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ABSTRACT

Surface temperature and emissivities, as well as atmospheric water vapor and cloud liquid water, have been
calculated from Special Sensor Microwave Imager observations for snow-covered land areas using a neural
network inversion scheme that includes first-guess information. A learning database to train the neural network
is derived from a global collection of coincident surface and atmospheric parameters, extracted from the National
Centers for Environmental Prediction reanalysis, from the International Satellite Cloud Climatology Project data,
and from microwave emissivity atlases previously calculated. Despite the large space and time variability of
the snow microwave response, the surface and atmospheric parameters are retrieved. Water vapor is estimated
with a theoretical rms error of approximately 30%, verified against radiosonde measurements, that is almost the
same as over snow-free land. The theoretical rms error of the surface skin temperature retrieval is 1.5 and 1.9
K, respectively, for clear and cloudy scenes. The surface skin temperatures are compared with the surface air
temperatures measured at meteorological stations to verify that the expected differences are found. The space
and time variations of the retrieved surface emissivities are evaluated by comparison with surface parameter
variations such as surface air temperature, snow depth, and vegetation cover.

1. Introduction

The mean monthly land area covered by snow in the
Northern Hemisphere ranges from ;10% to ;40% dur-
ing the annual cycle. Because of its high albedo, snow
extent is a primary factor controlling the amount of solar
radiation absorbed by the earth. Even a shallow snow
cover can increase the albedo of a bare landscape from
0.2 to 0.8. Any decrease in snow cover related to a
warming trend would result in increased absorption of
solar radiation, melting the snow and inducing a positive
feedback. As a consequence, the cryospheric compo-
nents of the climate are regarded as sensitive indicators
of changes. Snow cover also interacts with and modifies
the overlying air masses, considerably influencing the
atmospheric circulation, not only in polar regions but
also at midlatitudes, making assimilation of observa-
tions in polar regions crucial for numerical weather pre-
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diction (NWP) models. In addition, snow is a dominant
source of delayed water supply in the northern regions,
with large impact on the global hydrological budget.

Conventional measurements in remote polar areas un-
fortunately are sparse, thus limiting the ability to mon-
itor meteorological, hydrological, and climatological
processes accurately in these regions. Satellite obser-
vations provide a unique opportunity to monitor con-
tinuously the whole polar region with great detail.

Passive microwave satellite observations over snow
have been used to estimate snow cover and depth (e.g.,
Kunzi et al. 1982; Chang et al. 1987; Hall et al. 1991;
Foster et al. 1996b; Grody and Basist 1996; Pulliainen
and Hallikainen 2001), with the substantial advantages
over visible observations that the microwave observa-
tions do not depend on the solar illumination, are not
limited to cloud-free areas, and are sensitive to snow
depth. However, global applications of snow-depth al-
gorithms are questioned, and several studies have sug-
gested the need for regionally specific adjustments (Fos-
ter et al. 1996a; Robinson and Spies 1994) or adding
extra information in the retrieval process [e.g., land clas-
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sification, topography, air temperature (Singh and Gan
2000), or temperature history (Josberger and Mognard
2002)]. In addition, when compared with visible or in-
frared observations, microwave observations have
coarser spatial resolution, creating problems when in-
terpreting heterogeneous footprints that cover mixtures
of surface types and snow characteristics.

Retrieval of surface and atmospheric parameters over
snow with passive microwave observations is a complex
and ill-posed inverse problem. The surface responses
are not only highly variable in space and time, they are
also very difficult to model because they are sensitive
to a variety of parameters, such as snow particle sizes,
wetness, and potential embedded vegetation. The space
and time variability of the snow emissivities is discussed
in section 2, and a brief review of previous theoretical
and experimental work helps to interpret the variability
in terms of snow characteristics. A neural network in-
version scheme has been developed to retrieve surface
temperatures, surface emissivities, atmospheric water
vapor, and cloud liquid water over snow- and ice-free
land from the Special Sensor Microwave Imager (SSM/
I) observations (Aires et al. 2001), using precalculated
monthly mean emissivities and clear-sky infrared mea-
surements of surface temperatures as first-guess infor-
mation. This study explores the feasibility of using this
technique over snow-covered surfaces. Major challeng-
es are the larger space and time variability of the emis-
sivities, modeling the possibility of volume scattering
within the snowpack, and the problem of detection of
low water vapor contents. Section 3 describes the neural
network inversion method to retrieve simultaneously the
surface temperature Ts, the seven surface emissivities
ef , the atmospheric water vapor WV, and the cloud liq-
uid water path LWP over snow. The theoretical perfor-
mance of the retrieval method is also presented. The
neural network method is applied to a year of SSM/I
data. Results are discussed and are compared with avail-
able in situ measurements (section 4). Section 5 con-
cludes this study by highlighting the need for a thorough
analysis of the variability of the snow emissivity with
the physical characteristics of the snowpack.

2. Variability of microwave snow emissivities

A snowpack can consist of several layers having dif-
ferent densities and crystal-size distributions. The prop-
erties of these layers reflect the snowpack’s history and
relate to location and elevation. Sturm et al. (1995), for
instance, suggest separating the snow into six classes:
tundra, taiga, alpine, maritime, prairie, and ephemeral,
each type having a unique ensemble of textural and
stratigraphic characteristics, including the sequence of
snow layers, their thickness, density, crystal morphol-
ogy, and grain.

Microwave radiation responds to snowpack properties
such as density, depth, crystal-size distribution, vertical
temperature gradient, surface wetness, melting–refreez-

ing cycles, and embedded or covering vegetation. The
responses of microwave radiation to these surface char-
acteristics are usually highly dependent on frequency.
An extensive amount of research has been directed to-
ward a better understanding of the mechanisms respon-
sible for the microwave emission of snow, both mod-
eling analysis and ground-based or aircraft experiments.

Modeled microwave emissivities of snow are partic-
ularly sensitive to snow water equivalent, grain size,
and snow wetness. The dielectric losses in dry snow are
very small, so the extinction coefficient is dominated
by scattering, this effect being stronger at shorter wave-
lengths for larger particles and drier snow. The first
numerical results for dry snow used conventional Mie
scattering theory and predicted a steep decrease of the
brightness temperatures with grain size, (e.g., Chang et
al. 1976). Calculations using ‘‘dense medium’’ theory
show that the scattering is less than predicted with the
assumption of independent scattering used by the Mie
scattering theory (e.g., Tsang 1992).

Large differences in the dielectric properties of liquid
and frozen water at microwave frequencies produce sub-
stantial variations of the snow emissivity with wetness
and melting. With increasing wetness, the dielectric
losses become large and the scattering becomes negli-
gible. Wet snowpacks radiate like blackbodies at the
physical temperature of the upper snow layer. In the
spring, snow undergoes melting and refreezing cycles
during which large spherical grains are formed. Grain
sizes can increase by a factor of 2–3 by the end of the
winter (Sturm and Benson 1997). Thus, the microwave
signature of the snowpack varies between blackbody
behavior for wet snow to high reflectivities due to strong
volume scattering by the large inhomogeneities. This
effect is especially sensitive at higher frequencies.

Field experiments have been conducted to analyze
the snow emissivity with respect to the characteristics
of the snowpack. The University of Bern has been par-
ticularly active with ground-based measurements in the
Alps (e.g., Schanda et al. 1983; Matzler 1994), and sev-
eral aircraft measurement campaigns have been con-
ducted in Finland by the University of Helsinki and by
the U.K. Met Office (e.g., Kurvonen and Hallikainen
1997; Hewison and English 1999). Measurements con-
firm the large variability of the snow emissivities with
snow characteristics and history. Matzler (1994) mea-
sures emissivities of various landscapes in winter be-
tween 5 and 100 GHz at 508 incidence and searches for
specific microwave signatures that would enable un-
ambiguous retrieval of snow parameters from micro-
wave observations. He concludes that estimation of
snow water equivalent is not feasible solely from passive
microwave observations in this range. However, snow
cover can be discriminated from other surfaces, even
for fresh powder snow when using the higher frequen-
cies.

Microwave emissivities over the globe have been es-
timated from SSM/I at 19.35, 22.235, 37.0, and 85.5
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FIG. 1. Monthly mean effective emissivities at 19, 37, and 85 GHz for horizontal polarization for Nov 1992, Jan 1993, and Mar 1993.
Also presented are the snow-cover information derived from the NOAA operational analysis and the monthly mean snow water equivalent
extracted from the NCEP reanalysis.

GHz (Prigent et al. 1997, 1998) by removing the con-
tributions of the atmosphere, clouds, and rain with the
help of ancillary satellite data [International Satellite
Cloud Climatology Project (ISCCP; Rossow and Schif-
fer 1991, 1999)] and meteorological reanalysis from the
National Centers for Environmental Prediction (NCEP;
Kalnay et al. 1996), and by using infrared surface skin
temperature estimates from ISCCP. In the first step,
cloud-free SSM/I observations are isolated with the help
of collocated visible/infrared satellite observations
(ISCCP data). The cloud-free atmospheric contribution
is then calculated from an estimate of the local atmo-
spheric temperature–humidity profile (NCEP reanaly-
sis). Last, the surface emissivity is calculated for all of
the SSM/I channels, for all cloud-free pixels, assuming
that the reflection is specular and the microwave radi-
ation emanates only from a thin surface layer. The sur-
face temperature is thus the surface skin temperature

estimated from the infrared measurements (derived from
ISCCP), neglecting surface and volume scattering. The
emissivities are ‘‘effective’’ emissivities calculated ac-
cording to specular assumptions. Without prior infor-
mation on the detailed characteristics of the snow cover,
more accurate radiative transfer assumptions cannot be
implemented on a global basis. These practical as-
sumptions enable a consistent suppression of the at-
mospheric contributions and surface temperature mod-
ulations. Retrievals are performed on an equal-area grid
equivalent to 0.258 3 0.258 at the equator. For each
pixel and each frequency, a monthly mean emissivity
is calculated along with the standard deviation of the
day-to-day emissivity variations within each month.

The retrieved monthly mean effective emissivities are
displayed at 19, 37, and 85 GHz for horizontal polari-
zation (Fig. 1) for November of 1992, January of 1993,
and March of 1993. Also presented is the snow cover
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FIG. 2. Normalized histograms of the standard deviations of the
microwave emissivities calculated on a monthly basis at 19, 37, and
85 GHz for both polarizations, for snow-free land areas (solid lines)
and for snow-covered land (dashed lines).

defined for each location as the number of fully snow
covered pixels processed during the month divided by
the total number of SSM/I pixels for that month at that
location, the snow-cover information being derived
from the National Oceanic and Atmospheric Adminis-
tration (NOAA) operational analysis. The monthly mean
snow water equivalent derived from the NCEP reanal-
ysis is also shown in Fig. 1. For a given month and a
given frequency, the most striking feature is the large
variability of snow emissivities without noticeable var-
iations in the snow cover derived from NOAA or in the
snow water equivalent estimated by NCEP. The high
sensitivity of the 85 GHz to the snow properties is ex-
hibited by distinctive signatures over the Alps for the
3 months or over the Zagros Mountains (northwest of
Iran, Armenia, and east of Turkey) in January and
March, whereas the variations are much weaker at 37
GHz and are nonexistent at 19 GHz. The substantially
different behaviors of the snow emissivities for these
three frequencies can be explained by increasing scat-
tering with increasing frequency for dry snow in cold
mountainous environments. For a given area (north of
Kazakstan or in Russia, east of the Ural Mountains, for
instance), the emissivity decreases with time during the
winter season. By the end of the winter, snow has un-
dergone multiple thawing and refreezing cycles during
which larger spherical grains are formed (Sturm and
Benson 1997). The microwave signature of the snow-
pack then varies between characteristics for wet snow
to higher reflectivities due to scattering by the large
inhomogeneities. There is a sharp discontinuity parallel
to the Ural Mountains in Russia, especially at 37 and
85 GHz: west of the Ural Mountains, the snow emis-
sivities are high while they are much lower on the east
side of the range. Vegetation density decreases from
west to east of the Ural Mountains, with evergreen nee-
dle–leaved forest in the west and increasing coverage
of deciduous forest and tundra eastward (Matthews
1983). In addition, the decreasing air temperature from
west to east can also contribute to a different snow
behavior, with possibly drier snow east of the mountain
range. The emissivities for vertical polarization present
similar highly variable features, with 19 GHz very
weakly sensitive to the presence of snow and increasing
scattering signatures with increasing frequency.

Figure 2 shows the normalized histograms of the stan-
dard deviations of the microwave emissivities calculated
on a monthly basis at 19, 37, and 85 GHz for both
polarizations, for snow-free land areas (solid lines) and
for snow-covered land (dashed lines). As expected, the
time variability of the microwave response over snow
increases with frequency and is larger for horizontal
polarization than for vertical polarization, especially at
lower frequencies. Snow emissivity not only varies on
a monthly timescale, it can also undergo changes on
timescales as short as a day, with thawing and refreezing
cycles induced by diurnal variations of air temperature.

Local measurements and modeling studies have

shown the influence of snow characteristics, such as
snow depth, wetness, or grain-size distributions, on the
microwave responses. However, on a regional basis or
over longer times, it is very difficult to show direct
correlations between the snow properties and the mi-
crowave observations. First, the snow characteristics
that influence the microwave responses are all variable
in space and time and are intricately mixed with each
other and with temperature variations, making it difficult
to isolate and to analyze the effect of a single parameter
alone. Second, most snow properties that are likely to
affect the microwave responses are not routinely mea-
sured, making verifications of satellite retrievals very
difficult.

The National Meterological Center (NMC, now
NCEP) observational data include snow depth for a
large number of stations in the United States and in
Canada. This dataset has been obtained and analyzed
for a year in coincidence with the microwave obser-
vations. Table 1 gives the linear correlation coefficients
between the SSM/I brightness temperatures Tb and the
snow depth for clear and cloudy scenes (the cloud flag
comes from the ISCCP dataset). The correlation is al-
ways very low, even for the brightness temperature dif-
ference between 19 and 37 GHz, which is the basis for
commonly used snow depth algorithms (e.g., Kunzi et
al. 1982; Chang et al. 1987). The linear correlation co-
efficients have also been calculated for the surface skin
temperature extracted from ISCCP for clear conditions
(Table 1). It shows values up to about 0.7, much higher
than the linear coefficients obtained with the snow
depth. These correlations do not distinguish direct de-
pendences between variables from indirect ones due to
intermediate variables: variables that are not physically
related can be statistically correlated via a third variable.
These calculations assume linear relationships between
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TABLE 1. Linear correlation coefficients calculated for Jan, Feb,
and Mar 1993 over North America.

Snow depth
(in situ)

Surface skin temperature
(ISCCP)

Clear
Tb19V

Tb19H

Tb22V

Tb37V

Tb37H

20.26
20.15
20.29
20.31
20.23

0.68
0.54
0.73
0.70
0.65

Tb85V

Tb85H

Tb37V 2 Tb19V

Tb37H 2 Tb19H

20.09
20.07

0.24
0.21

0.59
0.59

20.45
20.39

Cloudy
Tb19V

Tb19H

Tb22V

Tb37V

Tb37H

20.18
20.12
20.20
20.23
20.18

—
—
—
—
—

Tb85V

Tb85H

Tb37V 2 Tb19V

Tb37H 2 Tb19H

20.02
20.08

0.19
0.17

—
—
—
—

the variables, but nonlinear relationships are more like-
ly.

In conclusion, the microwave response over snow is
very variable in time and space, and its variations can
not be easily attributed to a simple set of snowpack
characteristics that are linearly correlated with the mi-
crowave signal. As already noticed by several authors
(e.g., Foster et al. 1994; Matzler 1994), the SSM/I 85-
GHz channels show an interesting sensitivity to the pres-
ence and depth of shallow snow or fresh dry powder
snow. However, its use has been so far very limited over
snow because of the water vapor and cloud contami-
nation at this frequency. When using brightness tem-
peratures directly, even in polar regions, the amount of
atmospheric contamination is not negligible even at 37
GHz, especially in cloudy areas (Rott and Nagler 1994),
and the effect increases with frequency. Abdalati and
Steffen (1997) emphasize the impact of the atmospheric
variability, especially during the melting season, in low-
elevation areas where the water vapor and cloud con-
tamination can be significant. In a preparatory study for
the Multifrequency Imager Microwave Radiometer, Noll
et al. (1994) also recommend combining retrievals of
atmospheric and surface parameters at microwave fre-
quencies to account for the effects of the atmospheric
variability on the surface parameter retrieval.

The problem is thus to retrieve surface and atmo-
spheric parameters over a highly variable surface, for
atmospheres that contain low water vapor amount, given
in addition that the surface and the atmospheric contri-
butions are intricately mixed.

3. Retrieval method
A neural network inversion scheme, including first-

guess information, has been developed to retrieve Ts,

ef , WV, and LWP over snow- and ice-free land from
SSM/I (Aires et al. 2001). The current study explores
the feasibility of this technique over snow-covered sur-
faces: a major problem being the higher space and time
variability of the surface characteristics when compared
with snow-free areas.

The neural network method optimizes the use of all
the SSM/I channels and the prior information to con-
strain the inversion problem and retrieves simultaneous-
ly the surface and atmospheric parameters that are con-
sistent among themselves and with the satellite obser-
vations. The neural network is designed by analyzing
all of the local statistical relationships in the learning
database and benefits from them, even when the rela-
tionships are highly nonlinear. These relationships rep-
resent nonlinear correlations among the physical vari-
ables, among the observations (brightness tempera-
tures), among the first guesses, and between the vari-
ables and the observations. All of these correlations
constitute additional information that the neural network
can exploit to improve its retrieval if such nonlinear
correlations are properly represented in the learning da-
taset. In contrast, the variational assimilation scheme,
in its classical implementation, can only use the linear
correlations between the variables. See Aires et al.
(2001) for a comparison of the neural network and var-
iational approaches.

a. Learning algorithm with first guess

The neural network scheme is briefly described. For
more details see Aires et al. (2001). The multilayer per-
ceptron (MLP) network is a nonlinear mapping model
composed of distinct layers of neurons: the first layer
S0 represents the input X 5 (xi; i ∈ S0) of the mapping;
the last layer SL represents the output mapping Y 5 (yk;
k ∈ SL); and the intermediate layers Sm (0 , m , L)
are called the hidden layers. These layers are connected
via neural links. We denote the parameters of these links
by W.

To avoid nonuniqueness and/or instability in an in-
verse problem, it is essential to use all preexisting in-
formation available: the chosen solution is then con-
strained so that it is physically more coherent. Intro-
duction of a priori first-guess information into a neural
network model was first proposed by Aires et al. (2001).
With the prior information included in the input of the
classical MLP network, the neural transfer function be-
comes

b oŷ 5 g (y , x ),W (1)

where ŷ is the retrieval (i.e., retrieved physical param-
eters), gW is the neural network with parameters W, yb

is the first guess for the retrieval of physical parameters
y, and xo is the noisy observations.

The error back-propagation algorithm (Rumelhart et
al. 1986) is the learning algorithm that estimates the
optimal network parameters W by minimizing a cost
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function C(W), approaching as closely as possible the
desired function (i.e., inverse of the radiative transfer
equation). The criterion usually used to derive W is the
mean-square errors in network outputs

C(W )

1
25 D [g (y 1 «, x 1 h), y] P(x) P (h) P («),EEE E w h «2

(2)

where DE is the Euclidean distance between ŷ 5 gW(y
1 «, x 1 h), the network output, and y is the desired
output. The distance DE is implicitly here in the space
of the physical parameters y (same dimension as SL);
P(y) is the probability distribution function of the phys-
ical variables y that depends on their natural variability;
Ph(h) is the probability distribution function of the ob-
servation noise h; P«(«) is the probability distribution
function of the first-guess error « 5 yb 2 y.

To minimize the criterion of Eq. (2), we create a
learning database

e oe beB 5 {(y , x , y ); e 5 1, . . . , E} (3)

that samples as well as possible all the probability dis-
tribution functions in Eq. (2) (see next section), with E
being the number of samples.

To sample the probability distribution function P(y),
we select geophysical states ye that cover all natural
combinations and their correlations and by calculating
xe 5 RTM (ye) with a radiative transfer model (i.e.,
physical inversion). We alternatively could obtain these
relationships from a ‘‘sufficiently large’’ set of collo-
cated and coincident values of x and y (i.e., empirical
inversion). For sampling Ph, we need a priori infor-
mation about the measurement noise characteristics; a
physical noise model could be used, but if all we have
is an estimate of the noise magnitude (as is the case
here), we assume Gaussian distributed noise h that is
not correlated among the measurements. To sample the
first-guess variability with respect to state y [i.e., sam-
pling P(yb | y], we use a first-guess dataset {y ; e 5 1,eb

. . . , E}. This dataset can be a climatological dataset or
a 6-h prediction (which would have better statistics of
the errors but would add model dependencies). The bal-
ance between reliance on the first guess and the direct
measurements is then made automatically and optimally
by the neural network during the learning stage.

Once trained, the neural network gW represents the
inverse of the radiative transfer equation, statistically.
The neural network model is then valid for all obser-
vations (i.e., global inversion), where iterative methods,
such as variational assimilation, have to compute an
estimator for each observation (i.e., local inversion).

b. The learning database

The learning database is limited to snow-covered areas.
The snow flag is derived from the NOAA weekly snow

maps. To constrain the problem (the problem is then bet-
ter posed), we use the clear/cloudy flag information pro-
vided by the ISCCP dataset to train two neural networks:
one for clear scenes (NN1) and one for cloudy scenes
(NN2). This specialization of the neural networks facil-
itates the training of the neural network models. They
both simultaneously retrieve the surface temperature Ts,
the seven SSM/I surface emissivities ef , and the inte-
grated water vapor content WV. In addition to these pa-
rameters, NN2 retrieves the cloud LWP. Two sources of
information are used for this purpose: 1) the seven SSM/I
brightness temperatures, and 2) preexisting information
of the state of the surface and atmospheric variables from
ancillary datasets. A collection of SSM/I observations
collocated and coincident with independent measure-
ments of the parameters to be retrieved (Ts, ef , WV, and
LWP) is not available. However, with other estimates of
Ts, ef , WV, and LWP, the brightness temperatures can be
simulated by a radiative transfer model, so the learning
database uses these simulated brightness temperatures in-
stead of observations. These radiative transfer results are
obtained using selected values of Ts, WV, LWP, and ef .
To the extent that these datasets provide a proper distri-
bution of the surface and atmospheric parameters, in-
cluding their correlations, the neural network represents
a global fit of the inverse radiative transfer model.

The atmospheric relative humidities and temperatures
are taken from the NCEP reanalysis dataset (Kalnay et
al. 1996), every 6 h at a spatial resolution of 2.58 in
latitude and longitude. The columnar integrated WV is
used as the first-guess a priori information, and the first-
guess error is taken to be 0.4 times the first guess, similar
to the WV error values obtained when using the error
covariance of each humidity level as given by Eyre et
al. (1993). In the ISCCP dataset, cloud and surface pa-
rameters are retrieved from visible (;0.6-mm wave-
length) and infrared (;11-mm wavelength) radiances
provided by the set of polar and geostationary meteo-
rological satellites. In this study, the ISCCP dataset
gives estimates of the cloud-top and surface skin tem-
peratures. The pixel-level dataset (the ‘‘DX’’ dataset) is
selected for its spatial sampling of about 30 km and
time sampling of 3 h (Rossow et al. 1996). The error
associated with the surface temperature is estimated to
be 4 K (Rossow and Garder 1993). First-guess preex-
isting information for the microwave emissivities at
each location is derived from the monthly mean emis-
sivities previously estimated by Prigent et al. (1997,
1998, 2001a). The standard deviation of day-to-day var-
iations of the retrieved emissivities within a month has
been calculated for each channel and for each location
and is used as estimates of first-guess errors for these
quantities (see Fig. 2).

For more information on the a priori first-guess in-
formation and related background errors, see Aires et
al. (2001).
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TABLE 2. Global mean neural sensitivities (clear over snow). See section 4a for meaning of boldface.

Ts WV e19V e19H e22V e37V e37H e85V e85H

Ts
WV
Tb19V

Tb19H

Tb22V

0.23
20.13

0.26
0.10
0.10

20.07
0.47

20.28
0.07
0.32

20.25
0.09
0.56

20.05
0.08

20.16
0.01

20.01
0.89

20.16

20.26
0.06
0.17

20.13
0.42

20.20
0.01

20.17
20.22
20.11

20.17
20.08
20.23

0.00
20.23

20.16
20.37
20.02
20.10
20.51

20.14
20.54

0.13
20.19
20.63

Tb37V

Tb37H

Tb85V

Tb85H

e19V

0.08
0.11
0.13

20.01
20.13

20.02
20.28
20.08

0.39
0.02

20.02
20.18
20.20
20.02

0.16

20.13
0.03

20.11
20.06

0.11

0.06
20.09
20.18
20.07

0.17

0.83
0.14

20.01
20.17

0.13

0.10
0.94

20.27
0.03
0.11

0.09
20.02

1.20
20.12

0.11

20.27
0.40
0.10
0.94
0.11

e19H

e22V

e37V

e37H

e85V

e85H

20.12
20.12
20.09
20.06
20.04
20.03

0.00
0.01
0.01

20.01
20.02
20.04

0.15
0.15
0.10
0.07
0.05
0.04

0.11
0.10
0.08
0.06
0.04
0.03

0.15
0.16
0.11
0.08
0.06
0.04

0.12
0.12
0.10
0.08
0.05
0.04

0.12
0.11
0.09
0.08
0.06
0.05

0.12
0.11
0.10
0.08
0.08
0.07

0.13
0.12
0.11
0.10
0.09
0.10

4. Results from the neural network inversions
and discussion

a. Neural network sensitivities

The neural network technique enables an analytical
and fast calculation of the neural Jacobians or neural
sensitivities (Aires et al. 1999, 2001). These quantities
provide a statistical estimation of the multivariate and
nonlinear relationships among the input and output var-
iables in terms of partial first derivatives. Table 2 gives
the mean neural network sensitivities over snow for the
clear-sky neural network. The neural Jacobians are nor-
malized by the standard deviation (std) of the respective
variables []xk/]yi 3 std(yi)/std(xk)] to enable compari-
son of the sensitivities between variables with different
variation characteristics. They indicate the relative con-
tribution of each input in the retrieval of each output.
The sensitivities clearly show that the neural network
manages to extract Ts and ef with minimum correlation
of errors. The sensitivities of the Ts retrieval are dis-
tributed over several of the inputs of the neural network,
essentially the Tbf and the Ts first-guess estimates,
whereas the retrieval of each surface emissivity relies
most heavily on the brightness temperature at the cor-
responding frequency (see the corresponding sensitiv-
ities in boldface in Table 2). Although, for each fre-
quency, Tbf is almost linearly related to Ts 3 ef through
the radiative transfer equation, simultaneous use of all
the channel observations within the nonlinear neural
network makes it possible to untangle the retrievals of
Ts and ef .

b. Theoretical accuracy

Figure 3 shows the normalized distributions of the
retrieval errors calculated on the simulated dataset for
Ts, WV, the emissivity at 19 GHz in horizontal polar-
ization e19H, and LWP as differences with the first-guess
information (except for LWP that is compared with the
ISCCP estimate that is not used as a first guess). The

results are presented for three ranges of the emissivity
at 85 GHz (horizontal polarization) and for clear and
cloudy scenes, because different sensitivities to the re-
trieved parameters are expected depending on the sur-
face and cloud characteristics. The distributions of the
errors on the first guess are also indicated by dashed
lines (except for LWP because no first-guess value was
used). The surface types classified by monthly mean
emissivities at 85 GHz in the horizontal polarization are
roughly related to the snow characteristics, with the low-
er emissivities related to strong scattering in a dry snow-
pack due to the presence of large snow crystals. Cloudy
scenes are divided into two groups according to their
LWP estimated by ISCCP. For each histogram, the rms
error is indicated along with the number of considered
pixels (in parentheses). The results for each variable are
briefly discussed.

The SSM/I observations have a good ability to mea-
sure the surface skin temperature with an averaged rms
error of 1.52 K in clear areas and 1.95 K in cloudy
cases. This rms error represents a large improvement
over the first-guess rms of 4 K. The retrieval error is
not affected much by the presence of clouds, and it
decreases with increasing surface emissivity because of
the increased contribution of the surface to the observed
brightness temperatures.

Quantity WV is retrieved with a relative error of about
33% for clear situations and a relative error of about
26% in cloudy situations. This magnitude is also an
improvement over the first-guess rms error of 40%. Con-
trary to the errors in Ts, the error in WV decreases with
the surface emissivity: the contrast between the atmo-
spheric and surface contribution increases with decreas-
ing emissivity, making the atmospheric features easier
to observe against a cold background. The retrieval er-
rors are also slightly smaller in the presence of clouds,
likely because of the larger WV amount in the cloudy
regions.

For LWP, the theoretical rms error is 0.07 kg m22

globally. As expected, the error is larger in areas of high
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FIG. 3. For snow-covered areas, normalized distributions of the theoretical retrieval errors calculated on the simulated
dataset for (a) Ts, (b) WV, (c) e19H, and (d) LWP. Results are presented for three ranges of emissivities at 85 GHz
(horizontal polarization) and for clear and cloudy scenes. The distributions of the errors on the first guess are also
indicated (dash lines) except for LWP because no first-guess value is used. For each histogram, the rms error is indicated
along with the number of considered pixels (in parentheses).

emissivities where the contrast between the land surface
and the cloud is smaller. Even in areas of low emissiv-
ities (0.55 , e85H , 0.75), the accuracy of the retrieval
is not suitable for detection of the majority of clouds
(Lin and Rossow 1994). As a consequence, the cloud
flag from ISCCP is important to direct the retrieval to-
ward the appropriate neural network. However, major
cloud structures with large liquid water paths can still
be detected.

The neural network technique retrieves snow surface
emissivities with an rms error lower than 0.006 (0.010)
globally for all channels, in clear conditions (cloudy
conditions). This error is an improvement over the first-

guess errors (see Fig. 2). The first guess provides the
emissivity spectral relationship, and the retrieval ex-
ploits it to separate the emissivities from Ts. The pos-
sibility of retrieving several times daily the land surface
emissivities with low rms errors would allow following
the evolution of the snow characteristics as expressed
in the microwave radiation. It can also improve the mi-
crowave retrieval of WV and temperature profiles over
land: until recently a fixed emissivity was used for Mi-
crowave Sounder Unit retrievals over land, so there is
a need for more accurate emissivity estimates (English
1999).

The neural networks have also been trained over con-
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FIG. 4. Normalized histograms of the differences between WV
estimates and WV radiosonde measurements, for clear (LWP 5 0)
and cloudy scenes (with cloud-top temperature Tc , 260 K and for
warmer clouds). Results are separated by emissivity at 85 GHz. Rms
of the difference is given along with the number of pixels (in pa-
rentheses). Distribution of the WV first-guess error is also shown
(dashed lines).

tinental ice. The theoretical results show characteristics
that are very similar to the results over snow.

c. Evaluation of the results

The neural inversion method has been applied to a
year of SSM/I F10 and F11 observations. In the op-
erational mode, the neural network scheme is compu-
tationally very efficient. Inversion of new observations
only involves simple and rapid calculations, two matrix
products, and one pass through the logistic function of
the neural network. Validation of the inversion results
using independent measurements is challenging, be-
cause of the lack of coincident in situ measurements.
Except for WV, which is routinely measured by radio-
sondes, the other retrieved variables are not part of the
conventional in situ measurements. However, the re-
trieved products can be evaluated by checking that their
space and time variations show the expected behavior
with respect to other variables that are known to affect
them.

1) WATER VAPOR

The radiosonde measurements have been collected for
1992 and 1993. The WV estimates are compared with
in situ measurements that are close in time (,1.5 h)
and space (,20 km). The results are presented in Fig.
4 for clear (LWP 5 0) and cloudy scenes (with cloud-
top temperature Tc , 260 K and for warmer clouds).
Here again, the results are separated by emissivity at 85
GHz. The rms of the difference is given along with the
number of pixels (in parentheses). The results are very
similar to the theoretical results and show a considerable
improvement over the first-guess error (dashed lines in
Fig. 4). For clear-sky conditions and for liquid water
clouds (Tc . 260 K), the rms error decreases slightly
with decreasing surface emissivities, as expected. In-
teraction of the radiation with ice particles within clouds
is not taken into account in the learning database (cold
clouds with Tc , 260 K), but the possibility of an un-
derlying liquid cloud layer is allowed (Aires et al. 2001).
As a consequence, in areas where large particles (pre-
cipitation) are likely to interfere with the signal, the
retrieval can be in error.

2) SURFACE SKIN TEMPERATURE

Surface skin temperature is not one of the conven-
tionally measured variables, but near-surface air tem-
perature Tair is routinely measured at surface weather
stations every 3 h. Retrieved Ts and in situ measure-
ments of Tair have been compared for all coincident
observations. The variations of Ts 2 Tair with all the
factors that could affect it have been examined. In gen-
eral, the values of Ts 2 Tair exhibit the expected be-
havior, being larger for daytime than for nighttime, larg-
er for clear days than for cloudy days, and larger for

cloudy nights than for clear nights. However, the var-
iations of Ts 2 Tair are made more complicated by the
larger thermal inertia of snow (usually much larger than
for snow-free soil) and its larger albedo; moreover, if
temperatures are near freezing, then latent heat effects
can influence the surface energy budget. All of these
factors are expected to reduce the response of Ts to
changes in solar heating. Indeed, not only are the day–
night contrasts discussed earlier small, but the variations
of Ts 2 Tair during the daytime (not shown) are small,
with only a slight increase near midday. In contrast, the
synoptic variations of Tair are very large in wintertime,
suggesting that Ts is less variable than Tair. Figure 5
shows the mean values of Ts 2 Tair for each 1-K bin
of Tair in three latitude ranges in North America. The
behavior exhibited is as if there is an effective Teq at
which Ts 2 Tair 5 0. When Tair is above freezing over
snow, Ts should remain near freezing until all the snow
melts; thus, Ts 2 Tair will be negative. In general, when
Tair changes rapidly, the thermal inertia of the snow
should cause Ts to lag behind. As Fig. 5 shows, the
changeover from negative to positive occurs at tem-
peratures well below freezing, decreasing with increas-
ing latitude, as would be expected for a decreasing solar
input to the energy balance. We find that Teq is close
to the average Ts over the whole time period for each
latitude zone, so it appears that when Tair increases or
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FIG. 5. Mean difference between Ts and Tair for each 1-K bin of
Tair for three latitude ranges in North America. Comparison includes
all coincident observations, clear and cloudy, night and day.

FIG. 6. Monthly mean retrieved emissivities at 19, 37, and 85 GHz
(horizontal polarization) monthly mean in situ surface air temperature
and snow depths for three locations in North America. Monthly mean
values are indicated by the first letter of each month.

decreases above the average value of Ts, the values of
Ts remain closer to Teq, producing negative Ts 2 Tair
when Tair . Teq and positive Ts 2 Tair when Tair ,
Teq. This behavior is found even if we limit the results
to clear scenes and use only the ISCCP values of Ts.

3) SURFACE EFFECTIVE EMISSIVITIES

The snow emissivity is estimated for the seven SSM/I
channels for both clear and cloudy scenes. Evaluation
of this product is a challenging task, given the absence
of any large-scale study of this parameter. However, one
can check that 1) temporal and spatial variations in sur-
face emissivities can be reasonably interpreted in terms
of variations in snowpack properties or other surface
characteristics and 2), for a given area, the expected
frequency and polarization dependences are observed
among the seven channel emissivities.

Figure 6 shows the variation of the monthly mean
retrieved emissivities (clear and cloudy) at 19, 37, and
85 GHz (horizontal polarization) versus monthly mean
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FIG. 7. Normalized histograms of the retrieved emissivities at 19,
37, and 85 GHz (horizontal polarization) for three types of vegetation
in North America (408–608N, 1108–908W) in Jan 1993.

in situ surface air temperatures and snow depths for
three locations in North America. The high-frequency
emissivities, especially at 85 GHz, decrease with air
temperature during the first part of the winter, but, once
the minimum air temperature is reached and the tem-
perature starts to increase (in February in the three cases
shown), the emissivities monotically decrease before in-
creasing again just at the end of the snow season. This
hysteresis cycle can be explained by increasing grain
sizes through different processes during the winter until
snow melts (Sturm and Benson 1997). This interpre-
tation of the snow history is consistent with the observed
frequency dependence: The amplitude of this cycle in-
creases with frequency because of a larger contribution
of the scattering process within the snowpack at higher
frequency. No clear dependence is observed between
the emissivities and snow depth. Other locations were
checked and gave similar responses.

The retrieved emissivities also show significant and
expected variations with the vegetation cover. In central
North America, a strong and clear vegetation gradient
is observed going northward from cultivated areas up
to approximately 508 to evergreen needle–leaved forests
up to about 608 to arctic tundra (Matthews 1983). Nor-
malized histograms of the retrieved emissivities at 19,
37, and 85 GHz (horizontal polarization) are presented
in Fig. 7 for these three types of vegetation in central
North America (408–608N, 1108–908W) in January of
1993, using the Matthews vegetation classification. The
sensitivity of the snow emissivity to vegetation cover
increases with frequency, with the 19-GHz response
varying only weakly. At 37 and 85 GHz, the presence
of dense evergreen vegetation above the snow-covered
ground increases the emissivity, as expected: Emissivity
histograms of forested areas are well separated from the
other two (cultivation and tundra) that correspond to
low-density vegetation cover, especially during winter-
time.

It is difficult to retrieve snow depth from microwave
emissivities at these frequencies on a global basis, given
the limited correlation observed between the two vari-
ables, even when the effects of temperature have been
removed as in our results. However, the snow emissiv-

ities exhibit systematic variations with other snow and
surface parameters that are worth exploring (e.g., snow
history or vegetation cover). Combining satellite ob-
servations at different frequencies and observational
mode (passive and active) will be examined, in order
to benefit from the synergy between the various mea-
surements. Such an approach has already proved pro-
ductive for vegetation analysis (Prigent et al. 2001a)
and for the estimation of inundation extent and season-
ality (Prigent et al. 2001b).

5. Concluding remarks

From SSM/I observations between 19 and 85 GHz,
atmospheric water vapor, cloud liquid water, surface
temperature, and surface emissivities have been re-
trieved over snow using a neural network inversion
scheme that includes first-guess information. A learning
database to train the neural network is derived from a
global collection of coincident surface and atmospheric
parameters, extracted from the NCEP reanalysis, from
the ISCCP data, and from microwave emissivity atlases
previously calculated. In the operational mode, inver-
sion of new observations with the neural network only
involves simple and rapid calculations, which is a very
important asset when processing large volumes of global
observations.

The surface and atmospheric parameters can be re-
trieved, despite the large space and time variabilities of
the microwave snow response. Most important, the ef-
fects of varying surface temperature can be isolated to
determine the variations of snow emissivities better.
Evaluation of the estimated variables using independent
measurements has been completed for integrated water
vapor. The other variables are not routinely measured,
and so validation is a challenging task and cannot be
performed quantitatively.

Water vapor is retrieved with a theoretical rms error
of approximately 30%. It has been validated against
radiosonde measurements, and the resulting relative er-
rors are of the same order. In polar regions where in
situ measurements are limited, this analysis is an at-
tractive alternative. Recent studies by Miao (1998) and
Wang et al. (2001) also showed promising water vapor
estimates over boreal regions from observations at high-
er frequencies (between 150 and 190 GHz). Comparison
of the two approaches could lead to a combined use of
the whole frequency range from 19 to 190 GHz. In
addition, Haggerty et al. (2002) showed the potential of
airborne microwave measurements for liquid water re-
trieval over sea ice.

The theoretical rms error of the surface temperature
retrieval (i.e., using simulated dataset) is 1.52 K in clear-
sky conditions and 1.95 K in cloudy scenes. Although
the surface air temperature is available from in situ mea-
surements, the surface skin temperature is not, and dif-
ferences between surface skin and surface air temper-
atures are a complex function of the surface and at-
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mospheric characteristics and solar flux, making very
difficult any real validation of the Ts product. Micro-
wave land surface temperature retrieval in cloudy areas
is a promising complement to the infrared estimates in
clear areas. By combining IR and microwave measure-
ments, a complete (clear and cloudy) time record of land
surface temperatures can now be produced. Energy and
water exchanges at the land–atmosphere interface are
controlled, in part, by the difference of air and skin
temperatures. Measurements of the air and skin tem-
peratures, with time resolution that is high enough to
resolve the diurnal cycle under all synoptic conditions
and that covers a long enough period to examine how
different seasonal and interannual conditions affect
them, are required to study the energy and water ex-
change processes at the land–atmosphere interface.

The surface emissivities are retrieved with an accu-
racy of 0.010 even in cloudy conditions. The sensitivity
of the microwave emissivities to snow depth is ques-
tioned. However, microwave emissivities show inter-
esting variations with other snow characteristics, es-
pecially at higher frequencies. Simultaneous analysis of
retrieved microwave emissivities, active microwave ob-
servations (scatterometer and altimeter on board Eu-
ropean Remote Sensing Satellites) and visible and near-
infrared observations (Advanced Very High Resolution
Radiometer) is now under way to assess the sensitivity
of the various observations to the snow characteristics.
The various observations will be merged to benefit from
their complementarity and, possibly, to extract snow
physical properties from these satellite measurements.

Long time series (10 yr) of the retrieved products are
now being calculated. The interannual variability of the
snow characteristics will be analyzed, along with the
surface temperature and the other atmospheric param-
eters, for their implications in climate and hydrological
studies.
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