Molecular gas flows in galaxies

Outline:

→ Angular momentum transfers

 \rightarrow Bar destruction, role of gas, of DM

→Cold gas accretion

→AGN fueling and feedbacks

Françoise Combes Garching, *10 September 2007*

Angular Momentum transfers

The angular momentum (AM) is created by tidal torques between structures at early times, before turn-around $\lambda = J |E|^{1/2}/GM^{5/2} \sim 0.035$

→ Same for DM and baryons, but then baryons dissipate and collapse deeper inside haloes

→In mergers, AM is lost from baryons to the DM haloes But the haloes have not more AM (mass is lost through the virial radius, D'onghia et al 2007)

➔ In secular evolution also: AM transfer from baryons to DM (Athanassoula 2002, 2003)

→ If saturated (already rotating halo or bulge), AM is exchanged with the outer disk and gas Depends on the amount of DM inside the visible disk $_2$

Bar gravity torques

concentrate mass towards the center

Rate quantified by observations

Computations of the torque from the red image, on the gas distribution (H α)

Action on the gas: sign of the torques, depending on the phase shift between gas and stellar potential Exemple NGC 7479

Bar destruction by gas

Gas is driven in by the bar torques The angular momentum is **taken up by the bar wave**

→ This destroys the bar

negative momentum inside CR, ~ $A_2 (\Omega_b - \Omega)$ The gas AM from CR to center is of the same order

Not only the presence of the Central Mass Concentration A CMC of only 1% is not sufficient to destroy the bar (Shen & Sellwood 2004, Athanassoula et al 2005, but Hozumi & Hernquist 2005) But 1-2% of gas infall is enough to transform a bar in a lens (Friedli 1994, Berentzen et al 1998, Bournaud & Combes 02, 04) ₆

Secular evolution with gas

Effect of gas depends on the cooling: Isothermal (RC) or adiabatic (A) behaviours Debattista et al (2006)

Breaks in the density profiles Consequence of AM exchange Outer and inner disks breaks (Pohlen 2002, 79% of galaxies)

Formation in a cosmological context

Reformation of bars

Self-regulated cycle:

 → Formation of a bar in a cold unstable disk
 → Bar produces gas inflow, and
 → Gas inflow destroys the bar +gas accretion

Gas accretes by intermittence First it is confined outside OLR until the bar weakens,

then it can replenish the disk, to make it unstable again to bar formation

Low importance of AM transfers with gas

Transfer to DM more important (fgas < 8%)

Berentzen et al 2007

Gas prevents peanuts

The vertical instability is a factor of bar weakening

With gas, more chaotic orbits and role of CMC

Stops the effect of vertical resonance

Berentzen et al 2007

Gas threshold to destroy the bar

Fraction of gas able to destroy the bar: depends on the DM/disk ratio

It is 0.2, when DM/disk = 3 (Curir et al 2007)

When the DM halo mass is negligible within the disk

Fgas ~ 6%

Influence of the central potential on gas flows

NFW dark matter profile

More axisymmetry in the center \rightarrow stops the inner gas flow

4

Dark matter with a core

Gas flows and AGN/SB feedback

Bar torques → gas inflow inside CR
→ bar destruction
→ gas inflow from OLR & inside ILR

At each cycle, Starburst in inner rings, AGN fueling

NUGA observations: → The AGN fueling phase is very short

Also a feedback coming from energy of starburst +simple rebound parameter in collisions $\beta = V_{after}/V_{before}$

many influent parameters: mass loss from stars, Recycling: instantaneous or not

CONCLUSION

→ Secular evolution plays a fundamental role, in the fueling of SB, AGN, and bulge formation

→ Requires « diffuse » cold gas accretion, from cosmic filaments

➔ Angular momentum transfer with DM or with outer disk according to mass ratio, saturation, kinematics

→ Gas fraction able to destroy bars depend on the DM/disk ratio

→ Bars trigger gas flows in galaxy interactions and mergers Starbursts are more efficient with retrograde orbits

→ Gas flows and bar strength depend on orbital chaos, DM fraction, gas fraction, vertical feedback (peanut), etc.. 17

N2782: model

N2782 nuclear disk + outflow Jogee et al 1999

