0.00 \ 0.0$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

 $24m\mu \operatorname{err} 70m\mu \operatorname{err} 160m\mu \operatorname{err} Type HII \text{ region}$ 0.18 err 0.030.100.10 $8.0m\mu$ 13.12 $\begin{array}{c} 14.67 \ 0.05 \\ 13.95 \ 0.04 \ 13.86 \ 0.06 \ 13.07 \end{array}$ $0.04 \ 11.29$ 9.800.05 0.02err $14.06\ 0.03\ 14.10\ 0.04\ 13.75\ 0.07$ $13.94\,0.04\,13.99\,0.06\,13.56\,0.1$ $5.8m\mu$ 13.17 11.429.85 $\begin{array}{c} 15.68 & 0.08 \\ 5 & 15.70 & 0.08 \\ 13.27 & 0.03 \end{array}$ $\begin{array}{c} 9.98\ 0.02\ 10.00\ 0.03\\ 14.66\ 0.03\ 14.69\ 0.06 \end{array}$ 0.12 $11.51 \quad 0.03$ err $\operatorname{err} 4.5 \mathrm{m}\mu$ $16.63\ 0.08\ 16.57$ $15.62\ 0.06\ 1\\15.64\ 0.05\ 1\\13.19\ 0.02\ 1$ $\frac{14.61\ 0.04}{13.87\ 0.03}$ 11.400.02 $\operatorname{err} 3.6 \mathrm{m} \mu$ $\begin{array}{c} 0.48\,9.84\,-73\,14\,15.97\,18.06\,0.07\,17.77\,0.03\\ 0.48\,9.97\,-73\,15\,14.61,17\,79\,0.04\,16.65\,0.02\,11.52\\ 0.48\,10.17\,-73\,15\,4.43\,117\,79\,10.04\,16.53\,0.01\,14\,93\,0.02\,14.52\,0.02\\ 0.48\,10.27\,-73\,15\,4.43\,11\,77\,91\,0.04\,16.53\,0.00\,15\,.39\,0.01\,15\,.70\,0.04\\ 0.48\,10.25\,-73\,15\,13\,92\,06\\ 0.48\,10.25\,-73\,15\,13\,92\,06\\ 0.48\,10.26\,-73\,16\,59\,60\,03\\ 0.48\,11.05\,-73\,16\,59\,00\,03\\ 0.48\,11.05\,-73\,16\,59\,00\,03\\ 0.48\,11.05\,-73\,16\,15\,98\,00\,03\,15\,.98\,0.00\,15\,.59\,0.00\,15\,.50\,00\,03\\ 0.48\,11.05\,-73\,16\,15\,93\,06\,14\,0\,00\,03\\ 0.48\,11.05\,-73\,16\,15\,00\,03\\ 0.48\,11.13\,-73\,15\,15\,13\,10\,16\,4\,4\,0.02\,16\,.59\,0.03\,15\,.59\,0.04\\ 0.48\,11.13\,-73\,15\,15\,13\,0\,16\,4\,4\,0.02\,16\,.59\,0.03\,15\,.59\,0.04\\ 0.48\,11.13\,-73\,15\,15\,10\,00\,12\\ 0.48\,11.13\,-73\,15\,15\,10\,00\,03\\ 0.48\,11.14\,-77\,15\,15\,35,07\,18\,.39\,0.06\,18\,0.00\,03\\ 0.48\,11.14\,-77\,15\,15\,35,07\,18\,.39\,0.06\,18\,0.00\,33\\ 0.48\,11.14\,-77\,15\,5\,30\,01\,11\,.13\,0\,00\,15\,17\,10\,01\,11\,12\\ 0.48\,11.14\,-77\,15\,15\,30\,00\,15\,11\,10\,00\,12\\ 0.48\,11.24\,-77\,15\,15\,30\,00\,15\,11\,12\,00\,03\,16\,.30\,00\,21\,15\,00\,01\,11\,10\,00\\ 0.48\,11.24\,-77\,15\,15\,30\,00\,16\,10\,00\,16\,16\,00\,11\\ 0.48\,11.24\,-77\,15\,15\,30\,00\,16\,17\,00\,03\\ 0.48\,11.24\,-77\,15\,15\,30\,00\,16\,17\,00\,03\\ 0.48\,11.24\,-77\,15\,15\,30\,00\,16\,17\,00\,03\\ 0.48\,11.24\,-77\,15\,15\,30\,00\,16\,17\,17\,00\,03\\ 0.48\,11.24\,-77\,15\,15\,30\,00\,16\,17\,70\,00\,11\,12\,0\,01\,11\,14\\ 0.48\,12.17\,-76\,13\,16\,17\,10\,00\\ 0.48\,12.17\,-76\,15\,15\,13\,00\,11\,17\,20\,00\,11\,17\,20\,00\,11\,12\,00\,01\,11\,12\,0\,01\,11\,13\,0\,00\,11\,15\,00\,01\,11\,12\,0\,01\,11\,13\,0\,00\,11\,12\,0\,01\,11\,13\,0\,00\,11\,12\,0\,01\,11\,12\,0\,01\,11\,12\,0\,01\,11\,12\,0\,01\,11\,12\,0\,01\,11\,12\,0\,01\,11\,12\,0\,01\,11\,12\,0\,01\,11\,12\,0\,01\,11\,12\,0\,01\,11\,12\,0\,01\,11\,12\,0\,01\,11\,12\,0\,01\,11\,13\,0\,01\,11\,12\,0\,01\,11\,13\,0\,00\,11\,12\,0\,01\,11\,13\,0\,00\,11\,12\,0\,01\,11\,13\,0\,00\,11\,12\,0\,01\,11\,13\,0\,00\,11\,12\,0\,01\,11\,13\,0\,00\,11\,12\,0\,01\,11\,13\,0\,00\,11\,12\,0\,01\,11\,13\,0\,00\,11\,12\,0\,01\,11\,12\,0\,01\,11\,13\,0\,00\,11\,12\,0\,01\,1$ \mathbf{X} err Η err err5 err р (2000)Ś (2000)2 No^m 10160 1026010196 $\begin{array}{c} 1195\\ 1196\\ 22222\\ 2222\\ 2222\\ 2222\\ 2222\\ 2222\\ 22222\\ 2222\\ 2222\\ 2222\\ 2222\\ 2222\\ 2222\\ 2222\\ 2222\\ 2222\\ 2222\\ 222$ No

 m Massey catalog number.

 $^{m^2}$ B and V magnitude from Massey (2002) and JHK from 2MASS (Cutri et al. 2003) for the unresolved star #169.

ⁿ JHKL' magnitudes of the components A, B, and C of N26 and JHK magnitudes of three neighboring faint stars #160, #188 and #193 obtained from NACO photometry. ^p As the photometry in the Sage catalog is not complete we derived the magnitudes of IRAC and 24μ bands from the images using Daophot. ^{ph} In this catalog the photometry of this star is not complete either. As its FWHM is larger than the psf ($\sim 4''$), we derived the magnitudes from a sum of the profiles crossing the whole star and a neighbouring isolated star used as standard.