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Abstract—We report on the design, fabrication and test of
an all-solid-state, frequency agile source that produces over
1 W � 30 dBm� across the 2.48–2.75 THz band at room temper-
ature. This frequency-multiplied source is driven by a -band
synthesizer followed by a power amplifier that delivers 350–450
mW (25.5–26.5 dBm) and a cascade of three balanced frequency
triplers. The first stage tripler is based on four power-combined
six-anode GaAs Schottky diode devices, and the second stage
tripler is based on two four-anode GaAs devices. The output
tripler uses a single unbiased device featuring two anodes mono-
lithically integrated onto a thin GaAs membrane. The source
delivers a record 18 W � 17.5 dBm� at 2.58 THz at room
temperature. This frequency multiplied source is analyzed with
a Fourier transform spectrometer (FTS) and the unwanted har-
monics are found to be at least 29 dB below the desired signal.
This source, when used as the local oscillator for a hot-electron
bolometer mixer, will enable heterodyne instruments for future
space missions to map the cosmologically-important 2.675 THz
HD molecular line.

Index Terms—Broadband terahertz (THz) source, frequency
multiplier, frequency tripler, local oscillator, planar diode,
power-combining, Schottky diode, THz, varactor.

I. INTRODUCTION

T HE 2–3 THz frequency range lies in the “terahertz gap,”
namely, a frequency range that has been historically too

high for electronic devices and too low for photonic devices.
A major reason for the lack of instrumentation in this regime
is the dearth of terahertz sources. Electronic sources for the

Manuscript received September 07, 2011; accepted December 09, 2011. Date
of publication February 20, 2012; date of current version March 02, 2012. This
work was supported by National Aeronautics and Space Administration under a
contract, at the Université Pierre et Marie Curie-Paris 6, and at the Observatoire
de Paris, France. Funding from NASA Astrophysics Research and Analysis Pro-
gram (APRA), Université Pierre et Marie Curie and Centre National d’Etudes
Spatiales.

A. Maestrini is with the Université Pierre et Marie Curie-Paris6, Paris,
France and with the Observatoire de Paris, LERMA, France (e-mail:
alain.maestrini@obspm.fr).

I. Mehdi, J. V. Siles, J. Gill, C. Lee, R. Lin, G. Chattopadhyay, E. Schlecht, J.
Pearson, and P. Siegel are with the Jet Propulsion Laboratory, California Insti-
tute of Technology, Pasadena, CA 91125 USA (e-mail: Imran.mehdi@jpl.nasa.
gov; goutam@jpl.nasa.gov).

J. S. Ward was with the Jet Propulsion Laboratory, Pasadena, CA 91109 USA.
He is now with Raytheon Company, Fort Wayne, IN USA.

B. Thomas was with the Jet Propulsion Laboratory, Pasadena, CA 91109
USA. He is now with Radiometer Physics GmbH, Meckenheim, Germany.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TTHZ.2012.2183740

Heterodyne Instrument for the Far Infrared (HIFI) onboard the
Herschel Space Observatory (launched in 2009) [1], [2], work
up to 1.9 THz using -band power amplifiers driving planar
Schottky diode frequency multipliers. Herschel, now stationed
1.5 million kilometers from Earth, provides valuable high-reso-
lution spectroscopic observations of the cold Universe [3], [4].
Herschel provided a strong impetus towards the development
of broadband terahertz sources. However, due to the immatu-
rity of local oscillator (LO) technology, it does not include a
2.5–2.7 THz channel in its suite of receivers, which was highly
desired to observe the rotational spectral line of HD
at 2.675 THz [5].

Electronic sources based on microwave oscillators followed
by a combination of frequency multipliers and amplifiers are
inherently phase-lockable and frequency agile, are robust, work
both at room temperature and cryogenic temperatures and are
sufficiently efficient to be the technology of choice for local os-
cillators of heterodyne instruments [6]. However, limitations in-
cluding low output power and (until now) low technology readi-
ness level have led to the development of a variety of alternate
terahertz source technologies.

Introduced in 2002, terahertz quantum cascaded lasers
(QCLs) are solid-state sources able to deliver several milli-
watts of continuous wave (CW) power [7]. Though terahertz
QCLs have already been employed in laboratories for pumping
low-noise heterodyne receivers at a fixed frequency of 2.8 THz
[8], QCLs only operate at cryogenic temperatures, frequency
tuning is severely limited, and consequently, a QCL-based
LO suitable for an airborne, balloon-borne or space-borne
observatory has not been demonstrated. Photo-mixers have
also been developed for the purpose of building an LO in this
frequency range. They have the advantage of being tunable
over a large bandwidth, but are still limited to sub-microwatt
levels at 2.5 THz and require cryogenic cooling [9]. A novel
frequency-tunable photonic source, based on shining two lasers
onto a non-linear crystal, was able to produce 2 mW at 1.9
THz at room temperature [10]. However, this source requires
hundreds of watts of optical power, which makes it useful only
for some ground-based applications.

We describe herein the first demonstration of a 2.48–2.75
THz solid-state source that produces power levels of several mi-
crowatts at room temperature. This source has already been ex-
tensively used in the laboratory for high resolution spectroscopy
of molecular gases like CH OH, H O and HD at ultra-high res-
olution and frequency accuracy [11]. It enabled measurements
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with an unprecedented signal to noise ratio and was notable for
its ease of use. This paper presents the design of this frequency
multiplied source with an emphasis on the last stage frequency
multiplier at 2.7 THz. Various test setups that were utilized to
characterize the source power versus frequency and its spectral
purity will also be discussed.

It is noteworthy that other teams are also developing terahertz
frequency-multiplied sources. Of particular interest is a recent
result reported shortly after [11] was published of a source used
as a local oscillator in a terahertz heterodyne receiver devel-
oped for radio astronomy. This source produced a peak power
of W at 2.56 THz and has been successfully flown onboard
SOFIA [12].

II. DESIGN AND FABRICATION

This section will discuss in detail the key new element of the
2.7 THz source: the last stage frequency tripler.

A. Balanced Design, Conversion Efficiency and Spectral
Purity

The last stage frequency multiplier relies on the topology that
has been successfully demonstrated up to 1.9 THz onboard the
Herschel Space Observatory. The circuit is balanced, with two
Schottky diodes in series at dc (see Fig. 1) that form a virtual
loop to trap the second harmonic of the input signal and maxi-
mize the transfer of energy to the third harmonic, i.e., the output
signal. This topology offers the advantage of a very small phase
shift between the two anodes and the possibility to tune the
matching at the second harmonic by adjusting the length of the
beam-leads that ground the diodes and by adjusting the cross
section of the channel where the chip is mounted. An E-plane
probe located in the input waveguide couples the input signal to
a suspended microstrip line. This line is connected to a one-cell
low-pass filter to prevent the third harmonic from leaking into
the input waveguide. The third harmonic produced by the diodes
is coupled to the output waveguide by a second E-plane probe. In
order to balance the circuit, the dimensions of both the channel
and the circuit are chosen to cut off the TE-mode at the second
harmonic. A detailed description of this type of tripler has been
presented previously [13]–[15]. The dimensions of the output
waveguide are chosen to cut off any signal below 2 THz, which
ensures that the third harmonic of the input signal emitted in the
2.48–2.75 THz band is not contaminated by any signal at the
fundamental or second harmonic. Note that in practice, due to
an imperfect balance, some parasitic power at the second har-
monic might propagate outside the diode loop toward the cir-
cuit inside the channel in a quasi-TEM mode, like the third har-
monic of the input signal. Though imperfect, the balanced ge-
ometry of the circuit ensures that power at the even harmonics of
the input are efficiently suppressed, leaving the fifth harmonic
as the dominant unwanted harmonic at the output. Fortunately,
given the high order of multiplication and the high frequency,
very little power is expected to be produced by the diodes at the
fifth harmonic.

B. Device and Circuit Models

The design of Schottky diode based frequency multipliers
beyond 2 THz becomes very challenging due to the size of
the chip and the waveguide dimensions required for the proper

Fig. 1. Schematic of the 2.7 THz final stage balanced tripler. Assuming a per-
fect balance between the diodes, the electric fields and the current lines are repre-
sented for the fundamental frequency � (thick plain lines), the frequency �� �

(dashed lines) and the output frequency � � � (light plain lines.) The input
signal at � and the output signal at �� � propagate on a quasi-TEM mode.

impedance matching of the multiplier circuit. In addition, lim-
ited available input power necessitates precise modeling of both
the Schottky diode and the matching circuit in order to drive the
diodes into their nonlinear regimes [16]. Based on results ob-
tained from the 900 GHz driver stage [17], the design of the
2.7 THz tripler was optimized for about 1 mW of input power.
The general design method presented in [13] and [17] was ap-
plied. It is iterative and consists in decomposing the multiplier
structure in several blocks that are analyzed separately with
Ansys High Frequency Structure Simulator (HFSS)1. The S-pa-
rameters corresponding to the different blocks are included in
a custom non-linear circuit model implemented in Agilent Ad-
vanced Design System (ADS)2. The harmonic balance simulator
of ADS is then used to predict the performance of the frequency
multiplier in terms of input matching, conversion efficiency, and
output power. Fig. 2 shows the complete HFSS 3D model of the
2.7 THz frequency tripler.

The 2.7 THz frequency tripler features two Schottky
planar varactor diodes with nominal anode area of around
0.15 m deposited on an epilayer of GaAs doped enough
typically 2 10 cm to mitigate the effect of carrier

velocity saturation at high frequencies. The epilayer lies on
top of a mesa of heavily doped GaAs

1 10 cm . The nonlinear response of the diodes is
simulated using the standard model available in ADS adjusted
for the junction capacitance, with other parameters estimated
using the classic equations found in [18]. In addition, to account
for fringe effects in the junction capacitance, a correction factor
was included in the model [19]. An approximate value for the
series resistance is calculated assuming that the epilayer of the
diodes is fully depleted at the optimum operating condition
and that the actual path of the current flow is equivalent to a

1HFSS, Ansys Inc., Pittsburg, PA.
2ADS, Agilent Technologies, Palo Alto, CA.
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Fig. 2. Ansys HFSS 3D model of the 2.7 THz balanced frequency tripler.

Fig. 3. Predicted performance of the 2.7 THz Schottky diode tripler for a flat
input power of 1 mW across the band.

vertical path through the thin n -layer (the ohmic contact resis-
tance was considered small enough to not have any significant
impact). This yields a series resistance of around 50 using
the mobility-field characteristics of n-doped GaAs [18] and the
analytical equations in [20]. This value gives a good estimate
of the achievable peak efficiency.

The simulated performance of the 2.7 THz tripler is shown
in Fig. 3. Realistic metal losses have been accounted for in the
simulations by including high-frequency gold conductivities as
indicated in [21] 1 10 S m for evaporated gold and

2 10 S m for electroplated gold). An efficiency of 1.6%
over a 15% 3-dB bandwidth was predicted for a flat input power
of 1 mW.

C. Fabrication

The 2.7 THz tripler chip is mounted in a split-block wave-
guide, which includes an integral 2.7 THz output diagonal feed-
horn. The multiplier chip circuit is located between the input
waveguide and the output waveguide, inside a channel with ap-
proximately 40 15 m cross-section. Four gold beam-leads
located at the membrane corners suspend the chip in the channel.
Two of these provide the required dc and RF connections for
the diodes. The input waveguide features a single waveguide
matching section to optimize the bandwidth. A detailed SEM
image of the completed chip mounted inside the waveguide
half-block is shown in Fig. 4.

III. MEASUREMENTS

Two 2.7 THz tripler blocks were machined and assembled.
Both were tested with a 900 GHz driver chain described in [17].

Fig. 4. SEM image of the 2.7 THz balanced frequency tripler chip mounted on
the bottom half of the waveguide block.

The driver chain consists of a -band synthesizer followed
by a power-combined -band amplifier module, followed by
a power-combined quad-chip 300 GHz frequency tripler based
on [22], followed by a power-combined dual-chip 900 GHz fre-
quency tripler. When pumped with 330–500 mW (25–27 dBm)
at -band, the pair of frequency triplers delivers more than
1 mW in the 840–900 GHz band at room temperature. However,
for most of the data presented in this paper the input power at
was limited at a flat 350 mW (25.5 dBm) and the power deliv-
ered by the driver chain was in the range 0.25–1 mW ( 6 dBm
to 0 dBm).

A. Power Measurement Test Setup

The output power was measured with a VDI-Erickson PM4
power meter. A 25 mm-long circular to WR-10 rectangular
waveguide transition was used to couple power to the meter.
This power meter has the advantage of waveguide coupling
that shields the measurement from any radiation leaked at
lower frequencies. The WR-10 input waveguide is oversized
for terahertz frequencies, so a small terahertz horn radiates into
it and the beam couples to the sensor with minimal interaction
with the waveguide walls. This type of sensor can be easily
calibrated at -band, and a cross-comparison with Thomas
Keating power meters showed good agreement (within 1 dB or
less) at 1 THz.

To minimize attenuation by water vapor, the frequency mul-
tiplier chain and the VDI-Erickson power meter were placed in
a vacuum chamber that was purged and then filled with pure ni-
trogen gas at a pressure of 80 kPa. The output power was first
recorded by the PM4 power meter set on the 2 mW scale with a
calibration factor of 100%, and later corrected by a factor of 1.15
(0.6 dB) to take into account the RF losses of the 25-mm-long in-
ternal WR10 waveguide and of the circular to rectangular wave-
guide transition [23].

The output power of the multiplier chain was electronically
modulated to cancel the effects of drift of the Erickson PM4
power meter. A lock-in amplifier was used to record the voltage
at the analog output of the power meter. A calibration of the
output voltage versus RF power was performed at various power



180 IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, VOL. 2, NO. 2, MARCH 2012

Fig. 5. Output power versus frequency at room temperature of JPL 2.7 THz
source SN4 in a pure nitrogen atmosphere (top thick curve with square markers),
and in a laboratory atmosphere (bottom dashed curve with cross markers).

levels in the range 5–200 W ( 23 dBm to 7 dBm) using a
reference source at -band and a precision attenuator. The cal-
ibration consisted in comparing the reading of the PM4 meter
with no modulation to the output voltage of the lock-in ampli-
fier when the modulation to the RF signal was applied. The lin-
earity of the measurement system was checked down to power
levels as low as 100 nW 40 dBm by attenuating the -band
source. Integration times of several minutes were necessary to
record such low power levels.

The ratio between the detected RF power and output voltage
of the lock-in amplifier does not depend on the RF frequency, it
depends only on the time constant of the detector/power meter,
modulation frequency, and settings on the lock-in amplifier it-
self. This method was double-checked at 2.7 THz when power
levels exceeding 5 W 23 dBm were directly recorded on
the PM4 power-meter with no modulation applied.

B. Frequency Sweep

Two different frequency multiplier chains were tested across
the 2.48–2.75 THz band. The bias voltage applied to the
300 GHz stage was fixed at 12 V in all the measurements
presented in this paper, and the voltage applied to the 900 GHz
stage was set at 2 V for frequencies above 2.54 THz and
optimized in the 1 V to 0.2 V range for frequencies in the
2.48–2.54 THz band. The input power at -band was held con-
stant at 350 mW (25.5 dBm) for frequencies above 2.53 THz
and rolled off below 2.53 THz to 155 mW at 2.48 THz. The
frequency was set on an Agilent E8257D synthesizer connected
to an Agilent 83558A -band source module (a sextupler).
The total frequency multiplication factor was 162.

For both chains, two sets of power measurements were
recorded, one in a pure nitrogen atmosphere and one in an at-
mosphere including water vapor. This way, the H O absorption
lines at 2.5319 THz and at 2.6404 THz provide independent
confirmation of the output frequency. Figs. 5 and 6 show that
both chains achieved unprecedented output power levels and
bandwidth for an electronic source working in this frequency
range at room temperature. Both chains delivered powers in
excess of 1 W 30 dBm across the full band.

The multiplier chain identified as SN4 (Fig. 5) deliv-
ered a peak of 8 W dBm at 2.59 THz and de-

Fig. 6. Output power versus frequency at room temperature of JPL 2.7 THz
source SN6 in a pure nitrogen atmosphere (top thick curve with square markers),
and in a nitrogen atmosphere with a slight amount of water vapor (bottom dashed
curve with cross markers).

livered W 24 dBm or more in the 2.49-2.69 THz
band. The source labeled SN6 (Fig. 6) delivered a peak of
14 W 18.5 dBm at 2.58 THz and 4 W dBm or
more in the 2.49–2.67 THz band. It can be seen that power in
this frequency range should be measured in a dry atmosphere
or in vacuum, as strong absorptions were observed for a path
of only about 5 cm in air.

C. Power Sweep

The input power at -band of the source SN6 was
swept from 110–450 mW (20.5–26.5 dBm) at the fixed
frequency of 2.58 THz (see Fig. 7). A record output power of
18 W 17.5 dBm was measured. From Fig. 7 it can be seen
that the maximum conversion efficiency of this chain peaks
at 4 10 44 dB for 350–400 mW (25.5–26 dBm) of
input power. The saturation of the conversion gain is due to
the saturation of the two first stages of the chain, especially the
first stage. In particular, the conversion gain of the first tripler
(to 300 GHz) is expected to be maximized around 110 mW
(20.5 dBm) of input power based on the data presented in [21].
From 110 to 350 mW (20.5–5 dBm) of input power at -band,
the decrease of the conversion gain of the first stage multiplier
is compensated by an increase of the conversion gain of the
subsequent stages.

D. Wide-Band FTS Scans

The spectral purity of the 2.7 THz source SN6 was mea-
sured from about 10 GHz to 6 THz using a Fourier transform
spectrometer with 100 MHz resolution. Scans at different fre-
quencies across the band at room temperature have been per-
formed. Fig. 8 shows the measured response at two frequen-
cies of interest, i.e., at 2.580 THz (with peak output power) and
near the astrophysically-significant HD line at 2.675 THz. The
multiplied source spectral purity is remarkably good with all
high frequency spurious signals and undesired harmonics below

29 dB with respect to the main signal.

E. Spectral Analysis Near Carrier Frequency

The spectrum of the output signal was analyzed with an
Anritsu MS2724B spectrum analyzer and an external bias-able
900 GHz Schottky fundamental balanced mixer [24] used as



MAESTRINI et al.: DESIGN AND CHARACTERIZATION OF A ROOM TEMPERATURE ALL-SOLID-STATE ELECTRONIC SOURCE 181

Fig. 7. Conversion gain (top) and output power (bottom) versus input power
at� -band at room temperature of the SN6 2.7 THz source in a pure nitrogen
atmosphere.

Fig. 8. FTS scans with 100 MHz resolution of the 2.7 THz source SN6 at 2.58
THz (top) and 2.695 THz (bottom). For each scan the graph is normalized to the
peak power that corresponds to the 27th harmonic of the input frequency � at
� -band. It can be seen that the chain has excellent spectral purity with spurious
and undesired harmonics below ��� dB with respect to the main signal. Note
that the strong signal at exactly twice the frequency of the main signal is an
artifact due to aliasing in the FTS. Other signals with unexplained origins were
also detected in some scans.

a third-order subharmonic mixer at 2.7 THz. The frequency
multiplier chain output beam was directly coupled to the 900
GHz mixer input horn with an air gap of about 0.5 mm between
the horn apertures. Fig. 9 shows the test configuration. The two

Fig. 9. Diagram of the 2.7 THz coherent transceiver showing the 900 GHz
fundamental balanced mixer and its local oscillator (left) and the 2.7 THz source
(right).

Fig. 10. Spectrum of the beat signal of the RF signal at 2.5803 THz for an IF
of 4.0 GHz, a span of 50 Hz, and a 1 Hz resolution bandwidth.

synthesizers and the spectrum analyzer were all locked to a
single 10 MHz quartz oscillator.

The mixer LO chain consisted of an Agilent E8257C synthe-
sizer featuring the ultra-low phase-noise UNR option, an Ag-
ilent 83558A -band source module followed by a -band
power amplifier, a dual-chip 300 GHz frequency tripler and a
single-chip 900 GHz frequency tripler. The IF was set at 4.0
GHz and a low-noise preamplifier was used between the mixer
and the spectrum analyzer.

Figs. 10 and 11 show the recorded spectrum of the IF signal at
4.0 GHz for an RF of 2.5803 THz with a resolution bandwidth
of 1 Hz and spans of 50 and 200 Hz, respectively. At an offset of
10 Hz, the measured phase noise was 35 dBc, and at an offset
of 100 Hz the measured phase noise was 40 dBc.

With a common reference signal at 10 MHz, the recorded
spectrum at the IF was affected by a partial cancellation of the
phase noise, so the real spectrum of the 2.7 THz source could
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Fig. 11. Spectrum of the beat signal of the RF signal at 2.5803 THz for an IF
of 4.0 GHz, a span of 200 Hz, and a 1 Hz resolution bandwidth. The spectrum
shows a modulation at 60 Hz.

not be directly derived from this experiment. However, the doc-
umentation for the better of the two synthesizers specifies phase
noise of 70 dBc at 10 Hz from the carrier and at
100 Hz for an output signal at 10 GHz [25]. Given a multipli-
cation factor of 270 between 10 GHz and 2.7 THz, these values
are expected to be degraded by 48 dB to become 22 dBc at
10 Hz from the carrier and 39 dBc at 100 Hz from the car-
rier. In other words, according to our measurements, the multi-
plier chain does not introduce more phase noise in the 1–100 Hz
band than the natural degradation of , where is
the order of multiplication. At 10 Hz we actually measured less
noise due to the correlation between the two LO sources. This
is an indication that when using an ultra-low noise commercial
synthesizer, the line at 2.7 THz should not collapse and should
stay coherent [26]. We note spurious signals at 60 Hz offsets at

12 dBc. Although no detailed investigations were carried out
to determine their exact origin, they are likely to be from power
line pick up.

IV. COMPARISON OF SIMULATIONS AND MEASUREMENTS

The predicted performance shown in Fig. 3 assumed a con-
stant input power of 1 mW to the last stage tripler across the
band. However, the actual power provided to this tripler is be-
tween 0.2–0.95 mW in the 815–915 GHz band (see Fig. 12, top
graph). This leads to a decrease in the efficiency and bandwidth
compared to the predicted performance since the multiplier is
under-pumped. Fig. 12 shows a comparison between the mea-
surement of the JPL 2.7 THz source SN6 (black dots) and sim-
ulation (heavy line) that take into account the actual measured
input power of the 2.7 THz frequency tripler. The agreement be-
tween simulations and measurements is excellent except around
2.5 THz, where a resonance is observed, possibly the result of
an interaction between the driver stage and the final tripler.

V. CONCLUSION AND PERSPECTIVE

We have demonstrated the first ever electronically tunable
solid-state source in the 2.4 to 2.7 THz range. This source,
based on power amplifiers and power-combined frequency

Fig. 12. Measured performance of the 2.7 THz source SN6 (bottom) compared
to simulations of the final frequency tripler (bottom) accounting for the mea-
sured available input power in the 823–917 GHz band (top).

multiplier chips, is compact and spectrally clean, making it
suitable to use for high resolution spectroscopy, among other
applications. Furthermore, extensive use in the JPL spec-
troscopy lab has confirmed that this source is both robust and
easy to use. Given the tremendous progress of high power GaN
amplifiers [27], terahertz HEMT transistors [28], [29] or even
CMOS amplifiers below 1 THz [30], it is predicted that the
first and then the second stage of the present source will be
augmented in coming years by transistor-based high-power
drivers, much like the -band Gunn oscillator was replaced
during the past decade by -band synthesizers followed by

-band amplifiers. Terahertz Schottky-diode-based frequency
multipliers will then reveal their full potential, being driven by
power levels in the 3–10 mW range, where nonlinearities of
the semiconductor devices can be better exploited for higher
conversion efficiencies. Moreover, advanced power-combined
techniques [31], [32] coupled with advanced micro-machining
of waveguide blocks [33] could dramatically improve the
power handling capabilities of high frequency multipliers and
consequently their output power. Based on these consider-
ations, the authors believe that a fully solid-state electronic
source working up to 4.7 THz at room temperature is fea-
sible. While such an electronic source will not deliver power
levels comparable to those produced by QCLs, it would offer
incomparable frequency agility and versatility as well as the
potential to pump hot-electron bolometer mixers to enable the
heterodyne detection of the astrophysically-important OI line
at this frequency.
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