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Neural network (NN) techniques have proved successful for many re-
gression problems, in particular for remote sensing; however, uncertainty
estimates are rarely provided. In this article, a Bayesian technique to eval-
uate uncertainties of the NN parameters (i.e., synaptic weights) is first
presented. In contrast to more traditional approaches based on point es-
timation of the NN weights, we assess uncertainties on such estimates to
monitor the robustness of the NN model. These theoretical developments
are illustrated by applying them to the problem of retrieving surface skin
temperature, microwave surface emissivities, and integrated water vapor
content from a combined analysis of satellite microwave and infrared
observations over land.

The weight uncertainty estimates are then used to compute analytically
the uncertainties in the network outputs (i.e., error bars and correlation
structure of these errors). Such quantities are very important for evaluat-
ing any application of an NN model.

The uncertainties on the NN Jacobians are then considered in the third
part of this article. Used for regression fitting, NN models can be used ef-
fectively to represent highly nonlinear, multivariate functions. In this sit-
uation, most emphasis is put on estimating the output errors, but almost
no attention has been given to errors associated with the internal structure
of the regression model. The complex structure of dependency inside the
NN is the essence of the model, and assessing its quality, coherency, and
physical character makes all the difference between a blackbox model
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with small output errors and a reliable, robust, and physically coherent
model. Such dependency structures are described to the first order by the
NN Jacobians: they indicate the sensitivity of one output with respect
to the inputs of the model for given input data. We use a Monte Carlo
integration procedure to estimate the robustness of the NN Jacobians.
A regularization strategy based on principal component analysis is pro-
posed to suppress the multicollinearities in order to make these Jacobians
robust and physically meaningful.

1 Introduction

Neural network (NN) techniques have proved very successful in developing
computationally efficient algorithms for geophysical applications. We are
interested, in this study, in the application of the NN retrieval methods for
satellite remote sensing (Aires, Rossow, Scott, & Chédin, 2002a): the NN is
used as a nonlinear multivariate regression to represent the inverse radiative
transfer function in the atmosphere. This is an application of the inverse
theory: remote sensing requires the estimation of geophysical variables from
indirect measurements by applying the inverse radiative transfer function to
radiative measurements. NN are well adapted to solve nonlinear problems
and are especially designed to capitalize more completely on the inherent
statistical relationships among the input and output variables.

A rigorous statistical approach requires not only a minimization of output
errors, but also an uncertainty estimate of the model parameters (Saltelli,
Chan, & Scott, 2000). The reliability of the inverse model is as important as
its answer, but until now, probably because of the lack of adequate tools,
the uncertainty of an NN statistical model has rarely been quantified. Our
work is based on the developments of Le Cun, Denker, and Sola (1990)
and MacKay (1992). These studies introduced error bar estimates for neural
networks using a Bayesian approach, but these tools were developed and
tested in simple cases for a unique network output. In this article, we use a
slightly different approach than the more traditional full Bayesian method,
where scalar hyperparameters are estimated using the so-called evidence
approach. A multiple output method is used in order to develop uncertainty
tools for real-world applications. Our Bayesian methodology provides first
uncertainty estimates for the parameters of the neural network (i.e., the
network weights). A similar approach is, but in a simpler presentation (a
monovariate case), used, for example, in Bishop (1996), Neal (1996), and
Nabney (2002). The robustness of the NN parameters is assessed using the
Hessian matrix (second derivative) of the log likelihood with respect to the
NN weights.

Uncertainty estimates for the parameters of the neural network can then
be used for the determination of a variety of other probabilistic quantities
related to the overall stochastic character of the NN model. Such possible
applications can use theoretical derivations when they are available. In this
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article, one such analytical application provides uncertainty estimates of the
network output (error bars plus their correlation structure). Reliability of the
NN predictions is very important for any application. Confidence intervals
(CI) have been developed for classical linear regression theory with well-
established results (e.g., Koroliouk, Portenko, Skorokhod, & Tourbine, 1983).
For nonlinear models, such results are more recent (Bates & Watts, 1988),
and in NN they are rarely available. Generally, only the root mean square
(RMS) of the generalization error is provided, but this single quantity is not
situation dependent. Other approaches use bootstrap techniques to estimate
such CI, but they are limited by the large number of computations that such
techniques require. Recently, Rivals and Personnaz (2000, 2003) introduced
a new method for estimating CI by using a linear Taylor expansion of the
NN outputs (which makes traditional estimation of CI for nonlinear models
a tractable problem). In this article, we separate the errors that are due to
the NN weight uncertainty and the errors from all remaining sources. Such
additional sources of uncertainty can be, for example, noise in the inputs
of the NN (Wright, Ramage, Cornford, & Nabney, 2000). We will comment
on an approach to analyze in even more detail the various contributions to
output errors. These errors are described in terms of covariance matrices that
can be interpreted using eigenvectors called error patterns (Rodgers, 1990).

When a theoretical derivation is too complex to be obtained, another
possible application of weight uncertainty is the empirical estimation of
probabilistic quantities. Modern Bayesian statistics are used here together
with Monte Carlo (MC) simulations (Gelman, Carlin, Stern, & Rubin, 1995)
to estimate uncertainties on the NN Jacobian. These Jacobians, or sensitivi-
ties, of a NN model are defined as the partial first derivatives of the model
outputs with respect to its inputs. These quantities are very useful. How-
ever, the NN model is trained to obtain good fit statistics for its outputs,
but most of the time, no constraint is applied to structure the internal reg-
ularities of the model. Statistical inference is an ill-posed inverse problem
(Tarantola, 1987; Vapnik, 1997; Aires, Schmitt, Scott, & Chédin, 1999): many
solutions can be found for the NN parameters (i.e., the synaptic weights)
for similar output statistics. One of the reasons for this nonunique solution
comes from the fact that multicollinearities can exist among the variables.
Such correlations on input or output variables are a major problem even
for linear regressions: the parameters of the regression are very unstable
and can vary drastically from one experiment to another. The Jacobians are
the equivalent of the linear regression parameters, so similar behavior is
expected: when multicollinearities are present, the Jacobians will probably
be highly variable and unreliable, even if the output statistics of the NN are
very good. The aim of this article is to investigate this problem, analyze it,
and suggest a solution.

Many regularization techniques exist to reduce the number of degrees
of freedom in the model for the multicollinearity problem or for any other
ill-posed problem. For example, one approach is to reduce the number of
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inputs to the NN (Rivals & Personnaz, 2003); this is a model selection tool.
However, the introduction of redundant information in the input of the
NN can be useful for reducing the observational noise (e.g., Aires et al.,
2002a; Aires, Rossow, Scott, & Chédin, 2002b) as long as the NN learning
is regularized in some way. Furthermore, the input variables used in this
work are highly correlated (among brightness temperatures, among first
guesses, or between observations and first guesses), so it would be difficult
to extract few of the original variables and avoid the multicollinearities by
input selection. We propose to solve this nonrobustness by using a principal
component analysis (PCA) regression approach.

Our technological developments are illustrated by application to an NN
inversion algorithm for remote sensing over land. Such NN methods have
already been used to retrieve columnar water vapor, liquid water, or wind
speed over ocean using special sensor microwave/imager observations
(Stogryn, Butler, & Bartolac, 1994; Krasnopolsky, Breaker, & Gemmill, 1995;
Krasnopolsky, Gemmill, & Breaker, 2000). Our algorithm includes for the
first time the use of a first guess to retrieve the surface skin temperature Ts,
the integrated water vapor content WV, the cloud liquid water path LWP,
and the microwave land surface emissivities Em between 19 and 85 GHz
from SSM/I and infrared observations.

Neural network techniques have proved very successful in developing
computationally efficient algorithms for remote sensing (e.g., Aires et al.,
2002b), but uncertainty estimates on the retrievals have been a limiting factor
for the use of such methods. Our technical developments on this remote
sensing application provide a new framework for the characterization and
the analysis of various sources of neural network errors. Estimation of the
Jacobian uncertainties is then used as a diagnostic tool to identify nonrobust
regressions, resulting from unstable learning processes.

The Bayesian approach for the estimation of NN weight uncertainty is
presented in section 2. The NN technique is described, the theoretical for-
mulation of a posteriori distributions for the NN weights is developed, and
a remote sensing application is presented as an example to illustrate some
first results of the application of our weight uncertainty analysis. The theo-
retical computation of the predictive distribution of network outputs is de-
veloped in section 3. Theoretical developments are used to characterize the
NN output uncertainty sources. Section 4 presents the uncertainty estimate
of NN Jacobians. The PCA of the NN input and output data is described to-
gether with its regularization properties. Network Jacobians are presented
with their corresponding uncertainties. Conclusions and perspectives are
discussed in section 5.

2 Network Weights Uncertainty

2.1 The Quality Criterion. In this study, we use a classical multilayer
perceptron (MLP) trained by backpropagation algorithm (Rumelhart, Hin-
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ton, & Williams, 1986). For the definition of the quality criterion to max-
imize, we present a general matrix formulation of the problem and link
our derivation to the “classical” literature on Bayesian error estimation of-
ten introduced with a scalar formulation (MacKay, 1992; Bishop, 1996). The
first and main term in the quality criterion used to train a neural network
is the “data” term, expressed using the difference between the target data
and the NN estimates as measured by a particular distance. Many distance
measures can be used, but it is often supposed that the differences follow a
gaussian probability distribution function (PDF), which means that the right
distance is the Mahalanobis distance (Crone & Crosby, 1995). The ideal co-
variance matrix for the gaussian PDF, denoted Cin = Ain

−1, describes what
we call the intrinsic noise (or natural variability) of the physical variables
y to retrieve. Note that Cin takes into account only the intrinsic variability
and not the error associated with the retrieval scheme itself: this makes this
measure coherent physically. The information encoded in Cin is difficult to
obtain a priori; we will see how to estimate this quantity, but we suppose
here that it is known. The data quality term becomes

ED(w) = 1
2

N∑
n=1

[εy
(n)]

T · Ain · εy
(n), (2.1)

where εy
(n) = (t(n) − y(n)) is the output error and the index (n) indicates

the sample number in database B. This criterion leads to a weighted least
squares when the matrix Cin is just diagonal. When no a priori information
is available, Cin = I , and the criterion becomes the classical least squares.

In order to regularize the learning process, a regularization term is some-
times added to the data term in the quality criterion. The weight decay
(Hertz, Krogh, & Palmer, 1991) is probably the most common regulariza-
tion technique for NN:

Er(w) = 1
2
wT · Ar · w, (2.2)

where Cr = Ar
−1 is the covariance matrix of the gaussian a priori distribu-

tion for the network weights.
The overall quality criterion that is minimized during the learning stage

is the sum of the data and the regularization terms,

E(w) = ED(w) + Er(w). (2.3)

The two matrices Ain and Ar are called hyperparameters. They are gen-
erally simplified in the classical literature by using two scalars instead, re-
spectively, β and α, so that the general quality criterion becomes E(w) =
βED + αEr, where ED and Er are simplified quadratic forms. In this for-
mulation, β represents the inverse of the observation noise variance for all
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outputs and α is a weight for the regularization term linked to the a priori
general variance of the weights. This is obviously poorer and less general
than our matrix formulation in equation 2.3, but the hyperparameters Ain
and Ar are difficult to guess a priori.

2.2 Intrinsic Uncertainty of Targets. The conditional probability
P(t|x,w) represents the variability of target t for input x and network
weights w, due to a variety of sources like the errors in the model linking x
to t inB or the observational noise onx. This variability includes all sources
of uncertainty except those from the NN regression model, represented by
uncertainties on the network weights w, that are fixed in the conditional
probability.

If the neural network gw fits the data well (after the learning stage), the
intrinsic variability is evaluated by comparing the target values, t, matched
with each inputx in the data setB to the NN outputsy. Generally, this distri-
bution can be approximated locally to first order by a gaussian distribution
with zero mean and a covariance matrix Cin = Ain

−1:

P(t|x,w) = 1
Z

e− 1
2εy

T · Ain · εy , (2.4)

where Z is a normalization factor. The likelihood of the parametersw, given
the inverse model structure g of the trained NN gw , is expressed by eval-
uating this probability over the database B that includes D = {t(n) ; n =
1, . . . , N}, the set of output samples,

P(D|x,w) =
N∏

n=1

P(t(n)|x(n),w) = 1
ZN e

− 1
2

N∑
n=1

εy
(n)T · Ain · εy

(n)

, (2.5)

that we simplify by

P(D|x,w) = 1
ZN e−ED , (2.6)

using the defintion of ED in equation 2.1. The smaller ED is, the likelier the
output data sampleD is (i.e., the closer ally are to target t). The conditioning
of the previous probabilities as in equation 2.5 is dependent on the input
x, but since the distribution of x is not of interest here, this variable will be
omitted in the following notation for simplicity.

2.3 Theoretical Derivation of Weight PDF. In classical regression tech-
niques, a point estimate of the parameters w is searched for (i.e., only one
estimate of the weight vector w is evaluated). In the Bayesian context, an
uncertainty of w described by a PDF P(w) can also be characterized. This
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distribution of the weights conditional on a database is given by the Bayes
theorem:

P(w|D) = P(D|w)P(w)

P(D)
. (2.7)

P(D) does not depend on the weights, and the prior P(w) is a uniform
distribution in this application (since there is no prior information on w),
meaning that no regularization term Er(w) is used in equation 2.3. So we can
use for P(w|D) the expression for P(D|x,w) from equation 2.6, the other
terms in equation 2.7 being considered as constant normalization factors.

Laplace’s method is now used: it consists in using a local quadratic ap-
proximation of the log-posterior distribution. A second-order Taylor ex-
pansion of ED(w�) is performed, where w� is the set of the final optimized
network weights (parameters of the neural network regression) found at
the end of the learning process:

ED(w) = ED(w�) + bT · 
w + 1
2

wT · H · 
w, (2.8)

where 
w = w − w�, b is the Jacobian vector given by b = �|w (ED(w)),

andH is the Hessian matrix given byH = �|w (�|w (ED(w))). The linear
term bT · 
w disappears because we are at the optimum w�, which means
that the gradient b is zero. For the local quadratic approximation to be valid,
w� must be a real optimum (at least locally in the weight space), otherwise,
the gradient b cannot be neglected anymore and the matrix H might not be
positive definite, which will make its use difficult for subsequent uncertainty
estimates.

The second-order approximation leads to

P(w|D) = 1
ZN e−ED(w�) − 1

2
wT · H · 
w ∝ e− 1
2
wT · H · 
w

. (2.9)

This means that the a posteriori PDF of the neural network weights follows
a gaussian distribution with mean w� and covariance matrix H−1. This
probability represents a plausibility (in the Bayesian sense) for the weight
w, not the probability of obtaining the weight w when using the learning
algorithm.

If a regularization term, such as the one described in equation 2.2, is used,
then this probability becomes:

P(w|D) ∝ e− 1
2
wT · (H + Ar) · 
w

. (2.10)

These two terms are used to weight the contribution to the variability of the
weights due to the network model and the variability of the weights due to
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the gaussian distribution of the a priori information on the weights. What
is interesting about this formula is that to obtain the covariance matrix on
the weights, we invert H +Ar instead of H only, which is more robust (see
section 2.6) since Ar is the inverse of a positive definite matrix.

2.4 Hessian Matrix for a One-Hidden-Layer Network. The Hessian,
H , of the previously defined log likelihood is a matrix of dimension W ×W
(W is the dimension of w) whose components are defined by

Hij(x) = ∂2E(w)

∂wi∂wj

∣∣∣∣
x

, (2.11)

where wi and wj are two weights from the set w.
There are many ways of estimating the Hessian matrix; some are generic

methods, and some are specific to the MLP. For example, one generic ap-
proximation method uses finite differences, but in our case, it is possible to
retrieve a mathematical expression for the Hessian based on the NN model.
This theoretical Hessian is less demanding computationally—its scaling is
O(W2) (where W is the number of weights in the neural network)—than
the previous approximation by finite differences, which scales like O(W3).

2.5 A Remote Sensing Example. An NN inversion scheme has been
developed to retrieve surface temperature (Ts), water vapor column amount
(WV), and microwave surface emissivities at each frequency/polarization
(Em), over snow- and ice-free land from a combined analysis of satellite
microwave (SSM/I) and infrared International Satellite Cloud Climatology
Project (ISCCP) data (Aires, Prigent, Rossow, & Rothstein, 2001; Prigent,
Aires, & Rossow, 2003). This study aims, in part, to provide uncertainty
estimates for these retrievals.

To avoid nonuniqueness and instability in an inverse problem, it is es-
sential to use all a priori information available. The chosen solution is then
constrained so that it is physically more consistent (Rodgers, 1976). We in-
troduce a priori first-guess information into the input of an NN model, so
the neural transfer function becomes

y = gw(yb,x◦), (2.12)

where y is the retrieval (i.e., retrieved physical parameters), gw is the NN
with parameters w, yb is the first guess for the retrieval of physical param-
eters, and x the observations. In this approach, the first guess is considered
to be an independent estimate of the state obtained from sources other than
the indirect measurements (here, the satellite observations). These are some-
times called virtual measurements (Rodgers, 1990).

The extensive learning database used in this study, together with the
characteristics of the a priori first-guess information and related background
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errors, are presented in Aires et al. (2001). Over the 9,830,211 samples for
clear, snow- and ice-free measurements from a whole year of data, we have
used only N =20,000 samples, chosen randomly, to construct the learning
database B. The learning algorithm and the network architecture are able
to infer the inverse radiative transfer equation with these N samples. The
conjugate gradient optimization algorithm used to train the NN is fast and
efficient: the learning errors decrease extremely fast and then stabilize af-
ter a few thousand iterations, each iteration involving the whole learning
database B. This learning stage determines the optimal weights w�.

Once trained, the neural network gw represents statistically the inverse
of the radiative transfer equation. The NN model is then valid for all obser-
vations (i.e., global inversion), where iterative methods, such as variational
assimilation, have to compute an estimator for each observation (i.e., local
inversion). Table 1 gives the RMS scores for the first guesses and the re-
trievals. For each output, the retrieval is a considerable improvement com-
pared to the first guess.

2.6 Neural Network Hessian Regularization. The Hessian H is com-
puted using the data set B. A few comments about the inversion of H are
required. This matrix can be very large when the NN considered is big
(W, the size of H , and the number of parameters in the NN can reach a
few thousand). This means that the inversion can be sensitive to numerical
problems. As a consequence, the estimation of H needs to be done with
enough samples from B; otherwise, the subspace spanned by the samples
describing H might be too small or the eigenvalues of H too close to zero
or even negative, making the inversion numerically impossible.

We noted in section 2.3 that the gradient b in equation 2.8 is supposed to
be zero; otherwise, the local quadratic approximation is not good enough,
implying that the Hessian matrix H is not positive definite. As a conse-
quence, it is very important that the learning of the NN converges close
enough toward the optimal solution w�. Monitoring the convergence al-

Table 1: First Guess and Retrieval RMS Errors.

First Guess Retrieval

Ts (K) 3.52411 1.46250
WV (Kg.m−2) 7.99485 3.83521
Em19V 0.01504 0.00494
Em19H 0.01837 0.00495
Em22V 0.01659 0.00562
Em37V 0.01425 0.00497
Em37H 0.01802 0.00501
Em85V 0.01764 0.00682
Em85H 0.02137 0.00820
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gorithm could be enhanced by checking in parallel the positive definite
character of the corresponding Hessian of the network.

Even when enough samples from B are used to estimate H and when
the learning convergence is reached, numerical problems can still exist. This
situation can be related to an inconsistency between the complexity of the
NN versus the complexity of the desired function to be estimated: too many
degrees of freedom in the NN can produce an ill-conditioned Hessian matrix
H . A possible solution often used in this context is to introduce a diagonal
regularization matrix: H is replaced by H + λI , where λ is a small scalar
and I is the identity matrix. The regularization factor λ is chosen to be
small enough not to change the structure in H but big enough to allow the
inversion: a compromise must be found.

To determine the factor λ representing the right trade-off, we use four
regularization criteria together with a discrepancy measure between the
nonregularized H and the regularized matrix H + λI . The regularization
criteria are the condition number with respect to inversion (the lower the
better); the P-number, which is a positive integer if the matrix is not posi-
tive definite and zero otherwise (the lower the better); and the number of
negative diagonal terms in the matrix (the lower the better). For the dis-
crepancy measure between H and H + λI , we use the RMS differences
between the square roots of the positive diagonal elements of the matrices
(the lower the better). This quantity measures the differences that the regu-
larization has introduced in the standard deviations of the two covariance
matrices.

In Figure 1, the variations of these four quantities for an increasing λ,
from 0 to 50 are shown. A good compromise is found to be λ = 12.0: the
regularization criteria are satisfactory (positive definite matrix, all diagonal
terms positive, minimum condition number), and the discrepancy measure
is still small.

2.7 PDF of Network Weights. To complete the analysis of the uncertain-
ties due to the inversion algorithm, the posterior distribution of the network
weights needs to be determined. As previously stated, this PDF represents a
plausibility of weightsw, not a probability of finding the particular weights.
We saw in section 2.3 that this distribution follows a gaussian PDF with mean
w� and covariance matrix H−1.

In Figure 2, the optimum weights w� are shown together with ± two
standard deviations. As previously noted, weights between the hidden and
the output layers are more variable than weights between the input and the
hidden layers. This is due to the fact that the first processing stage of the
NN, at the hidden layer level, is a high-level processing that includes the
nonlinearity of the network. The second processing stage of the NN, from
the hidden layer to the output layer, is just a linear postprocessing of the
hidden layer.
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Figure 1: Quality criteria for variable λ. (A) The number of negative diagonal
terms in the matrix. (B) RMS differences between the square root of the positive
diagonal elements of the matrices. (C) The condition number with respect to
inversion. (D) The P-number, which is a positive integer if the matrix is not
positive definite and zero otherwise. See the text.

It is possible to know much more than just the output estimates of an
NN. From the distribution of weights, samples {wr ; r = 1, . . . , R} of NN
weights can be chosen. Each of the R sampleswr represents a particular NN.
Together, they represent the uncertainty on the NN weights. These samples
can be used later to integrate under the PDF of weights in a Monte Carlo
approach. For neural networks, the number of parameters (i.e., size of w)
is big, so it is preferable to use an advanced sampling technique. Even if
these samples are included within the large variability of the two standard
deviations envelope, correlation constraints avoid random oscillations from
noise by imposing some structure on them. The weights have considerable
latitude to change, but their correlations constrain them to follow a strong
dependency structure. This is why different weight configurations can result
in the same outputs. Most important for network processing is the structure
of these correlations. For example, if the difference of two inputs is a good
predictor, as long as two weights linked to the two inputs perform the
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Figure 2: Mean network weights w�± 2 standard deviation: (A) The first 100
NN weights corresponding to input/hidden layer connections, and (B) all 821
NN weights with weight 510 to 819 for hidden/output layer connections.

difference, the absolute value of the weights is not essential. Another source
of uncertainty for the weights is the fact that some permutations of neurons
have no impact on the network output. For example, if two neurons in the
hidden layer of the network are permuted, the network answer would not
change. The sigmoid function used in the network is saturated when the
neuron activity entering is too low or too high. This means that a change of
a weight going to this neuron would have a negligible consequence.

These are just a few reasons that explain why the network weights can
vary and still provide a good general fitting model. Variability of the net-
work weights is considered a natural variability, inherent to the neural tech-
nique. Furthermore, what is important for the NN user is not the variabil-
ity of the weights but the uncertainty that this variability produces in the
network outputs or in even more complex quantities such as the network
Jacobians.
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3 Uncertainty in Network Outputs

3.1 Theoretical Derivation of the Network Output Error PDF. The dis-
tribution of uncertainties of the NN output, y, is given by

P(y|x,D) =
∫

P(y|x,w) · P(w|D)dw, (3.1)

where D is the set of outputs y in a data set B = {(x(n), t(n)) ; n = 1, . . . , N}
of N matched input-output couples. Using equations 3.4 and 3.12, we find
that this probability is equal to:

1
Z

∫
e− 1

2 (t − gw(x))T · Ain · (t − gw(x)) · e− 1
2
wT · H · 
wdw, (3.2)

whereAin is the inverse ofCin, the covariance matrix of the “intrinsic noise”
of physical variables y, and H is the Hessian matrix of the quality criterion
used by the learning process. Note that all the terms not dependent on w
have been put together in the normalization factor Z. A first-order expansion
of the NN function gw about the optimum weight w� is now used:

gw(x) = gw� (x) + GT · 
w, (3.3)

where

G = �|{w=w�} (gw) (3.4)

is a W × M matrix. Introducing equation 3.4 into 3.2, and using εy = (y −
gw� (x)), we obtain

P(t|x,D) ∝ e− 1
2εy

T · Ain · εy
∫

e−εy
T · Ain · (GT
w)

e− 1
2
wT · (G · Ain · GT + H) · 
wdw (3.5)

∝ e− 1
2εy

T · Ain · εy
∫

eh
T · 
w − 1

2
wT · O · 
wdw, (3.6)

where h = [−εy
T · Ain · GT]T and O = G · Ain · GT + H .

The integral term in equation 3.6 can be simplified by

(2π)
dimW

2 |O|− 1
2 e

1
2h

T · O · h
. (3.7)

We can rewrite equation 3.6 using this simplification to obtain

P(t|x,D) ∝ e− 1
2εy

T · Ain · εy

e
1
2εy

T · Ain · GT(G · Ain · GT + H)
−1 · G · Ain · εy (3.8)

∝ e− 1
2εy

T · [Ain − Ain · GT(G · Ain · GT +H)−1G · Ain] · εy . (3.9)
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This means that the distribution of t follows a gaussian distribution with
mean gw� (x) and covariance matrix:

C0 = [Ain − Ain · GT(G · Ain · GT + H)
−1
G · Ain]

−1
. (3.10)

This covariance matrix can be simplified by multiplying the numerator and
denominator by

G · (I + H−1 · G · Ain · GT) · G
to obtain

C0 = Cin + GT · H−1 · G. (3.11)

We see that the uncertainty in the network outputs is due to the intrinsic
noise of the target data embodied inCin and the uncertainty described by the
posterior distribution of the weight vectorw embodied inGT ·H−1 ·G. This
relation describes the fact that the uncertainties are approximately related
to the inverse data density. As expected, uncertainties are larger in the less
dense data space, where the learning algorithm gets less information.

3.2 Sources of Uncertainty. In equation 3.11, we have separated the
sources of error in two terms: the intrinsic noise with covariance matrix
Cin and the neural inversion term with covariance matrix GTH−1G. Our
neural inversion term refers to the errors due only to the uncertainty in the
inverse model parameters, and all the remaining outside sources of errors
are grouped in Cin. The inversion uncertainty can itself be decomposed
into three sources, corresponding to the three main components of an NN
model:

1. The imperfections of the learning data setB, which include simulation
errors when B is simulated by a model, collocation and instrument
errors when B is a collection of coincident inputs and outputs, null-
space errors, and others. This is probably the most important source
of uncertainty due to the inversion technique.

2. Limitations of the network architecture because the model might not
be optimum, with too few degrees of freedom or a structure that is not
optimal. This is usually a lower-level source of uncertainty because
the network can partly compensate for these deficiencies.

3. A nonoptimum learning algorithm because as good as the optimiza-
tion technique is, it is impossible in practice to be sure that the global
minimum w� has been found instead of a local one. We think that this
source of uncertainty is limited.

Matrix Cin includes all other sources of errors. Our approach allows for
the estimation of the global Cin, but if some individual terms are known,
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it is possible to subtract them from Cin. For example, if the instrument
noise is known, it is possible to measure the impact of this noise on the NN
outputs. The individual terms can then be subtracted from the global Cin.
For simplification and because we do not use such a priori information,
we adopt the hypothesis that Cin is constant for each situation; only the
inversion term is situation dependent. But any a priori information about
any nonconstant term in Cin could be used in this very flexible approach.

Note that the specification of the sources of uncertainty by the approach of
Rodgers (1990) uses mainly the concept of Jacobians of either the direct or the
inverse model in order to linearize the impact of each error source. Linearity
and gaussian variables are easily manageable analytically, the algebra being
essentially based on the covariance matrices—for example:

• CM = Dx · E · Dx
T, the covariance of the errors due to instrument

noise, where Dx = ∂gw
∂x is the contribution function and E = 〈ηT · η〉

is the covariance matrix of instrument noise η; or

• orF = Ab ·Cb ·Ab
T, the covariance of the forward model errors, where

Cb is the covariance matrix errors of the forward model parameter, b,
and Ab is the sensitivity matrix of observations b with respect to b
(Rodgers, 1990).

Some bridges can be built to link our error analysis and the approach used in
variational assimilation by Rodgers (1990). In section 4, such Jacobians are
analytically derived in the neural network framework. This makes feasible
the use of Rodgers’ estimates. The difference would be that our linearization
uses Jacobians that are situation dependent; this means that the estimation
of the error sources would be nonlinear in nature. This will be the subject
of another study.

In Wright et al. (2000), noise in NN inputs is considered an additional
source of uncertainty. An approach for the empirical characterization of
the various sources of uncertainties is to use simulations. For example, for
the instrument noise-related uncertainty, it is easy to introduce a sample of
noise into the network inputs and analyze the consequent error distribution
of the outputs. The advantage of such simulation approach is that it is very
flexible and allows for the manipulation of nongaussian distributions. This
will be the subject of another study.

3.3 Distribution of Network Outputs. After the learning stage, we es-
timate C0, the covariance matrix of network errors εy = (t − gw(x)), over
the databaseB. equation 3.11 shows that this covariance adds the errors due
to neural network uncertainties and all other sources of uncertainty. Table 2
gives the numerical values of C0 for the particular example from Prigent et
al. (2003). The right/top triangle is for the correlation, and the left/bottom
triangle is for the covariance. The diagonal values give the variance of errors
of quantity. The correlation part indicates clearly that some errors are highly
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correlated. This is why it would be a mistake to monitor only the error bars,
even if they are easier to understand.

The correlations of errors exhibit the expected physical behavior. Errors
in Ts are negatively correlated with the other errors, with large values of
correlation with the vertical polarization emissivities, for the channels that
are much less sensitive to the water vapor (Em19V and Em37V). The verti-
cal polarization emissivities are larger than for the horizontal polarizations
and are often close to one, with the consequence that the radiative transfer
equation in channels that are much less sensitive to the water vapor (the 19
and 37 GHz channels) is quasi-linear in Ts and in EmV. In contrast, errors in
water vapor are weakly correlated with the other errors: the largest correla-
tion is with the emissivity at 85 GHz in the horizontal polarization. The 85
GHz channel is the most sensitive to water vapor, and, since the emissivity
for the horizontal polarization is lower than for the vertical, the horizontal
polarization channel is more sensitive to water vapor. Correlations between
the water vapor and the emissivities errors are positive or negative, de-
pending on the respective contribution of the emitted and reflected energy
at the surface (which is related not only to the surface emissivity but also
to the atmospheric contribution at each frequency). Correlations between
emissivity errors are always of the same signs and are high for the same
polarizations, decreasing when the difference in frequency increases.

The correlations involved in the PDF of the errors described by the co-
variance matrix C0 make it necessary to understand the uncertainty in a
multidimensional space. This is more challenging than just determining the
individual error bars, but it is also much more informative: the diagonal el-
ements of the covariance matrix provide the variance for each output error,
but the off-diagonal terms show the level of dependence among these out-
put errors. To statistically analyze the covariance matrix C0, this matrix can
be decomposed into its orthogonal eigenvectors (not shown). These base
functions constitute a set of error patterns (Rodgers, 1990).

3.4 Covariance of Output Errors Due to the Neural Inversion. The ma-
trix H−1 is the covariance of the PDF of network weights. The use of the
gradient G transforms this matrix into GTH−1G, the covariance error of
the NN outputs associated with the uncertainty of weights. Note that multi-
plication by G partially regularizes H−1, so that for this particular purpose
of the estimation of the output errors, H does not need to be regularized.

Table 3 represents this covariance matrix GTH−1G averaged over the
whole learning database B. Even if some of the bottom-left values repre-
senting the covariance matrix are close to zero (this is an artifact since the
variability ranges of the variables are quite different from each other), struc-
ture is still present in this matrix, as is shown in the correlation part (top
right). The error correlation matrix GTH−1G, related to the NN inversion
method, has relatively small magnitudes with a maximum of 0.55. However,



2432 F. Aires, C. Prigent, and W. Rossow

 Ta
bl

e
3:

C
ov

ar
ia

nc
e

m
at

ri
x

G
T
H

−1
G

of
E

rr
or

D
ue

to
N

et
w

or
k

U
nc

er
ta

in
ty

,A
ve

ra
ge

d
ov

er
th

e
D

at
ab

as
e
B.

T
s

W
V

E
m

19
V

E
m

19
H

E
m

22
V

E
m

37
V

E
m

37
H

E
m

85
V

E
m

85
H

T
s

0.
49

36
15

−0
.1

4
−0

.2
8

−0
.1

4
−0

.2
5

−0
.3

2
−0

.1
6

−0
.1

9
−0

.0
6

W
V

−0
.1

06
48

4
1.

06
30

71
0.

10
−0

.0
2

0.
09

0.
02

−0
.0

7
−0

.1
5

−0
.2

5
E

m
19

V
−0

.0
00

32
5

0.
00

01
67

0.
00

00
02

0.
33

0.
55

0.
55

0.
28

0.
27

0.
08

E
m

19
H

−0
.0

00
25

5
−0

.0
00

06
0

0.
00

00
01

0.
00

00
06

0.
26

0.
22

0.
29

0.
10

0.
13

E
m

22
V

−0
.0

00
26

8
0.

00
01

52
0.

00
00

01
0.

00
00

01
0.

00
00

02
0.

50
0.

26
0.

28
0.

12
E

m
37

V
−0

.0
00

33
0

0.
00

00
33

0.
00

00
01

0.
00

00
00

0.
00

00
01

0.
00

00
02

0.
34

0.
38

0.
14

E
m

37
H

−0
.0

00
27

0
−0

.0
00

18
3

0.
00

00
01

0.
00

00
01

0.
00

00
00

0.
00

00
01

0.
00

00
05

0.
16

0.
26

E
m

85
V

−0
.0

00
23

1
−0

.0
00

28
2

0.
00

00
00

0.
00

00
00

0.
00

00
00

0.
00

00
00

0.
00

00
00

0.
00

00
02

0.
43

E
m

85
H

−0
.0

00
12

8
−0

.0
00

68
1

0.
00

00
00

0.
00

00
00

0.
00

00
00

0.
00

00
00

0.
00

00
01

0.
00

00
01

0.
00

00
06

N
ot

es
:T

he
ri

gh
t/

to
p

tr
ia

ng
le

is
fo

rc
or

re
la

ti
on

,a
nd

th
e

le
ft

/
bo

tt
om

tr
ia

ng
le

is
fo

rc
ov

ar
ia

nc
e;

th
e

d
ia

go
na

lg
iv

es
th

e
va

ri
an

ce
.C

or
re

la
ti

on
s

w
it

h
ab

so
lu

te
va

lu
e

hi
gh

er
th

an
0.

3
ar

e
in

bo
ld

.



Neural Network Uncertainty Assessment 2433

it has a structure similar to the global correlation matrix, with the same signs
of correlation and similar relative values between the variables.

3.5 Covariance of the Intrinsic Noise of Target Values. To estimateCin,
we use equation 3.11,

Cin = 〈C0〉B − 〈GTH−1G〉B, (3.12)

where the two right-hand terms are the covariance matrix of the total out-
put errors averaged over B (see section 3.3) and the covariance matrix of
the output errors due to the network inversion scheme averaged over B
(see section 3.4). Table 4 gives the numerical values of the matrix Cin: The
right/top triangle is for the correlation and the left/bottom triangle is for
the covariance. Intrinsic error correlations can be very large (up to 0.99). The
structure of Cin is also very similar to the structure of the global error cor-
relation matrix, the only noticeable difference being the larger correlation
values. An important remark is that the covariance error is dominated, in
this application, by the intrinsic errors. This behavior is totally dependent
on the particular application that is treated.

3.6 Network Outputs Error Estimate. Once Cin is available, we can es-
timate a C0(x) that is dependent on the observations x, the term GTH−1G
varying with input x. It should be noted that the use of the regularization
for matrix H has virtually no consequences for the results obtained for the
error bars in the following. Using no regularization for the Hessian ma-
trix is possible since H is multiplied by the gradients in GTH−1G. This is
an additional argument that the regularization helps the matrix inversion
without damaging the information in the Hessian.

C0(x) is estimated for each of the 1,239,187 samples for clear-sky pixels in
July 1992. Figure 3 presents the monthly mean standard deviations (square
root of the diagonal terms in C0(x)) for four outputs: the surface skin tem-
perature Ts, the columnar integrated water vapor WV, and the microwave
emissivities at 19 GHz for vertical and horizontal polarizations.

The errors exhibit the expected geographical patterns. Large errors on Ts
are concentrated in regions where the emissivities are lower or highly vari-
able: inundated areas and deserts. In inundated areas, for instance (around
the rivers like the Amazon or the Mississippi), or in coastal regions, the
contribution from the surface is weaker, and sensitivity to Ts is lower be-
cause the emissivities are lower. In sandy regions through desert areas, due
to higher transmission in the very dry sandy medium, microwave radia-
tion does not come from the very first millimeters of the surface, but from
deeper below the surface—the lower the frequency, the deeper (Prigent &
Rossow, 1999). As a consequence, the microwave radiation is not directly
related to the skin surface temperature (see Prigent & Rossow, 1999, for a
detailed explanation) and Ts cannot be retrieved with the same accuracy.
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Figure 3: Standard deviation of error maps for (A) surface skin temperature
Ts, (B) columnar integrated water vapor WV, (C) microwave emissivity at 19
GHz vertical polarization, and (D) microwave emissivity at 19 GHz horizontal
polarization.
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The same arguments hold for the errors in emissivity. All the parameters
being tightly related for a given pixel, the water vapor errors are also rather
large in inundated regions and in sandy areas.

3.7 Outlier Detection. What is the behavior of the neural retrieval when
the situation is particularly difficult, as when the first-guess is far from the
actual solution? In principle, the nonlinearity of the NN allows it to have
different weights on the observations and first-guess information, depend-
ing on the situation. For example, if the first guesses are better in tropical
cases than in polar cases, the NN will have inferred this behavior during the
learning stage and then will give less emphasis to the first guess when a po-
lar situation is to be inverted. This assumes once again that the training data
set is correctly sampled. To understand the behavior of the uncertainty esti-
mates better, a good strategy is to introduce artificial errors for each source
of information and to analyze the resulting impact on the network outputs.

In Figure 4, the retrieval STD error change index is presented to show the
effect of perturbating the mean inputs or the mean FGs by an artificial error.
The impact of these artificial errors is measured in terms of the percentage
of the regular STD retrieval error. For example, an impact index of 120%
means that the regular STD retrieval error estimate increases by 20% when
the input is perturbed. The impact indices can be compared for each of the
nine network outputs. These results are obtained by averaging over the
20,000 samples in B.

Figure 4A presents the error impacts when all 17 network inputs are
changed by a factor ranging from −5% to +5%. Obviously, this will corre-
spond to incoherent situations since the complex nonlinear relationships
between vertical and horizontal brightness temperatures and first guesses
will not be respected. As expected, the error increases monotically with
the absolute value of the perturbation. However, the impact is not uniform
among the output variables. For WV, which is retrieved with a rather low
accuracy, changes in the inputs do not have a large influence. The impact
on the emissivities is larger for horizontal polarizations than for vertical:
horizontal polarization emissivities are much more variable than the verti-
cal ones, and as a consequence, emissivities for vertical polarization have
rather similar values in outputs whatever the situation and do not depend
that much on the inputs. It can also be noted that positive perturbations
have a slightly stronger impact than negative ones. This is to be related to
the distribution of the variables in the training database. For the emissivities,
for instance, the distribution has a steep cut-off for unit emissivity, above
which the emissivities are not physical. On the contrary, a large range of
emissivities exists in the training data base at lower values (see Figure 3 in
Aires et al., 2001). As a consequence, decreasing the emissivity first guess
will still be physically realistic, whereas increasing it will not be.

Figure 4B is the same except that the changes are made only for the first-
guess inputs. We note a similar behavior (nonuniform impact among output
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Figure 4: Estimated STD error change index for an artificial pertubation: (A) of
the mean input, (B) of the mean first-guess input, (C) of individual first-guess
negative changes, and (D) of individual first-guess positive changes. See the
detailed explanation in the text. Statistics are performed over 20,000 samples
from B.

variables and with larger impact for positive perturbations), but we observe
also that errors are larger than when all the inputs are perturbed in Figure 4A.
This suggests that the error estimate is able to detect inconsistencies between
observations and first-guess inputs.

In Figures 4C and 4D, the first-guess input variables are perturbed in-
dividually with, respectively, negative and positive amplitude of 5%. For
negative perturbations, the biggest impact is produced by the Ts first-guess
perturbation: it is noticeable that the Ts error impact is similar for the re-
trieval of Em19H and for its own retrieval. For other variables, the impacts
have lower levels, with almost no impact from the WV first guess. The WV
first guess is associated with a large error (40%), and as a consequence the
NN gives little importance to this first guess. For positive individual per-
turbations in Figure 4D, the results are similar to the negative errors. The
magnitude of the positive changes as compared to the negative ones is re-
lated again to the distribution of the variables in the training data set (see
Figure 3 in Aires et al., 2001): If the distribution is not symmetrical around
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Figure 5: Estimated STD error change index for an artificial pertubation: (A)
of horizontal polarization brightness temperatures, (B) of vertical polarization
brightness temperatures, (C) of horizontal polarization first-guess emissivities,
and (D) of vertical polarization first-guess emissivities. Statistics are performed
over 20,000 samples from B.

a mode value, depending on the shape of the distribution, increasing or
decreasing the value can be more or less realistic.

In Figure 5, “incoherencies” have been introduced between the vertical
and horizontal polarizations in the brightness temperatures (TB) observa-
tions and in the first-guess emissivities, Ems, by increasing or decreasing
one, keeping the other polarization constant. In Figure 5A, we increased
and decreased artificially by 5% the horizontal TB, and in Figure 5B, the
same has been done for vertical polarizations. Figures 5C and 5D are simi-
lar for first-guess emissivities instead of TB. Several comments can be made.
First, the impact is larger for observations than for first-guess errors, which
suggests that observations are more important for the retrieval, the first
guess being used mostly as an additional constraint. Second, these polar-
ization inconsistencies have a bigger impact than changes of the means in
Figure 4. For example, the NN might emphasize the difference of polar-
ization for the retrieval, and then these inconsistencies would have a very
strong impact. This shows that the NN, using complex nonlinear multi-
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variate relationships, is sensitive to inconsistencies among the inputs. It is
encouraging to see that our error estimates are able to detect such situations.
Finally, the relative impact of the positive and negative changes can be ex-
plained again by the distribution of the variables in the learning database.
For the emissivities, whatever the polarization and the frequency, the his-
tograms are not symmetrical, having a broad tail toward lower values and
an abrupt end for the higher values. As a consequence, when artificially
increasing the emissivities, unrealistic values are attained, which is not the
case when decreasing the emissivities. (See Aires et al., 2001, for a complete
description of the distributions of the learning database and the histograms
of the inputs.)

The results shown in Figures 4 and 5 are consistent with a coherent phys-
ical behavior, confirming that the new tools developed in this study and
its companion articles can be used to diagnose difficult retrieval situations
such as might be caused by bad first guesses, inconsistent measurements,
situations not included in the training data set, or uncertainties of the NN on
the possible retrievals. Our a posteriori probability distributions for the NN
retrieval define confidence intervals on the retrieved quantities that allow
the detection of such situations.

It could be argued that a limitation of our retrieval uncertainty estimates
comes from the fact that our technique is based on statistics over a data
set B. This could mean that the error estimate is valid only when we are
inside the variability spanned by B. On the contrary, it has been shown
that the local quadratic approximation approach increases error estimates
in sparsely sampled data space domains (see, e.g., MacKay, 1992).

4 Network Jacobian Uncertainties

The a posteriori distribution of weights is useful to estimate the uncertainties
of network outputs (see section 3). We will now show that these distributions
can also be used for the estimation of complex probabilistic quantities via
Monte Carlo simulations. As an example of such an approach, we use it to
estimate the uncertainties of the NN Jacobians.

4.1 Definition of Neural Network Sensitivities. The NN technique not
only provides a statistical model relating the input and output quantities,
it also enables an analytical and fast calculation of the neural Jacobians (the
derivative of the analytical expression of the NN model), also called the
neural sensitivities or adjoint model (Aires et al., 1999). For example, the
neural Jacobians for the two-layered MLP (a MLP network with one hidden
layer) are

∂yk

∂xi
=
∑
j∈S1

wjk · dσ

da

(∑
i∈S0

wijxi

)
· wij. (4.1)



2440 F. Aires, C. Prigent, and W. Rossow

For a more complex MLP network with more hidden layers, a backpropaga-
tion algorithm exists that computes efficiently the neural Jacobians (Bishop,
1996). Since the NN is nonlinear, these Jacobians depend on the situation
defined by the particular input, x.

The neural Jacobian concept is a very powerful tool since it allows for
a statistical estimation of the multivariate and nonlinear sensitivities con-
necting the input and output variables in the model under study, which
is a useful data analysis tool (Aires & Rossow, 2003). The Jacobian matrix
with terms given by equation 4.1 describes the global sensitivities for each
retrieved parameter: they indicate the relative contribution of each input
in the retrieval for a given output parameter. The Jacobian is situation de-
pendent, which means that depending on the situation x, the NN uses the
available information in different ways.

4.2 Sampling Strategy for Network Weights. To go beyond the point
estimation approach where a learning algorithm is used to estimate only the
optimal set of weights, the distribution of weights w uncertainty must be
investigated. This distribution of weights can be used to estimate complex
probabilitistic quantities like the confidence intervals of stochastic variables,
the distribution of the outputs, and other probabilities of quantities depen-
dent on the output of the network. All these potential applications require
the integration under the PDF of weights. Fortunately, the a posteriori distri-
bution of weights is gaussian (see section 2). This means that the normaliza-
tion term 1

ZN in equation 2.9 is easily obtained (this is a main difficulty when
integrating a PDF). The integration and the manipulation of a gaussian PDF
is particularly easy compared to other distributions. However, when faced
with the estimation of complex quantities, the analytical solution of such
integrations can still be difficult to obtain. The estimation of the network Ja-
cobians PDF is such a situation. This is why simulation strategies have to be
used. Simulations first sample the PDF of weights with {wr ; r = 1, . . . , R}
and then use this sample to approximate the integration under the whole
weight PDF.

Using only w�, the MAP parameters, to estimate some other dependent
quantities (such as NN Jacobians) directly may not be optimal, even if we
are not interested in uncertainty estimates. In fact, most of the mass of the
distribution (i.e., the location of the domain where the probability is higher),
in a high-dimension space, can be far from the most probable state (i.e., the
MAP state). The high dimension makes the mass of the PDF more on the
periphery of the density domain and less at its center. Nonlinearities can
also distort the distribution of the estimated quantity. This is why it is good
to use R samples of the weights {wr ; r = 1, . . . , R} to estimate the density
of the quantity of interest.

Concerning the network Jacobians, the MAP network Jacobian is given
by using the most probable network weights w�. The mean Jacobian is not
sufficient for a real sensitivity analysis; a measure of the uncertainty in this
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estimate is required as well. In fact, the NN is designed to reproduce the right
outputs, but without any a priori information, the internal regularities of
the network have no constraint. As a consequence, the internal regularities,
such as the NN Jacobians, are expected to have a large variability. This
variability needs to be monitored.

To estimate the uncertainties of the Jacobians, we use R =1000 samples
from the weights PDF described in section 2. Using an adequate sampling
algorithm is a key issue here. To sample this gaussian distribution in very
high-dimension space (about 800 network weights), the metropolis algo-
rithm is used. This method is also suitable for nongaussian PDFs.

For each weight samplewr, we estimate the mean Jacobian over the entire
data set B. This means that we have at our disposal a sample of R =1000
mean Jacobians. They are then averaged, and a PDF for each individual
term in the Jacobian matrix is obtained.

4.3 Multicollinearity Problem. Table 5 gives the mean neural Jacobian
values for the variables xk and yi for the neural network, as defined in
equation 4.1. These values indicate the relative contribution of each input in
the retrieval of a given output. The numbers correspond to global mean over
B values, which may mask rather different behaviors in various regions of
the input space. The standard deviations of the uncertainty PDF are also
indicated. The variability of the Jacobians is large: uncertainty of the neural
sensitivities can be up to several times the mean value. For most cases,
the Jacobian value is not in the confidence interval, which means that the
actual value is not significant. In linear regression, obtaining nonsignificant
parameters is often the signal that multicollinearities are a problem for the
regression.

The distribution of the Jacobians shows that most of them are not statis-
tically significant. The reason for such uncertainty can be the pollution of
the learning process by multicollinearities in the data (inputs and outputs),
which introduce compensation phenomena. For example, if two inputs are
correlated and they are used by the statistical regression to predict an output
component, then the learning has some indeterminacy: it can give more or
less emphasis to the first of the inputs as long as it compensates this under-
or overallocation by, respectively, an over- or underallocation in the second,
correlated input variable. This means that the two corresponding sensitiv-
ities will be highly variable from one learning to another one. The output
prediction would be just as good for both cases, but the internal structure
of the model would be different. Since it is these internal structures (i.e.,
Jacobians) that are of interest here, this problem needs to be resolved.

To see if the multicollinearities and consequent compensation phenom-
ena are at the origin of the sensitivity uncertainties, the correlation between
sensitivities is measured. If some of these sensitivities are correlated or anti-
correlated, it means that from one learning cycle to another, the sensitivities
will always be related following the compensation principle. The correlation
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of a set of sensitivities is shown in Table 6; some of the correlations are sig-
nificant. For example, as expected, the correlation between the sensitivities
of Ts to TB19V and TB22V is larger in absolute value than Ts with higher-
frequency TB. The negative sign of this correlation is explained by the fact
that TB19V, being highly correlated with TB22V, a large sensitivity of Ts to
TB19V will be compensated for in the NN by a low sensitivity to TB22V,
leading to a negative correlation. The absolute value of the correlations is
not extremely high (about 0.3 or 0.4), but when added, all these correlations
define a quite complex and strong dependency structure among the sensi-
tivities. This is a sign that multicollinearities and subsequent compensations
are acting in the network model.

To avoid such multicollinearity problems, the network learning needs
to be regularized by using some physical a priori information to better
constrain the learning, in particular in terms of dependency structure among
the variables, or by employing some statistical a priori information that will
help reduce the number of degrees of freedom in the learning process in
a physically meaningful way. In the following sections, we investigate the
latter regularization strategy by using PCA.

4.4 Principal Component Analysis of Inputs and Outputs. Let Cx be
the K × K covariance matrix of inputs to a neural network and Cy be the
M × M covariance matrix of the outputs. We use the eigendecomposition
of these two matrices to obtain F x and F y the K × K and M × M matrices
whose columns are the corresponding eigenvectors.

Instead of the full matrices, we can use the truncated K′ × K matrix F x
and the M′ ×M matrixF y (K′ < K and M′ < M), to use only the lower-order
components (Aires et al., 2002a). Inputsx and outputs y are projected using

x = F x · S1x
−1 · (x − m1x) (4.2)

y = F y · S1y
−1 · (y − m1y), (4.3)

where S1x and S1y are the diagonal matrices with diagonal terms equal to
the standard deviation of, respectively, inputs and outputs, and the vectors
m1x and m1y are the input and output means. The vectors x and y are
a compression of the real data, but the inverse transformations of equa-
tions 4.2 and 4.3 go back from the compression to the full representation
with, of course, some compression errors. PCA is optimum in the least-
squares sense: the square errors between data and its PCA representation
are minimized.

Using a reduced PCA representation allows us to reduce the dimension
of the data, but a compromise needs to be found between a good com-
pression level (a smaller number of PCA components used) and a small
compression error (a larger number of PCA components used). The more
PCA components that are used for compression, the lower the compression
error is. Another advantage of the PCA representation is to suppress part of
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the noise during the compression process, when the lower-order principal
components of a PCA decomposition describe the real variability of the ob-
servations or the signal and the remaining principal components describe
higher-frequency variabilities. The higher orders are more likely to be re-
lated to the gaussian noise of the instrument or to very minor variability.
We will consider in the following that the higher-order components describe
noise (instrumental plus unimportant information) and use the reduced in-
stead of the full PCA representation. We will not comment on compression
or denoising considerations in this study (see Aires et al., 2002a).

Figure 6 describes the cumulated percentage of explained variance by a
cumulated number of PCA components for the input and output data. The
first PCA components for the inputs and the outputs of the neural network
are represented in Figures 7A and 7B, respectively. The physical consistency
of the PCA has been checked (not shown) by projecting the samples of the
databaseB onto the map of the first two principal components that represent
most of the variability. Clusters of points are related to surface characteris-
tics. Since surface types are known to represent a large part of the variability,
the fact that the PCA is able to coherently separate them demonstrates the
physical significance of the PCA representation. This is particularly impor-
tant because the PCA will be used, in the following, to regularize the NN
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Figure 6: Percentage of variance explained by the first PCA components of
inputs (solid) and outputs (dotted) of the neural network.
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learning. The patterns that are found by the PCA will distribute the contri-
bution of each input and each output for a given sensitivity. It is essential
that these patterns have a physical meaning.

4.5 PCA Regression Approach. The fact that the dimension of the in-
puts is reduced decreases the number of parameters in the regression model
(i.e., weights in the neural network) and consequently decreases the number
of degrees of freedom in the model, which is good for any statistical tech-
niques. The variance in determining the actual values of the neural weights
is reduced.

The training of the NN is simpler because the inputs are decorrelated.
Correlated inputs in a regression are called multicollinearities, and they
are well known to cause problems for the model fit (Gelman et al., 1995).
Suppressing these multicollinearities makes the minimization of the quality
criterion more efficient: it is easier to minimize, with less probability of
becoming trapped in a local minimum. Therefore, it has the general effect
of suppressing uncertainty in the determination of the parameters of the
NN model. (For a detailed description of PCA-based regression, see Jolliffe,
2002.)

How many PCA components should the regression use? From section 4.4,
it is preferable to use the optimal compromise between the best compres-
sion fit and denoising in terms of global statistics. This statement is related
to the PCA representation, not taking into account how the NN uses these
components. No theoretical results exist to define the optimal number of
PCA components to be used in a regression; it depends entirely on the
problem to be solved. Various tests can be performed. Experience with the
NN technique shows that if the problem is well regularized, once sufficient
information is provided as input, adding more PCA components to the in-
puts does not have a large impact on the retrieved results; the processing
just requires more computations because of the increased data dimension.
Therefore, we recommend being conservative and taking more PCA com-
ponents than the denoising optimum would indicate in order to keep all
possibly useful information.

In terms of output retrieval quality, the number of PCA components
used in the input of the NN needs to be reduced for reasons other than
just denoising or compression. In fact, during the learning stage, the NN
is able to relate each output to the inputs that help predict it, disregarding
the inputs that vary randomly. In some cases, the dimension of the network
input is so big (few thousands) (Aires et al., 2002a) that a compression is
necessary. In our case, K = 17 is easily manageable, so all the input variables
could be used. For our study here, K′ = 12 is chosen to reduce the number
of degrees of freedom in the network architecture. This number of input
PCA components is large enough for the retrieval, representing 99.46% of
the total variance (see Table 7). No additional information would be gained
from adding the higher-order PCA input components.
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Table 7: Global Mean Neural Sensitivities ∂y′

∂x′ of Raw Network Output and
Input.

NN Outputs

NN Inputs Compo 1 Compo 2 Compo 3 Compo 4 Compo 5

Compo 1 −0.81±0.01 −0.25±0.01 0.53±0.01 −0.05±0.01 −0.03±0.01
Compo 2 −0.21±0.01 −0.69±0.01 −0.62±0.01 0.16±0.01 0.10±0.02
Compo 3 0.51±0.01 −0.65±0.01 0.41±0.01 0.47±0.01 0.02±0.01
Compo 4 0.17±0.01 −0.46±0.01 0.05±0.01 −0.44±0.01 −0.07±0.01
Compo 5 −0.06±0.01 0.04±0.01 −0.00±0.01 −0.02±0.01 0.77±0.04
Compo 6 −0.01±0.01 0.02±0.01 0.01±0.01 0.02±0.01 0.07±0.01
Compo 7 −0.01±0.01 0.02±0.01 −0.01±0.01 −0.02±0.01 0.10±0.01
Compo 8 −0.03±0.01 −0.10±0.01 0.01±0.01 −0.04±0.01 −0.05±0.01
Compo 9 0.01±0.01 0.02±0.01 −0.01±0.01 −0.00±0.01 −0.25±0.01
Compo 10 −0.01±0.01 0.03±0.01 0.00±0.01 0.02±0.01 0.12±0.01
Compo 11 −0.14±0.01 0.22±0.01 −0.01±0.01 0.05±0.01 0.25±0.01
Compo 12 0.10±0.01 −0.18±0.01 0.10±0.01 0.08±0.01 −0.14±0.01

Notes: Columns are network outputs, y′, and rows are network inputs, x′. Sensitivities
with absolute value higher than 0.3 are in bold.

The number of PCA components used in the NN output is related to
the retrieval error magnitude for a nonregularized NN. If the compres-
sion error is minimal compared to the retrieval error of the nonregularized
network, then M′, the number of output components used, is satisfactory.
It would be useless to try to retrieve something that is noise in essence.
Furthermore, it could lead to numerical problems and interfere with the re-
trieval of the other, more important, output components. In this application,
M′ = 5 has been chosen, representing 99.93% of the total variability of the
outputs.

The outputs of the network, that is, the PCA components, are not ho-
mogeneous; they have different dynamic ranges. The importance of each of
the components in the output of the NN is not equal. The first PCA com-
ponent represents 52.68% of the total variance of the data, where the fifth
component represents only 0.43%. Giving the same weight to each of these
components during the learning process would be misleading. To resolve
this, we give a different weight to each of the network outputs in the “data”
part, ED , of the quality criterion used for the network learning (see section 2).
For an output component, this weight is equal to the standard deviation of
the component. This is equivalent to using equation 2.1, where Ain is the
diagonal matrix with diagonal terms equal to the standard deviation of the
PCA components. Off-diagonal terms are zero since, by definition, no cor-
relation exists between the components in εy = (t(n) − gw(x(n))) (i.e., the
output error, target, or desired output minus the network output).
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4.6 Retrieval Results of PCA Regression. The mean RMS retrieval er-
ror for the new NN with PCA representation of its inputs and outputs is
slightly higher than for the original nonregularized NN. For example, the
surface skin temperature RMS error is 1.53 instead of 1.46 in the nonreg-
ularized NN. This is expected because we know that reducing variance
(overfitting) by regularization increases the bias (RMS error). This is know
as the bias/variance dilemma (Geman, Bienenstock, & Doursat, 1992). This
dilemma describes the compromise that must be found between a good fit-
ting on the learning database B and a robust model with physical meaning.
The differences of RMS errors are, in this case, negligible.

In order to estimate the NN weight uncertainties, we use the approach
described in section 2: the Hessian matrix H must first be computed and
then regularized in order to obtain the covariance matrix of the weights PDF.
This regularization of the Hessian matrix is done to make it positive definite,
which is not the same goal as the regularization of the NN behavior by the
PCA representation. These two regularization steps should not be confused.

Figure 8 presents the corresponding standard deviation for the NN
weights with various regularization parameters λ around the optimal value,
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λ = 660, which is determined as described in section 2.6 using various qual-
ity criteria. It is interesting that the ill-conditioning of the Hessian matrix
shows large sensitivity to some particular network weights. For λ too small,
the standard deviation is very chaotic and nonmonotonic, with some values
going from extreme large values to even negative ones. Increasing λ makes
the standard deviation of the particular weights converging to a more ac-
ceptable, positive value and coherent with the other standard deviations.
At the same time, increasing λ uniformly decreases the standard deviation
in all the network weights. The balance between a λ large enough to reg-
ularize H but without changing the standard deviation of well-behaved
weights must be found. This is probably the most important issue for the
uncertainty estimates described in this study. Another approach to obtain
a well-conditioned Hessian would be to constrain the Hessian matrix H to
stay definite positive during the learning stage.

4.7 PCA-Regularized Jacobians. Before they are introduced as inputs
and outputs of the neural network, the reduced-PCA representations, x
and y, need to be centered and normalized. This is a requirement for the
neural network method to work efficiently. The new inputs and outputs of
the neural network are given by:

x′ = S2x
−1 · (x − m2x) (4.4)

y′ = S2y
−1 · (y − m2y), (4.5)

where the S2x and S2y are the diagonal matrices of the standard deviations
of, respectively, x and y (defined in equations 4.2 and 4.3) and vectors m2x
and m2y are the respective means.

The NN formulation allows derivation of the network Jacobian
[

∂y′

∂x′

]
for

the normalized quantities of equations 4.4 and 4.5. To obtain the Jacobian
in physical units, one should use equations 4.2 through 4.5 to find

[
∂y

∂x

]
= S1y · F y

T · S2y ·
[

∂y′

∂x′

]
· S2x

−1 · F x · S1x
−1. (4.6)

Equation 4.6 gives the neural Jacobian for the physical variables x and y.
To enable comparison of the sensitivities between variables with different
variation characteristics, the terms S1y and S1x

−1 can be suppressed in this
expression so that, for each input and output variable, a normalization by
its standard deviation is used. The resulting nonlinear Jacobians indicate
the relative contribution of each input in the retrieval to a given output
variable.

4.8 Uncertainty of Regularized NN Jacobians. In Table 7, the PCA-

regularized NN is used to estimate the mean Jacobian matrix
[

∂y′

∂x′

]
of raw
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network outputs and inputs, together with the corresponding standard de-
viations. The standard deviations are much more satisfactory in this case:
some high sensitivities are present, but they are all significant to the 5%
confidence interval. The structure of this sensitivity matrix is interesting
and illustrates the way the NN connects inputs and outputs together. For
example, the first output component is related to the first input component
(0.81 sensitivity value) but also the third input component (0.51). This shows
that the PCA components are not the same in output and in input, so that
the NN needs to nonlinearly transform the input component to retrieve the
output ones. With increasing output component number, the input compo-
nent number used increases too. But higher-order input components (more
than five) have limited impact. Even if the mean sensitivity is low, it does not
mean that the input component has no impact on the retrieval for some situ-
ations. The nonlinearity of the NN allows it to have a situation dependency
of the sensitivities so that a particular input component can be valuable for
some particular situations.

Using equation 4.6, we obtain the corresponding Jacobian matrix
[

∂y
∂x

]
for the physical variables instead of the PCA components, but normalized
to be able to compare individual sensitivities (see Table 8). The uncertainty
of the sensitivities is now very low, and most of the mean sensitivities are
significant to the 5% level. This demonstrates that the PCA regularization
has solved, at least partially, the problem of Jacobian uncertainty by sup-
pressing the multicollinearities in the statistical regression. Interferences
among variables are suppressed, and the standard deviations calculated for
each neural sensitivity are very small, as compared to the values previously
estimated without regularization (see Table 5). In addition, the sensitivities
make more sense physically, as expected.

The retrieved Ts is very sensitive to the brightness temperatures at ver-
tical polarizations for the lower frequencies (see the numbers in bold in the
corresponding column). The emissivities being close to one for the vertical
polarization (and higher than for the horizontal polarization), Ts is almost
proportional to TB in window channels (i.e., those that are not affected by
water vapor). Sensitivity to the Ts first guess is also rather high but as-
sociated with a higher standard deviation. Sensitivities to the first-guess
emissivities are weak, regardless of frequency and polarization. WV infor-
mation clearly comes from the 85 GHz horizontal polarization channel. It
is worth emphasizing that the sensitivity of WV to TB85H is almost twice
as large as to the WV first guess, meaning that real pertinent information is
extracted from this channel. Sensitivity of the retrieved emissivities to the
inputs strongly depends on the polarization, the vertical polarization emis-
sivities being more directly related to Ts and TBV given their higher values
generally close to one. Emissivities in vertical polarization are essentially
sensitive to Ts and to the TBV, whereas the emissivities in the horizontal
polarization are dominated by the emissivity first guess. The sensitivity ma-
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Figure 9: (A) Twenty samples of five neural network sensitivities ( ∂Ts
∂Ts , ∂Ts

∂TB37V ,
∂Ts

∂TB85V , ∂Ts
∂Em37V , and ∂Ts

∂Em85V ). (B) Histogram of the same network sensitivities.

trix clearly illustrates how the NN extracts the information from the inputs
to derive the outputs.

In Figure 9 (resp. Figure 10), 20 samples of five NN sensitivities are repre-
sented. These samples are found using the Monte Carlo sampling strategy
described in section 2.7. Associated with these samples are represented the
histogram of the same NN sensitivities. As can be seen in these two figures,
the uncertainty on the NN sensitivities has been largely reduced with the
regularized NN (see Figure 10) compared to the nonregularized NN (see
Figure 9).

Experiments (not shown) establish that such PCA-regularized NNs have
robust Jacobians even when the NN architecture is changed—for example,
with a different number of neurons in hidden layer. This shows how robust
and reliable the new NN Jacobians and the NN model have become with
the help of the PCA representation regularization.

5 Conclusion and Perspectives

This study provides insight into how the NN model works and how the NN
outputs are estimated. These developments draw the NN technique closer to



2454 F. Aires, C. Prigent, and W. Rossow

2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6
A

B

SIMULATION NUMBER

N
O

R
M

A
LI

Z
E

D
 S

E
N

S
IT

IV
IT

Y
 E

S
T

IM
A

T
E

−0.4 −0.2 0 0.2 0.4 0.6 0.8
0

10

20

30

40

50

60

NORMALIZED SENSITIVITY ESTIMATE

P
D

F

dTS/dTS
dTS/dTB37V
dTS/dTB85V
dTS/dEM37V
dTS/dEM85V

Figure 10: (A) Twenty samples of five regularized neural network sensitivities
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∂Em85V ) and (B) Histogram of the same network
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better-understood classical methods, in particular linear regressions. With
these older techniques, estimation of uncertainties of the statistical fit pa-
rameters is standard and is completely mandatory before the use of the
regression model. Having at our disposal similar statistical tools for the NN
establishes it on a stronger theoretical and practical basis so that NNs can
be a natural alternative to traditional regression methods, with its particu-
lar advantage of nonlinearity. The tools are very generic and can be used
for different linear or nonlinear regression models. A fully multivariate for-
mulation is introduced. Its generality will allow future developments (like
the iterative reestimation strategy or the fully Bayesian estimation of the
hyperparameters).

The uncertainty of the NN weights can be large, but as we saw, the
complex structure of correlation constrains this variability so that the NN
outputs are a good statistical fit to the desired function. In the Bayesian
approach, the prediction (estimation of the NN output) does not use just
a specific estimation of the weights w� but rather integrates the outputs
over the distribution of weights P(w), the “plausibility” distribution. This
approach is different in the sense that the prediction is given in terms of the
PDF instead of the mode value. This article describes a technique to estimate
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the uncertainties of NN retrievals and provides a rigorous description of the
sources of uncertainty.

The second application of the weight PDF is the estimation of NN Jaco-
bians uncertainty. In this article, we show how to estimate the Jacobians of
a nonlinear regression model, in particular for a NN model. New tools are
provided to check how robust and stable these Jacobians are by estimating
their uncertainty PDF by Monte Carlo simulations, providing the identifi-
cation of situations where regularization needs to be used. As is often the
case, regularization is a fundamental step of NN learning, especially for
inverse problems (Badeva & Morosov, 1991; Tikhonov & Arsenin, 1977).
We propose a regularization method based on the PCA regression (using a
PCA representation of input and output data for the NN) to suppress the
problem of multicollinearities in data at the origin of the NN Jacobian vari-
ability. Our approach is able to make the learning process more stable and
the Jacobians more reliable, and it can be more easily interpreted physically.
All these tools are very general and can be used for other nonlinear models
of statistical inference.

Together with the introduction of first-guess information first described
in Aires et al. (2001), error specification makes the neural network approach
even closer to more traditional inversion techniques like variational assimi-
lation (Ide, Courtier, Ghil, & Lorenc, 1997) and iterative methods in general.
Furthermore, quantities obtained from NN retrievals can now be combined
with a forecast model in a variational assimilation scheme since the error
covariances matrices can be estimated. These covariance matrices are not
constant; they are situation dependent. This makes the scheme even bet-
ter since it is now possible to assimilate only inversions of good quality
(low-uncertainty estimates). Bad situations can be discarded from the as-
similation or, even better, can be used as an “extreme” detection scheme that
would, for example, signal the need for an increased number of simulations
in an ensemble forecast. All these new developments establish the NN tech-
nique as a serious candidate for remote sensing in operational schemes,
compared to the more classical approaches (Twomey, 1977). Our method
provides a framework for the characterization, the analysis, and the inter-
pretation of the various sources of uncertainty in any NN-based retrieval
scheme. This makes possible improvements in the inversion schemes. Any
fault that can be detected can be corrected: lack of data in the observa-
tion domains, errors of the model in some specific situations, or detection
of extreme events. This should benefit a large community of NN users in
meteorology or climatology.

Many new algorithmic developments can be pursued, and we provided a
few ideas. For example, the network output uncertainties can easily be used
for novelty detection (i.e., data that have not been used to train the network)
or fault detection (i.e., data that are corrupted by errors, like instrument-
related problems). Our determination of error characteristics can also be
used with adaptive learning algorithms (i.e., learning when a small addi-
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tional data set is provided after the main learning of the network has been
done). The NN Jacobians can be used to express the various sources of un-
certainty with even more detail, using Rodgers’s approach (Rodgers, 1990).
A source of uncertainty can be the presence of noise in NN inputs (Wright
et al., 2000). Another technical development would be the optimization of
the hyperparameters using an iterative reestimation strategy or evidence
measure in a Bayesian framework (Neal, 1996; Nabney, 2002).

The Jacobians of a nonlinear model, such as the NN, are a very powerful
concept. Many applications of the NN Jacobians can be derived from this
study. The Hessian matrix can be used for many purposes (Bishop, 1996): (1)
in several second-order optimization algorithms, (2) in adaptative learning
algorithms (i.e., learning when a small additional data set is provided after
the main learning of the network is done), (3) for identifying parameters
(i.e., weights) not significant in the model as indicated by small diagonal
terms Hii, which is used by regularization processes like the “weight prun-
ing” algorithm; (4) for automatic relevance determination, which is able
to select the most informative network inputs and eliminate the negligible
ones; and (5) to give a posteriori distributions of the neural weights as we do
here. We also saw that the regularization of the Hessian matrix is essential
if one wants to use it. A regularization solution is given in this article, but
for some purposes, a few other techniques can also be used. In terms of the
NN model, it allows us to obtain a robust model that will generalize well
and suffer less from overfitting deficiencies. Jacobians can also be used to
analyze how the NN model links the inputs and the outputs, in a nonlinear
way. This capacity of measuring the internal structure of the NN is espe-
cially important when the NN is used as an analysis tool as proposed by
Aires and Rossow (2003), where the NN Jacobians are estimated in order to
analyze feedback processes in a dynamical. The reliable estimation of phys-
ical Jacobians through the NN model is an ideal candidate for the study of
climate feedback in both numerical models and observation data sets. The
new ideas and techniques presented in this article will directly benefit such
studies.
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