Abstract—Local oscillators have been produced for band 6 of the Heterodyne Instrument for the Far Infrared (HIFI) on the Herschel Space Observatory and for the Harvard-Smithsonian Center for Astrophysics Receiver Lab Telescope (RLT) in northern Chile. These local oscillators pump hot-electron bolometer (HEB) mixer front-ends to perform high resolution spectroscopy of the interstellar medium. Local oscillator assemblies amplify 1 mW input signals in the 86 to 107 GHz band before multiplying the frequency by 16 or 18 with cascaded chains of Schottky diode frequency doublers and triplers, ultimately covering nearly the entire 1.4 to 1.9 THz band with 3 µW or more at the nominal operating temperature of 120 K. Peak output power at the nominal operating temperature is typically 30 µW or higher. Room temperature performance is sufficient to pump HEB mixers with moderately reduced bandwidth compared to cryogenic operation, with room temperature output power typically in the 1 to 10 µW range. The chain outputs are Gaussian beams produced by diagonal horns integrated into the final stage multiplier blocks. Beam pattern measurements at 1.8 THz confirm the predicted performance of the horns.

Index Terms—local oscillator, varactor, Schottky diode, frequency multiplier, submillimeter wavelength.

I. INTRODUCTION
The results presented here are for planar Schottky diode multipliers electronically tunable with about 10% bandwidth. Power amplifiers driven by commercial synthesizers produce 100 mW in the 86 to 107 GHz band [1,2]. Three or four frequency doublers and/or triplers are cascaded after the W band source. All multipliers are balanced designs implemented with monolithic circuits mounted in split-waveguide blocks. The frequency doublers each have two parallel branches of diodes, while the triplers each have two anti-parallel branches. The low frequency multipliers (below 1 THz) use “substrateless” technology implemented with 1 to 2×10^{17} cm$^{-3}$ doped GaAs, while the multipliers above 1 THz are fabricated on 3 µm thick GaAs membranes with 5×10^{17} cm$^{-3}$ doped active layers [3-6]. The first stage multipliers have 3 anodes in series in each branch (for 6 anodes total), and the second stages have 2 series anodes in each branch (for 4 anodes total). All multipliers above 700 GHz have only 1 anode per branch, or 2 anodes per multiplier. Multipliers with output frequencies above 1 THz have di-

Figure 1. A 1.7 to 1.9 THz local oscillator chain. The signal flows from left to right, with the output at the 18th harmonic of the W band input. The first two frequency multipliers are biased through SMA connectors, and the last stage is unbiased. The maximum envelope of the chain including the gold-colored mounting plate and space for a Ka to W band tripler at the input is less than 250x60x40 mm3.
agonal horns integrated into the waveguide split blocks. Further information about the multipliers is given in [7]-[12]. A complete chain is shown in Figure 1.

II. MEASURED RESULTS

1. Output Power: Chain output power at room temperature was measured with a waveguide calorimeter [13] calibrated with a DC load. The measurements were not corrected for the loss of the connecting waveguides between the device under test and the meter. Chain output power at cryogenic temperatures was measured with a Golay cell calibrated against a Keating meter [14]. All optical measurements were corrected for the losses in the Mylar windows, but were not corrected for other optical losses including non-ideal mirror reflectivity and water vapor absorption. Figure 2 shows the output power measured at 120 K. Four sources cover the entire 1.45 to 1.92 THz band with 10 µW or higher output power, with a useable bandwidth of 150 to 200 GHz per chain. The peak measured power was 100 µW at 1.665 THz. Figure 3 gives an indication of the capability of these sources at room temperature. Although the output power is reduced by roughly a factor of five relative to the cryogenic measurements, the peak output power of 20 µW with broad bandwidth over 4 µW shows that these sources are well suited as local oscillators for HEB mixers even at room temperature.

2. Output Beam: Figure 4 shows the measured beam pattern from the diagonal horn of a x2x3x3 chain at 1.818 THz. The source was rotated about the calculated center of the radius of curvature of the beam with the detector held stationary. The power passed through a small iris approximately 700 mm away from the horn before being measured with a bolometer. The beam is well described by a Gaussian beam with 380 µm beam waist, plus side lobes in the diagonal plane caused by the cross-polar component that is expected for all diagonal horns [16].

3. General purpose lab sources: For the maximum possible output power, the DC biases for the local oscillator chains are adjusted as a function of frequency. Biasing two amplifier gates, two amplifier drains, and up to four multipliers as a function of frequency is further complicated by safety issues, since incorrect bias settings can easily damage the Schottky diodes. For routine laboratory use, we have set up several terahertz sources with reduced bias requirements and simplified operation, with built-in protection to minimize the potential for operator error to damage the multipliers. To achieve this, we have constructed simple passive circuits to bias the multipliers with their own rectified current. A large resistor in series with each multiplier limits the maximum current, and a suitable low-leakage Zener diode in parallel limits the maximum reverse-bias voltage. A potentiometer for each multiplier allows the bias to be optimized over a limited range if needed, and analog current meters are used for diagnostics. Two to four such bias circuits (depending on the number of multipliers to be biased) are mounted in a single small project box. The chains are driven with commercial SMA to WR10 active sextuplers, to provide a total multiple of 96 (x6x2x2x2x2) or 108 (x6x2x3x3). Power amplifier gates are either grounded or set with voltage dividers on the amplifier drain bias line. Thus, the total equipment required to operate the terahertz source is the
chain with passive bias box, two or three power supplies for
the active sextupler and power amplifier, and a 10 mW
14-18 GHz SMA source. The output power of the chain may
be smoothly varied either electronically by adjusting the
drain voltage of the final power amplifier stage or by ad-
justing a mechanical WR10 waveguide attenuator between
the power amplifier and first frequency doubler. The output
is a Gaussian beam in the 1.4-1.9 THz range. These gen-
eral-purpose chains were assembled from “seconds,” i.e.
hardware unsuitable for other purposes due to issues such as
amplifiers with low output power and multipliers with low
efficiency or mistuned frequency response. Furthermore,
passive bias reduces the bandwidth, especially if the only
tuning is changing the frequency of the 14-18 GHz source.
Nonetheless, a x96 laboratory chain produced 11 µW at
1.46 THz with 50 GHz of bandwidth above 2 µW, and a x108
chain produced 10 µW at 1.62 THz with 30 GHz of band-
width above 2 µW.

4. Gas cell and heterodyne mixing tests: Results such as
those shown in Figures 2 and 3 were measured with inco-
herent power meters that provide little useful information
regarding the frequency, spectral purity, and noise properties
of the output signal. Therefore, additional tests were neces-
sary to confirm the suitability of these sources for use as local
oscillators in heterodyne receivers. Gas cell measurements
of methanol with a 1.6 THz general-purpose laboratory source
described above confirmed that at least 99.8% of the power
was in the desired harmonic of the input signal, in this case
the 108th harmonic [17]. Two of these x108 chains were used
at SRON in the Netherlands to measure HEB mixer beams,
with one chain acting as the local oscillator and the other
acting as a source with a fixed frequency offset. Mixer beam
scans with 80 dB signal-to-noise ratio confirmed the per-
formance of these sources [18]. The ultimate test came from
a x96 chain (x6x2x2x2x2) that was lent to the Har-
vard-Smithsonian Center for Astrophysics. This chain was
used at the Receiver Lab Telescope (RLT) in northern Chile
to detect the 12CO J=13 → 12 transition at 1.497 THz in Orion
KL [19]. Experience from these tests show that the chain
output power is clean and low-noise as long as the source
driving the chain is clean and the amplifier is operated in
saturation with adequate bias.

III. CONCLUSION

Compact solid-state electronically tunable broadband sources
have been demonstrated to provide complete coverage from
1.45 to 1.92 THz with 10 µW or higher output power. Each
frequency multiplier chain has a useable bandwidth of ap-
proximately 150 to 200 GHz. The peak measured power was
100 µW continuous at 1.665 THz operating at 120 K. Spec-
tral purity has been confirmed at the 99.8% level or better
with gas cell measurements, and mixer tests confirm the
suitability of these sources for use as local oscillators in
highly sensitive heterodyne receivers. General-purpose
multiplier chains have been demonstrated that trade off op-
timized performance in favor of simplified room temperature
operation, requiring only two power supplies and a low
power 14-18 GHz source for operation.

The results presented in this paper reflect the current state of
the art, and do not yet reflect inherent limits in the capabilities
of this technology. The power amplifiers used are typically
operated with output power reduced by 3 to 6 dB from the
maximum available power. Increasing total anode area and
reducing doping may increase the power that can be safely
handled by the driver-stage frequency multipliers to enable
the full capability of the power amplifiers to be utilized
without reducing multiplier lifetime. Power combining could
also increase available drive power. Higher drive power
would enable higher total multiples to reach higher frequen-
cies. Multiplier designs are not yet fully optimized, leaving
room for new designs with increased efficiency and band-
width as well as simplified fabrication and assembly. New
micromachining techniques will enable the manufacture of
more complex waveguide circuits at higher frequencies than
currently demonstrated. Operation at 77 K (liquid nitrogen)
instead of 120 K can further improve efficiency and increase output power. Continued advances in power amplifier technology may also drive the capability of frequency multiplied sources.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the significant contributions of Frank Maiwald, Ray Tsang, Robert Lin, William Chun, Alex Peralta, Ed Luong, and Jim Velebir. We also thank Peter Bruneau, James Crosby, and Hal Janzen for the superb fabrication of the many high frequency waveguide blocks needed for this project. This work would not have been possible without the continued support of John Pearson and Peter Siegel. The research described in this publication was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

REFERENCES