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[1] A neural network inversion scheme including first guess information has been
developed to retrieve surface temperature Ts, along with atmospheric water vapor, cloud
liquid water, and surface emissivities over land from a combined analysis of Special
Sensor Microwave/Imager (SSM/I) and International Satellite Cloud Climatology Project
(ISCCP) data. In the absence of routine in situ surface skin measurements, retrieved Ts
values are evaluated by comparison to the surface air temperature Tair measured by the
meteorological station network. The Ts � Tair difference shows all the expected variations
with solar flux, soil characteristics, and cloudiness. During daytime the Ts � Tair difference
is driven by the solar insulation, with positive differences that increase with increasing
solar flux. With decreasing soil and vegetation moisture the evaporation rate decreases,
increasing the sensible heat flux, thus requiring larger Ts � Tair differences. Nighttime Ts �
Tair differences are governed by the longwave radiation balance, with Ts usually closer or
lower than Tair . The presence of clouds dampens all the difference. After suppression of
the variability associated to the diurnal solar flux variations, the Ts and Tair data sets
show very good agreement in their synoptic variations, even for cloudy cases, with no bias
and a global rms difference of �2.9 K. This value is an upper limit of the retrieval rms
because it includes errors in the in situ data as well as errors related to imperfect time and
space collocations between the satellite and in situ measurements. INDEX TERMS: 0315
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1. Introduction

[2] Skin temperature (Ts) is the physical temperature of
the Earth’s surface. For more complex situations like
vegetated surfaces, the skin temperature can refer to an
average effective radiative temperature of the canopy and
surface [Hall et al., 1992; Betts et al., 1996]. Oceans are
homogeneous over large scales, with nearly constant albe-
dos, high heat capacity, and infinite moisture supply. In
contrast, land surfaces are highly variable in space, have
lower heat capacity and limited moisture. As a consequence,

when exposed to solar flux variations, land skin temper-
atures not only exhibit stronger diurnal to seasonal varia-
tions, they are also more variable in space, modulated by
surface properties like vegetation density and soil moisture.
[3] Upwelling longwave radiation from the surface

directly depends upon the surface skin temperature Ts. Some
General Circulation Models (GCM) compute this variable
but it is not conventionally observed by the meteorological
weather station network. However air temperatures at 2 m
(Tair) are routinely measured and for validation purposes
climatologies of air temperature [e.g., Legates and Willmott,
1990] are often used for comparison with Ts, sometimes
confusing air temperature, surface skin temperature, and
temperature at the first level of the GCM model [Garrat,
1995]. Garrat [1995] showed that systematic comparisons
of the GCM output Ts with Tair without an adequate treat-
ment of the Ts � Tair difference (with monthly means up to
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2 K averaged over continents) result in an underestimation
of Ts by the GCM models and, as a consequence, an
underestimation of the cooling of the surface by longwave
fluxes. Thus excess net radiation calculated in GCMs over
continents may not be due only to overestimates in incom-
ing shortwave fluxes but also to underestimates in upwell-
ing longwave fluxes related to underestimated Ts [Garrat,
1995].
[4] Energy exchanges at the land-surface boundary are

largely controlled by the difference between the skin temper-
ature and the surface air temperature, the air and the surface
reacting with different time and space scales to external
forcing while still being complexly interconnected. The land
surface temperature responds more rapidly to changes of the
local balance of energy than the air temperature. On the
other hand, surface heat fluxes can induce local convection
in the boundary layer, producing changes in air temperature,
surface winds, cloudiness, and (potentially) precipitation
[Betts and Ball, 1995]. All of these parameters can also be
affected by advection of different air masses into the region.
The partition of net radiation at the land surface into latent
and sensible heat fluxes, which can be parameterized in
terms of the skin - air temperature differences, is a crucial
problem spanning all spatial and temporal scales.
[5] Estimates of the surface temperature diurnal cycle can

yield information about the soil moisture via an estimate of
the thermal inertia. Idso et al. [1975] showed that the daily
amplitude of the skin temperature and daily maximum of
the surface soil minus air temperatures can be used to
estimate soil water content and soil evaporation rate. Price
[1977] and Carlson et al. [1981] indicated that thermal
inertia and soil moisture can be estimated from two mea-
surements of Ts a day. Jackson et al. [1977] suggested
making the daily latent heat (or evapotranspiration) minus
the net radiation linearly proportional to (Ts � Tair) at
midday, a method that has often been used since. Since
1983, the International Satellite Land Surface Climatology
Project (ISLSCP) has sensitized the research community to
the key role of land-atmosphere interactions and has stimu-
lated a number of model investigations and measurement
campaigns like FIFE (in Kansas over short grass) or
BOREAS (in a boreal forest) [Hall et al., 1992; Betts and
Ball, 1995]. For example, Hall et al. [1992] calculated
sensible heat fluxes from Ts � Tair and tested this relation-
ship with FIFE measurements. Assimilated in soil-vegeta-
tion-atmosphere (SVAT) models, skin temperatures help
constrain the water and energy budget [e.g., Lakshmi,
2000].
[6] However, despite their recognized importance in a

large number of applications, accurate measurements of
surface skin temperatures over continents are not yet avail-
able for the whole globe, for clear and cloudy skies, with a
time sampling adequate to resolve the diurnal cycle and to
analyze synoptic, seasonal, and interannual variability.
[7] In situ surface skin temperature could be calculated

from observations with an infrared radiometer, if the land
surface emissivity was known: this measurement is not
performed at weather stations and is not part of the conven-
tionally measured data. Skin temperatures have been esti-
mated from satellite infrared radiance observations.
Instruments like AVHRR on board polar orbiters provide
good spatial resolution with a limited time sampling (of the

order of two overpasses per day per location) whereas
radiometers on board geostationary weather satellites offer
adequate sampling of the diurnal cycle but with a poorer
spatial resolution. The main limitation of satellite infrared
measurements of surface skin temperature is their inability
to penetrate clouds, limiting them to clear conditions.
Clouds not only cover more than half of the globe at a
given time, they also alter the radiative energy exchanges,
reducing surface insulation and increasing the downward
longwave radiation. The magnitude and the sign of their net
radiative effect depend upon the cloud characteristics and
are quite variable [Stephens and Webster, 1981; Stephens
and Greenwald, 1991; Chen et al., 2001].
[8] The most extensive data set of land skin temperature

available is produced at 3 hour intervals since 1983 over the
globe, every 30 km, from polar and geostationary satellite
infrared measurements by the International Satellite Cloud
Climatology Project (ISCCP) [Rossow and Schiffer, 1999].
Analysis of the infrared measurements includes identifica-
tion of clear scenes and correction for atmospheric effects
(surface emissivity is assumed to be unity in this product).
Based on infrared measurements, these results are biased to
clear-sky conditions [Rossow and Garder, 1993]; but a
statistical interpolation provides an estimate of the skin
temperature for cloudy scenes.
[9] Other estimates exclusively based on polar orbiter

infrared measurements have to supplement the limited time
sampling with an analysis of the surface skin diurnal cycle
inferred from model simulations and experiment campaigns
[Jin and Dickinson, 1999] for clear pixels. To estimate
surface skin temperatures from infrared measurements in
cloudy conditions, Jin [2000] and Jin and Dickinson [2000]
propose a technique that uses both neighboring (in time
or space) clear pixels and the surface energy balance,
combined with an adjustment derived from surface air
temperature estimates for pixels under extended or quasi-
permanent cloud cover. This method relies on parameterized
relationships that are tuned to specific campaigns or to
climatology, limiting the global application of the method.
[10] Only a limited number of studies have explored the

potential of satellite microwave measurements for land
surface temperature retrieval. Yet, microwave wavelengths
being much less affected by clouds than the infrared are an
attractive alternative in cloudy regions. Njoku [1995] con-
cluded from simulations that land surface skin temperature
could be retrieved from multichannel microwave observa-
tions with an accuracy of 2 to 2.5 K. MacFarland et al.
[1990] investigated the correlation between observations
with the Special Sensor Microwave /Imager (SSM/I) and
‘‘surface air’’ temperature measurements and suggested the
use of multivariate regression of the microwave brightness
temperatures to retrieve the ‘‘surface air’’ temperature.
Basist et al. [1998] calculated ‘‘surface air’’ temperature
from a linear regression with the SSM/I brightness temper-
atures, the regression coefficients being adjusted for varia-
tions in emissivity, using a simple land classification
scheme. The algorithm has been further evaluated [Williams
et al., 2000] to produce a monthly-mean merged satellite-in
situ near-surface temperature data set with a 1� � 1�
resolution. It is worth noting that these studies involving
SSM/I correlate the microwave brightness temperature
measurements to near-surface air temperatures, not to sur-
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face skin temperatures, with the underlying assumption that
the surface air and skin temperatures vary together which is
approximately true for longer timescales.
[11] Recently, a neural network inversion scheme, includ-

ing first guess information, has been developed to retrieve
simultaneously the surface skin temperature (Ts), the atmo-
spheric water vapor (WV), the cloud liquid water (LWP),
and the surface emissivities (ef ) over land from SSM/I and
infrared radiance observations [Aires et al., 2001] using pre-
calculated monthly-mean emissivities [Prigent et al., 1997,
1998], ISCCP cloud and surface parameters [Rossow and
Schiffer, 1999], and the meteorological analysis from NCEP
(National Center for Environmental Prediction) [Kalnay et
al., 1996] as first guess information. The inversion method
provides surface skin temperatures for each SSM/I obser-
vation over land with a theoretical rms error of 1.3 K in
clear-sky and 1.6 K in cloudy scenes as well as revised
surface emissivities in all channels. This study aims to
evaluate the accuracy of the retrieved surface skin temper-
atures. First, the neural network method is described, with
special emphasis on the post-facto detection of erroneous
retrievals (section 2). Given the lack of in situ estimates of
the surface skin temperature, the validity of the retrievals is
evaluated through a comprehensive analysis of the differ-
ences expected between Ts and Tair as a function of diurnal
(and seasonal) solar insulation, vegetation cover (moisture)
and cloudiness variations (section 3). Section 4 concludes
by discussing the value of producing a merged Ts and Tair
data set to analyze the energy exchanges at the land-
atmosphere interface.

2. A Neural Network Inversion Method

[12] A neural network inversion scheme, including first
guess information, has been developed to retrieve Ts, WV,
LWP, and ef, over snow- and ice-free land from observations
between 19 and 85 GHz measured by SSM/I [Aires et al.,
2001]. This neural method optimizes (we will see in which
sense in section 2.1) the use of all the SSM/I channels and a
priori information to constrain the inversion problem and
retrieves simultaneously surface and atmospheric parame-
ters that are consistent among themselves and with the
satellite observations. The neural network is designed to
analyze all the local statistical relationships in the learning
database and benefits from them, even when the relation-
ships are highly nonlinear. These relationships represent
nonlinear correlations among the physical variables, among
the observations (brightness temperatures), among the first
guess quantities, and between the variables and the obser-
vations. All of these correlations constitute additional infor-
mation which the neural network can exploit to improve its
retrieval if such correlations are properly represented in the
learning data set. In contrast, the variational assimilation
scheme, in its usual implementation, does not take into
account statistical information about nonlinear correlations
among the variables. See Aires et al. [2001] for a compar-
ison of the neural network and variational approaches.

2.1. Learning Algorithm With First Guess

[13] The neural network scheme is briefly presented here:
Figure 1 summarizes the procedure, from the implementa-
tion of the learning data set to the operational use and the

post-facto verification of the approach. The MultiLayer
Perceptron (MLP) network is a nonlinear mapping model
composed of distinct layers of neurons: The first layer S0
represents the input X = (xi ; i 2 S0) of the mapping. The last
layer SL represents the output mapping Y = (yk; k 2 SL). The
intermediate layers Sm (0 < m < L) are called the ‘‘hidden
layers’’. These layers are connected via neural links. We
denote the parameters of these links as W.
[14] Usual neural network remote sensing inversion

schemes use only satellite observations for the retrieval of
the geophysical variables [e.g., Krasnopolsky et al., 2000],
but when an inverse problem is ill-posed, the solution can
be non-unique and/or unstable. The use of a priori first
guess information is important to reduce ambiguities
because the chosen solution is then constrained to be
physically more coherent. Statistically, this regularization
avoids local minima during the learning process and speeds
it up. Introduction of a priori first guess information as part
of the input to the neural network was first proposed by
Aires et al. [2001]. The neural transfer function is repre-
sented by:

ŷ ¼ gW yb; xo
� �

ð1Þ

where ŷ is the retrieval (i.e., retrieved physical parameters),
gW is the neural network g with parameters W, yb is the first
guess for the physical parameters y, xo = RTM(y) + h are the
observations simulated by a Radiative Transfer Model
(RTM) applied to y, and h is the observation noise.
[15] The learning algorithm is an optimization technique

that consists in estimating the parameters W of the neural
network that minimize a cost function C(W), often chosen to
be the mean least squares error criterion. The term ‘‘mean’’
depends on the probability distribution functions of the
physical observation and retrieved quantities. In this study,
the least squares criterion has the following form

C Wð Þ ¼ 1

2

Z Z Z
DE gW yb; xo

� �
; y

� �2�P y; xo; yb
� �

ð2Þ

C Wð Þ ¼ 1

2

Z Z Z
DE gW yþ e; xþ hð Þ; yð Þ2P yð ÞPh hð ÞPe eð Þ;

ð3Þ

where DE is the Euclidean distance between yk, the kth
desired output component, and ŷk, the kth neural network
output component, SL is the output layer of the neural
network, P(y) is the probability distribution function of the
physical variables y that depends on their natural variability,
Ph(h) is the probability distribution function of the
observation noise h, and Pe(e) is the probability distribution
function of the first guess errors, e = yb � y.
[16] As explained by Aires et al. [2001], the quality

criterion in equation (2) is very similar to the quality
criterion used in variational assimilation. One of the main
differences is that the neural network criterion in equation
(2) involves the distribution P(y). This illustrates the fact
that the neural network simulates the inverse of the radiative
transfer equation globally, once and for all, and uses the
distribution P(y) for this purpose. The neural network model
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is then valid for all observations (i.e., a global inversion).
The variational assimilation model uses an inversion pro-
cedure for each observation (i.e., a local inversion).
[17] In practice, to minimize equation (2), we create a

learning database B ={(ye, xoe, yb
e

); e = 1,. . ., E} that
samples as well as possible all the probability distribution
functions in equation (2). Then, the practical criterion used
during the learning stage is given by:

~C Wð Þ ¼ 1

2E

XE
e¼1

DE gW yb
e

; xoe
� �

; yeÞ
� �2

: ð4Þ

[18] First, to sample the probability distribution function,
P(y), we use actual observations of (ye) in data sets that
cover all natural combinations and their correlations and
calculate xe = RTM(ye) with the physical radiative transfer

model (i.e., physical inversion). Alternatively we could
obtain these relationships from a ‘‘sufficiently large’’ set
of collocated and coincident values of x and y (i.e.,
empirical inversion). For sampling Ph, we need a priori
information about the measurement noise characteristics; a
physical noise model could be used, but if all we have is an
estimation of the noise magnitude, we assume Gaussian
distributed noise h that is not correlated among the measure-
ments. To sample the first guess variability with respect to
state y (i.e., sampling P(ybjy)), we use a first guess data set
{yb

e

; e = 1,. . ., E}: this data set can be a climatological data
set or a 6-hour prediction (which would have better statistics
of errors, but would add model dependencies). The balance
between reliance on the first guess and the direct measure-
ments is then made automatically and optimally by the
neural network during the learning stage. The classical error
back-propagation algorithm, a gradient-descent algorithm

Figure 1. Schematic representation of the neural network inversion method.
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developed for the MLP [Rumelhart et al., 1986], is used to
minimize ~ðCÞ(W). It uses the gradient descent formula
iteratively for a unique random sample in the learning data
set. With some technical constraints not discussed here, the
stochastic character of this optimization algorithm theoret-
ically allows the optimization technique to reach the global
minimum of the criterion instead of a local minimum
reached with traditional gradient descent [Duflo, 1996]. At
the optimum, the weight given by the learning process to the
two sources of information in the input of the neural
network (i.e., first-guess and observations) is determined
in order to reach the best compromise.

2.2. Learning Database

[19] To better constrain (pose) the problem, we use the
clear/cloudy flag information provided by the ISCCP data
set to train two neural networks: One for clear scenes (NN1)
and one for cloudy scenes (NN2). This specialization of the
NNs facilitates the training of the neural network models.
The architecture of the network NN1 is an MLP with 16
inputs coding the seven SSM/I observations, y0, and the first
guess, xb (Ts, WV, and 7 ef), 30 neurons in the hidden layer,
and 9 neurons in the output layer coding the retrieval, x (Ts,
WV, and 7 ef). The network NN2 has one additional input,
the cloud top temperature Tc, and one additional output, the
cloud liquid water path (LWP). The number of neurons in
the hidden layer is estimated by a heuristic procedure that
monitors the generalization errors of the neural network as
the configuration is varied. The procedure makes it possible
to characterize the structure that will have the best perform-
ance on an independent data set.
[20] Two sources of information are used: (1) seven

SSM/I brightness temperatures, and (2) a priori information
of the state of the surface and atmospheric variables from
ancillary data sets. A collection of SSM/I observations
collocated and coincident with independent measurements
of the parameters to be retrieved (Ts,WV, LWP, and the ef ) is
not available. However, other estimates of Ts and LWP are
available every 3 hours from ISCCP, NCEP provides WV
analysis every 6 hours, and the land surface microwave
emissivities are available as monthly estimates. As a con-
sequence, brightness temperatures simulated by the radia-
tive transfer model are used in the learning database instead
of observations (see ‘‘Learning Dataset’’ in Figure 1). The
learning database is made of �22,500,000 samples, 55% of
them corresponding to cloudy conditions. This simulated
database is used only for the training of the neural network,
not for the operational retrievals. The radiative transfer
results are obtained using the values of Ts, WV, LWP, and
ef; to the extent that these data sets provide a proper
distribution of the surface and atmospheric parameters,
including their correlations, the neural network represents
a global fit to the inverse of the radiative transfer function
used for the simulation of the learning database. See Aires et
al. [2001] for more details about the RTM and data sets.
[21] The SSM/I instrument on the Defense Meteorolog-

ical Satellite Program polar satellites senses atmospheric
and surface emissions at 19.35, 22.235, 37.0, and 85.5 GHz
with both horizontal and vertical polarizations, except for
22.235 GHz which is vertical polarization only [Hollinger et
al., 1987]. An instrument evaluation has been performed by
Hollinger et al. [1990] and an intersensor calibration has

been completed by Colton and Poe [1999]. The radiometric
noise is supposed to be Gaussian distributed. Errors in
channels are supposed to be uncorrelated: the noise standard
deviation of each channel brightness temperature is esti-
mated to be 0.6 K. A more complex instrument noise model
could be used in the neural network approach, even for non-
Gaussian distributions, but these characteristics are the only
ones available for SSM/I.
[22] The quality of the learning data set is essential to the

quality of our retrieval scheme in operational mode. The
quality of the learning data set depends upon the quality of
the physical radiative transfer model used. It also depends
upon the quality of the sampling of atmospheric situations. If
the sampling representation of the learning data set is not
good enough, this can introduce a bias in the results during
the operational mode. However, we used a generalization
data set, in practice a sub-part of the global data set available,
not used during the learning stage, in order to control that the
neural network is not overtrained (or overparameterized, i.e.,
where the parameters of the model are fitted too much on the
learning data set) and in order to be able to generalize the
neural network behavior on independent data sets.
[23] The temperatures and relative humidities for eight

levels up to 300 mbar (middle and lower troposphere) are
available from the NCEP reanalysis data set [Kalnay et al.,
1996], every 6 hours at a spatial resolution of 2.5� in latitude
and longitude. For each location the atmospheric profile has
been adjusted for consistency with the topography. The
integrated water vapor WV is used as the first guess infor-
mation. The standard deviation of the first guess error is
taken to be 0.4 times the NCEPWV values, similar to theWV
errors used for each humidity level by Eyre et al. [1993].
[24] In the ISCCP data, cloud parameters and related

quantities are retrieved from visible (VIS �0.6 mm wave-
length) and infrared (IR �11 mm wavelength) radiance
provided by the set of polar and geostationary meteorolog-
ical satellites [Rossow and Schiffer, 1999]. The ISCCP data
set is used in this study to discriminate between clear and
cloudy scenes (selecting NN1 or NN2) and to give first
guess estimates of the cloud top and surface skin temper-
atures. The pixel level data set (the DX data set) is selected
for its spatial sampling of about 30 km and its sampling
interval of 3 hours [Rossow et al., 1996]. If the ISCCP DX
scenes are cloudy, a clear-sky compositing procedure is
conducted within the ISCCP process to derive an estimate
of the surface temperature. For each pixel every 5 days,
separately at each diurnal phase, the IR measurements are
compared to estimate the clear radiance that is called the
clear-sky composite. In highly cloudy locations, the clear-
sky estimate can be based on 15-day statistics. See Rossow
and Garder [1993] and Rossow et al. [1996] for more
details. If the ISCCP DX scenes are cloudy, a clear-sky
compositing procedure is conducted within the ISCCP
process to derive an estimation of the surface temperature
(see Rossow and Garder [1993] for more details). The error
associated with the surface temperature under all conditions
is estimated to follow a Gaussian distribution with zero-
mean and 4 K standard deviation [Rossow and Garder,
1993]. We apply a simple correction to the ISCCP Ts values
to account for the surface emissivity at 11 mm wavelength.
The correction is a simple fit to complete radiation calcu-
lation (because the corrections are generally small). The

PRIGENT ET AL.: MICROWAVE AND INFRARED LAND SKIN TEMPERATURE ACL 5 - 5



variation of emissivity depends on surface type, especially
vegetation, based on the database used in the GISS climate
model [Matthews, 1983].
[25] For cloudy scenes, the cloud top temperature derived

from IR measurements is added to the retrieval process as
additional information to account for the changes in the
emission temperature of the cloud and in the cloud liquid
water absorption coefficient at microwave frequencies. The
accuracy of the LWP retrieval varies widely with the cloud
conditions, especially with cloud top temperature [Prigent
and Rossow, 1999]. Thus knowledge of the cloud top
temperature helps retrieve cloud liquid water path and the
ISCCP DX cloud top temperature derived from IR measure-
ments is used as a priori information. If the ISCCP DX
cloud top temperature is >260 K, it is assumed that the
cloud is composed solely of liquid water [Lin and Rossow,
1994] and the cloud water temperature is given by the
ISCCP value. The error of the cloud top temperature for
liquid water clouds is �1.5 K [Wang et al., 1999]. If the
ISCCP cloud top temperature is <260 K, the upper portion
of the cloud is probably composed of ice, but there is a
possibility that this ice cloud obscures a liquid cloud [Lin et
al., 1998]. An analysis has been performed on global
ISCCP DX data to estimate the statistical distribution of
cloud top temperature of the liquid clouds over land for each
15� latitude zone for each month. Assuming that the
distribution of liquid cloud top temperatures is not modified
in the presence of an overlying ice cloud, the first guess
liquid cloud top temperature is then drawn stochastically
from the distribution of liquid cloud top temperature of the
corresponding month and latitude zone to maintain random
error characteristics [see Aires et al., 2001].
[26] First guess a priori information for the microwave

emissivities at each location is derived from the monthly
mean emissivities previously estimated by Prigent et al.
[1997, 1998, 2001]. Microwave emissivities were calculated
by removing the contributions from the atmosphere, clouds,
and rain using ancillary satellite data (ISCCP) and mete-
orological reanalysis (NCEP). Cloud-free SSM/I observa-
tions were first isolated with the help of collocated visible/
infrared satellite observations (ISCCP data) and the cloud-
free atmospheric contribution was calculated from an esti-
mate of the local atmospheric temperature-humidity NECP
profile. With the surface skin temperature derived from IR
observations (ISCCP estimate), the surface emissivities
were estimated for all the SSM/I channels and monthly
mean values calculated with a spatial resolution of 0.25� �
0.25� at the equator [Prigent et al., 1997, 1998]. The
standard deviations of day-to-day variations of the retrieved
emissivities within a month have been calculated for each
channel and for each location and are used as estimates of
first guess standard deviation error for these quantities. The
surface contribution to the observed brightness temperatures
is then calculated using the monthly mean emissivities
assuming specular reflection at the surface.
[27] A direct radiative transfer model (RTM) adapted to

the SSM/I channels is used to create the learning and testing
databases required for the neural network inversion. The
MPM 93 gaseous absorption model of Liebe et al. [1993] is
adopted for all the SSM/I frequencies. Cloud absorption is
calculated using the Rayleigh approximation which is valid
for most non-precipitating liquid water clouds at SSM/I

frequencies. The dielectric properties of liquid water are
taken from Manabe et al. [1987]. Scattering by large
particles is not considered, meaning that convective clouds
and rain are not represented in the database.
[28] At the end of the training phase, the theoretical error

of the neural network inversion is estimated from the
learning database. Histograms of the errors in Ts are
presented on Figure 2 for clear and cloudy cases separately.
The rms error is of 1.3 and 1.6 K respectively for clear and
cloudy cases, which is a significant improvement over the
first guess error of 4 K.

2.3. A Posteriori Criterion to Test the Retrievals

[29] The neural inversion method has been applied to a
year of SSM/I F10 and F11 observations (July 1992–June
1993) (see ‘‘Operational Stage’’ in Figure 1). Color maps of
the retrieved products have been presented by Aires et al.
[2001]. In the operational mode, the neural network scheme
is computationally very efficient. Inversion of new obser-
vations only involves simple and rapid calculations of two
matrix products and one pass through the logistic function
of the neural network.
[30] The neural network technique also enables an ana-

lytical and fast calculation of the neural Jacobians also
called the neural sensitivities. Aires et al. [2001] gave the
global mean sensitivities for each retrieved parameter: they
indicate the relative contribution of each input in the
retrieval for a given output parameter. They showed that
depending on the situation, the neural network adapts itself
by using optimally all of the input parameters. Depending
on the surface emissivity, Ts sensitivity changes from a
larger sensitivity to Tb at 19 GHz for higher emissivities to a
larger sensitivity to the Tb at 85 GHz and to the Ts first
guess information for lower emissivities. The key is that the
first guess guides the neural network to exploit the different
spectral dependence signal and the emissivities for different
surface types so that the temperature changes can be
separated from emissivity changes.

Figure 2. Histograms of the theoretical errors for Ts in
Kelvin, separately for clear (solid line) and cloudy (dashed
line) cases. The mean, the standard deviation, and the
number of samples are also indicated.
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[31] Neural network approaches have often been criticized
for not being able to control the quality of their retrievals.
This is incorrect. In the same way that iterative methods use
a physical forward model to control their retrievals, as is
done in the variational assimilation for example, it is also
possible to use a direct model to check the quality of
the neural network retrievals. In this study, we control the
quality of the inverted parameters by comparing the
observed brightness temperatures to simulated Tbs using
the retrieved products.
[32] Such a comparison has been performed for 2 months

of global SSM/I data over snow- and ice-free continental
pixels. The histograms of the differences are presented for
19 and 85 GHz, for both horizontal and vertical channels
(Figure 3). Results are separated for three cloud conditions
(clear sky, cloudy with ISCCP cloud top temperature below
260 K, and cloudy with cloud top temperature above 260 K)
and for three ranges of the emissivity at 19 GHz horizontal
polarization e19H. For the lower frequency channels, the rms
errors are within the channel radiometric noise (0.60 K).
The rms differences are larger for the horizontally polarized
channels and they increase with frequency. This dependence
is expected because surface emissivities are not only more
variable for horizontal polarization, they are also smaller,
increasing the contributions of atmospheric water vapor and
cloud liquid water which produce most noticeable errors. In
addition, the effect of clouds increases with increasing
frequency. For cold clouds (cloud top temperature below
260 K), there is a noticeably broader right wing in the
histograms at 85 GHz. For daytime observations, we
checked that the pixels for which the differences between
simulated and observed Tbs at 85 GHz are large are
associated with large optical depths as estimated by ISCCP.
Since the contribution of large ice and water precipitation-
sized particles have not been considered in the inversion
process in the RT model, the scattering by such particles,
which decreases the brightness temperatures, is not
accounted for, producing a population of pixels with simu-
lated Tbs that are too large compared to the observed values
for cold clouds and high frequencies. The explanation is
confirmed by plotting the data again in Figure 3 but
removing all clouds with ISCCP optical thickness larger
than 30, which are associated with precipitation [Lin and
Rossow, 1994]. In this case (not shown), the differences
greater than 3 K are nearly all eliminated.
[33] Comparison of the observed and simulated brightness

temperatures after inversion is not only a practical tool to
flag erroneous retrievals and to analyze the behavior of the
inverse model, but careful examination of the differences for
each channel can diagnose the presence of rain and large ice
particles. This will be the subject of a forthcoming study.
[34] In the following section, the differences between the

observed and simulated brightness temperatures will be
checked to remove the cases affected by precipitation, by
applying a threshold of two standard deviations to each
channel brightness temperature differences.

3. Comparison Between Retrieved Surface Skin
Temperatures and In Situ Air Temperatures

[35] Land surface temperature has been used to represent
different variables depending on the application, leading to

Figure 3. Histograms of the difference between the
simulated Tbs after inversion and the observed Tbs (a) at
85 GHz and (b) at 19 GHz. Solid lines are used for vertical
polarization, and dashed lines are used for horizontal. The
rms errors are indicated for vertical (without parenthesis)
and horizontal (with parenthesis) polarizations. Results are
presented for three cloud conditions (clear sky, cloudy with
ISCCP cloud top temperature below 260 K, cloudy with
cloud top temperature above 260 K) and for three ranges of
the emissivity at 19 GHz horizontal polarization e19H.
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confusion and misunderstandings. Norman and Becker
[1995] attempted to clarify the terminology. In this study,
Ts represents the surface skin temperature, also called the
radiometric temperature. It is derived from IR remote
sensing and as a consequence it is related to the measured
radiance through the inverse of the Planck’s law if the
emissivity is known. Tair represents the thermodynamic
temperature measured with a thermometer in the air
between 1.5 and 3.5 m above the surface. Surface skin
temperatures Ts are not part of the conventionally measured
variables and as a consequence, validation of our results is a
challenging task. Surface air temperatures Tair are routinely
measured by surface weather stations and are distributed by
the World Meteorological Organization (WMO) network.
Measurements are performed with a sheltered thermometer
located between 1.5 and 3.5 m above a flat, grassy, and
well-ventilated surface. They are performed 4 times a day at
0:00, 6:00, 12:00, and 18:00 GMT. The precision of the
reported values is 0.1�. Weather stations are concentrated in
populated areas and are sparse or completely missing over
large regions over the globe. In situ measurements and
satellite estimates are considered coincident when they are
within 20 km in space and within 2 hours in time. Figure 4
illustrates the locations of the coincidences between satellite
observations and weather stations in this study.
[36] Ts and Tair are well correlated. A linear correlation

coefficient of 0.88 is calculated for Ts and Tair coincidences
over the globe for the whole year. The main Ts and Tair
difference lies in their diurnal cycles. Jin et al. [1997]
showed that skin and air temperatures differ the most at
smaller spatial and temporal scales (regional and diurnal)
and are very similar on monthly and hemispheric scales,
except for a persistent seasonally and geographically vary-
ing bias. Solar radiation is the driving factor influencing the
difference. The surface responds more rapidly to a changing
solar forcing. The surface will warm up more quickly in the
morning with the rising sun, inducing a positive Ts � Tair
difference during daytime, whereas it will also cool more
rapidly at night, generating a negative Ts � Tair difference.
[37] The fraction of absorbed solar radiation at the surface

is determined by the surface albedo that depends upon the

vegetation type and fractional cover, the albedo usually
decreasing with increasing vegetation density. However, the
dominant vegetation impact is associated with its effect on
evaporative cooling, denser vegetation usually associated
with more underlying soil moisture and with less restricted
transpiration, that determines the partitioning of the incom-
ing solar energy between temperature (longwave cooling
and fluxes into the soil) and latent (and sensible) heat fluxes
into the atmosphere [Hall et al., 1995]. With decreasing soil
and vegetation moisture, the evaporation rate decreases and
the sensible heat flux increases, requiring larger Ts � Tair
differences during daytime.
[38] Clouds both reduce the incident solar flux and limit

the outgoing infrared radiation, depending on the cloud
macro-physical (altitude or temperature, optical thickness,
and variability) and micro-physical properties (particle
composition, shape, and size). Stephens and Greenwald
[1991] discuss the sensitivity of Ts and the atmospheric
vertical structure to cloud amount and form. Chen et al.
[2001] showed that the effect of clouds on the surface
radiation budget strongly depends on the cloud types.
[39] Air motion is another important force controlling the

Ts � Tair difference. Advection of an air mass with a
different temperature than the local energy balance would
establish can induce differences of Ts � Tair that can be
positive or negative depending on whether the advected air
is colder or warmer than the surface. This effect will be
especially important near midlatitude coasts.
[40] In the absence of in situ measurements to validate the

retrieved Ts, the following analysis will attempt to examine
the variations of the difference Ts � Tair with the factors that
are expected to affect it. All these factors being intercon-
nected, it is difficult to isolate the influence of a single
parameter. However, we will check that the expected
behavior is observed, and, if that is the case, the errors on
the retrieved Ts cannot be large.
[41] The sun-synchronous orbits of the DMSP satellites

limit the comparisons of Ts and Tair on a diurnal basis. For
the F10 and F11 satellites that provided data in 1992–1993,
the ascending equatorial crossing times are at around 21:00
and 18:15 local time respectively (the F10 satellite did not

Figure 4. Map of the locations of coincident Ts and Tair observations.
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achieve the desired orbit and as a result the equator crossing
time increases by approximately 45 minutes per year). Thus
the satellites cross the equator in the early morning and late
afternoon, far from noon when the difference in solar flux is
maximum. Moreover a given area is always observed at
about the same times, in the morning and in the evening,
making it impossible to analyze the complete diurnal cycle
at a given location. Attempts to study the diurnal variation
of Ts � Tair will inevitably involve different areas with
different characteristics (solar incidence, water vapor con-
tent, and surface properties among others), introducing
scatter in the results. The weather stations are unevenly
distributed (Figure 4), so that the conjunction of their fixed
sampling with the fixed overpassing times of the satellites
worsens the sampling, concentrating the coincident mea-
surements around 50 in latitude.
[42] Figure 5 shows the histograms of Ts � Tair for

summer (June, July, and August) over land in the Northern
Hemisphere, separately for day and night and for clear and
cloudy cases. For each histogram, the mean value, the
standard deviation, and the number of pixels are specified.
Although the satellite overpasses occur in the morning or in
the late evening, the differences clearly exhibit the expected
average behavior between nighttime and daytime. For clear
conditions, Ts � Tair is positive during daytime and
negative during nighttime, consistent with the diurnal
radiative forcing. Ts generally increases more rapidly that
Tair under the influence of the solar flux during daytime but
cools also more rapidly at night. During daytime, the mean
difference is smaller for cloudy scenes as expected. During
nighttime, the difference is slightly larger for cloudy scenes
than for clear areas, which is contrary to expectations;
however, the large standard deviations suggest that the

results encompass a large variety of cases which are now
further examined.
[43] The effect of the solar diurnal cycle is analyzed by

separating the coincident Ts and Tair observations by local
time. Vegetation and soil moisture are independent of the
current meteorological and solar flux forcing, but they
control the latent heat flux [Hall et al., 1992]. Since soil
moisture is not a variable that is routinely measured, the
vegetation density is used as an indicator of the soil- and
vegetation-available moisture. The data are sorted by veg-
etation density with the help of the Matthews [1983]
vegetation and land use data set, compiled from a large
number of published sources. Figure 6 presents the mean

Figure 5. Histograms of the difference between Ts
estimated from SSM/I observations and Tair in situ
measurements. Results are presented for clear and cloudy
scenes, separately for night and days, for summer months
(June, July, August) in the Northern Hemisphere. The
means and standard deviations of the differences are also
indicated, along with the number of coincidences.

Figure 6. Mean Ts � Tair for a given local time, presented
for clear and cloudy scenes, separately for three types of
vegetation, for summer months (June, July, August) in the
Northern Hemisphere.
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Ts � Tair values for each hour (local time), for three classes
of vegetation density, separately for clear and cloudy case
for summer (June, July, and August) in the Northern Hemi-
sphere. Most coincidences between satellite observations
and in situ measurements occur in the early morning or in
the evening, when the impact of the solar flux is smaller.
During daytime for clear scenes, Ts � Tair increases with
decreasing vegetation density (moisture). In addition, there
is a general increase of the difference from early morning to
noon and then a decrease in the afternoon. The Ts � Tair
increase during daytime is especially large over desert, but
there is no significant differences between the low and high
density vegetation cases. Betts and Ball [1995] also
observed similar soil moisture dependence from FIFE in
situ measurements, with the Ts � Tair daytime difference

increasing with decreasing soil and vegetation moisture.
They also noticed a ‘saturation’ effect for larger soil
moisture, where the Ts � Tair difference does not vary
anymore with increasing moisture. For vegetated areas,
the dependence with local time is less smooth than over
desert because of the large variety of surfaces and latitudes
included for a given local time. During daytime, the differ-
ence is larger for clear scenes than for cloudy pixels. As
expected, the opposite is true when the sun declines, with
the cloud cover preventing the cooling of the surface.
[44] The dominant influence of the solar zenith angle on

the Ts � Tair during daytime is further illustrated on Figure 7
where the difference is plotted versus the cosine of the solar
zenith angle for clear scenes. The mean Ts � Tair increases
almost linearly with the solar zenith angle cosine, the
magnitude increasing as vegetation density decreases.
[45] We also examined data from other seasons. The

wintertime results are confused by the presence of snow
(which we consider in a separate paper). If we limit the
wintertime results to snow-free areas the number of samples
is smaller and generally limited to lower latitudes. Never-
theless, we found the expected behavior, especially under
clear conditions, with the daytime Ts � Tair positive but
smaller that in summertime and the nighttime difference
negative, more so than in summertime.
[46] During daytime, clouds limit the amount of solar flux

impinging on the Earth surface; the magnitude of their effect
depends upon optical thickness and cloud amount [Stephens
and Greenwald, 1991; Hartmann et al., 1996; Chen et al.,
2001]. In addition, clouds limit the outgoing long-wave
flux; the magnitude of their effect dependent mostly on
cloud base height (temperature) and cloud amount [Ste-
phens and Greenwald, 1991; Hartmann et al., 1996; Chen
et al., 2001]. The warming effect of the clouds through their
trapping of long-wave radiation is easier to see at night,
when the solar flux effect is absent. For cloudy scenes
during daytime, Figure 8 (left) presents for each hour (local
time) and each 2 K difference in Ts � Tair the mean value of
the ISCCP optical thickness. For each local time, the mean
Ts � Tair difference is also added (black asterisks). For a
given local time, as expected, Ts � Tair generally decreases
with increasing optical thickness. During daytime there is
no obvious behavior differences between warm and cold
clouds (not shown). For cloudy scenes during nighttime, the
mean value of the cloud top temperature is presented, for
each hour (local time) and each 2 K difference in Ts � Tair
(Figure 8, right). The cloud top temperature is derived from
the ISCCP data set. The effective radiative temperature of
the cloud is not equal to its cloud top temperature, but this is
the only quantity that is observable from satellite and a good
correlation is expected between these two temperatures
[Wang et al., 1999]. For a given local time, Ts � Tair
increases with increasing cloud top temperature, i.e.,
warmer clouds tend to prevent long-wave radiation escape
at night more than cold clouds.
[47] We have demonstrated that solar illumination, mois-

ture, and cloud cover have the expected effects on the Ts �
Tair differences. However, large standard deviations have
been observed around the mean values and we will now
show the impact of the weather on the differences.
[48] The radiatively driven differences in Ts and Tair

exhibit a marked diurnal cycle. In order to remove most

Figure 7. For each 0.1 step in solar zenith angle cosine,
mean Ts � Tair . Results are presented for summer months
(June, July, and August) in the Northern Hemisphere.
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of this variability and to isolate the variations that are
associated with weather, monthly mean diurnal cycles are
calculated from each data set separately (the Ts and the Tair
data sets) and are subtracted from each single estimate,
resulting in temperature deviations from the monthly mean
diurnal cycles for both Ts and Tair . Figure 9 shows the
histograms of the collocated differences between their two
temperature deviations, cumulated for July and December.
The difference shows no bias and a standard deviation of
�2.9 K. We checked that the standard deviation increases
from tropical areas to midlatitude regions: from 2.42 K for
the 0 N–30 N latitude zone to 2.95 K for the 40 N–60 N
area. In midlatitude regions, advection of air masses with a
different temperature than the local energy balance would
establish can induce large differences of both signs between
Ts and Tair, locally and momentarily. We also checked that
this scatter related to the synoptic variability is larger in
winter than in summer and exhibits different behaviors near
east coast and west coasts.
[49] The temperature deviations of the two data sets are

compared, for various locations. Figure 10 shows examples
of time series of Ts and Tair synoptic deviations for 3
locations and for 2 months. Cloudy conditions are flagged.
The three locations represent different environments: the

Figure 8. (left) For cloudy scenes during daytime, mean value of the ISCCP optical thickness for each
hour (local time) and each 2 K difference in Ts � Tair. For each local time, the mean difference is also
added (asterisks). (right) For cloudy scenes during nighttime, the mean value of the cloud top
temperature, for each hour (local time) and each 2 K difference in Ts � Tair.

Figure 9. Histogram of the difference between Ts and Tair
once the diurnal cycle has been removed from the two data
sets separately. Results are presented cumulated for July and
December. The mean, the standard deviation, and the
number of pixels are indicated.
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first example (45.1 N, 43.1 W) is located in the Russian
steppes, between the Black and the Caspian seas, north of
the Caucasus mountains, the second one (51.4 N, 0.2 E) is
in the west suburbs of London, and the last location (54.6 N,
134.9 W) is in a forested area close to the east coast of
Russia on the sea of Okhotsk. The Ts and Tair deviations
from the monthly mean diurnal cycle are both driven by the
relative synoptic variability and the time series show good
agreement, regardless of the environment. Rapid jumps in
the temperatures are generally well captured (see especially
the third location). It is important to notice that the presence
of clouds does not degrade the agreement between the two
variables, confirming the validity of the Ts estimate in
cloudy conditions.
[50] The overall standard deviation of 3 K (Figure 9)

contains contributions from retrieval error and imperfec-
tions in the validation data, whether it be mismatches in the
spatial and temporal matchup, actual errors in the validation
data set or representivity errors. Note that the post-facto
check on the accuracy of the retrieval (Figure 3 with
precipitation cases removed) suggests an error on Tb of
1–2 K, about twice the instrumental noise level at high
frequency. Therefore the actual retrieval error will be less
than 3 K. As the theoretical error for an optimal system is
1.5 K the true retrieval error will lie between 1.5 K and 3 K.
The errors are therefore below those of the ISCCP data set
for cloudy conditions [Rossow and Garder, 1993]. This

implies that microwave land surface temperature estimates
in cloudy conditions can make a contribution to character-
izing land surface process modeling.

4. Conclusion

[51] A neural network inversion scheme including first
guess information has been applied to the retrieval of
surface temperature, atmospheric water vapor, cloud liquid
water, and surface emissivities over land from SSM/I. All
the parameters are simultaneously retrieved, insuring inter-
nal coherence between them. This work focuses on the
validation of the surface skin temperature Ts. In the absence
of routine in situ surface skin temperature measurements,
our Ts values are evaluated by comparison to the surface air
temperatures, Tair , that are conventionally measured by the
meteorological station network. The Ts � Tair difference
shows all of the expected variations with solar flux, soil
characteristics, and cloudiness. During daytime the Ts � Tair
difference is driven by the solar short-wave flux. The
difference is positive and increases with increasing solar
flux. With decreasing soil and vegetation moisture, the
evaporation rate decreases, increasing the sensible heat flux
and thus requiring larger Ts � Tair differences. Nighttime
Ts � Tair differences are governed by the long-wave
radiation balance, with Ts usually close to or lower than
Tair . The presence of clouds dampens all of the differences.

Figure 10. Time series of Ts and Tair deviations from the monthly mean diurnal cycle for three locations
and for 2 months. Cloudy conditions are flagged.
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After suppression of the variability associated to the diurnal
solar flux variations, the Ts and Tair data sets show very
good agreement in their synoptic variability, even for cloudy
cases, with no bias and a global rms difference of ]3 K.
This value is an upper limit on the retrieval errors because it
includes errors in the in situ measurements as well as errors
related to imperfect time and space collocations between the
satellite and in situ measurements.
[52] SSM/I observations have already been used to infer

Tair, although these observations are more sensitive to Ts.
The correlation of Ts and Tair variations is quite high, so that
the variability of Tair can be estimated from microwave
variability, but this requires ‘tuning’ of the results for all
locations, not just for one region, because the biases are
regionally and seasonally dependent. The quantitative accu-
racy of using microwaves as estimates of Tair is given by the
]3 K difference we found for synoptic, in addition to a
smaller or larger range for diurnal, depending on region and
season. However, the microwave observations cannot be
used to monitor climate variations of Tair: Changes in
climate might also involve changes in the average difference
between Ts and Tair because surface and atmospheric mois-
ture as well as clouds might also change.
[53] Microwave land surface skin temperature retrieval is

a very promising complement to infrared estimates, with the
significant advantage that it is effective whatever the
weather conditions, clear or cloudy. However, because of
the larger emissivity variations in the microwave than in the
infrared, a combined analysis is required to isolate the
temperature variations accurately. Ts measurement cam-
paigns have to be conducted in various environments,
including an adequate sampling of the diurnal cycle under
different cloud conditions. This is the only way to validate
the retrieved products.
[54] Over ocean, the sea surface temperature is known to

play a major role in forcing the atmosphere and there are
attempts to create a hourly sea surface skin temperature for
the calculation of the fluxes of sensible and latent heat
[Zeng et al., 1999]. Over land, even stronger and more
complex interactions are expected due to the large Ts diurnal
cycle and the limited availability of soil moisture. Energy
and water exchanges at the land-atmosphere interface are
largely controlled by the skin temperatures and the soil
moisture. Measurements of the skin temperatures, with time
resolution high enough to resolve the diurnal cycle under all
synoptic conditions, and covering a long enough period to
examine how different seasonal and interannual conditions
affect them, are required to study the energy and water
exchange processes at the land-atmosphere interface. In
addition, satellite microwave observations can not only help
provide more complete Ts time series, they have also shown
a promising sensitivity to soil moisture [Lakshmi et al.,
1997; Owe et al., 1999; Vinnikov et al., 1999], another key
parameter at the land-atmosphere interface.
[55] A joint analysis of 10 years of microwave SSM/I

satellite measurements and ISCCP products is now under
way to obtain an all-weather time record of land surface
skin temperatures. Future plans include the merging of the
resulting global satellite observations of land surface skin
temperature with global surface weather observations of
near-surface air temperature, humidity, and winds to pro-
duce a data set that can be used to study the diurnal,

synoptic, and seasonal variations of land-atmosphere energy
and water exchanges.
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