Relations of polarized scattering signatures observed by the TRMM Microwave Instrument with electrical processes in cloud systems

Catherine Prigent,1 Eric Defer,2 Juan R. Pardo,3 Cindy Pearl,4 William B. Rossow,4 and Jean-Pierre Pinty5

Received 13 December 2004; accepted 27 January 2005; published 24 February 2005.

[1] The polarized scattering signatures observed in convective cloud systems with the Tropical Rainfall Measuring Mission (TRMM) Microwave Instrument are analyzed. In particular, and in contrast to the positive polarization difference (TbV-TbH > 0) observed when scattering by large ice particles is important, we also find a negative polarization difference. Radiative transfer simulations show that such a polarization difference can be explained by relatively large, mostly vertically oriented, non-spherical particles but not by horizontally or randomly oriented non-spherical particles. We establish a relationship between the occurrence of the negative polarization difference signature and electrical activity in the cloud using coincident observations by the Lightning Imaging Sensor also on board TRMM. The negative polarization difference is thus related to non-spherical particles that are mostly vertically oriented as revealed by the lightning activity. This result confirms that a careful analysis of passive microwave observations over clouds provides valuable information about the cloud ice phase. Citation: Prigent, C., E. Defer, J. R. Pardo, C. Pearl, W. B. Rossow, and J.-P. Pinty (2005), Relations of polarized scattering signatures observed by the TRMM Microwave Instrument with electrical processes in cloud systems, Geophys. Res. Lett., 32, L04810, doi:10.1029/2004GL022225.

1. Introduction

[2] Depending on the observed wavelength and on cloud and rain characteristics, the microwave radiation measured from a satellite can be affected by emission, absorption, and scattering. Emission/absorption by liquid water particles causes brightness temperature to increase over a radiatively cold background like the ocean. In contrast, scattering by the larger hydrometeors generally reduces the measured brightness temperature; large ice particles absorb much less than liquid particles so the scattering effect dominates when they are present in the upper portions of the cloud.

[3] The scattering signal measured by satellites at 85 GHz has been used to estimate precipitation and cloud ice content over land and ocean. Several studies have aimed at characterizing the convective activity from passive microwave scattering observations at 85 GHz [e.g., Mohr et al., 1999] or relating the scattering signal to radar reflectivity or to electrical activity [e.g., Nesbitt et al., 2000; Toracinta et al., 2002]. The sensitivity of the scattering to the particle shape and orientation has already been shown from both model simulations, satellite observations, and ground based measurements [e.g., Czekala et al., 2001]. Prigent et al. [2001] carefully characterized the scattering-related positive polarization difference (vertical minus horizontal) observed at 85 GHz with the Special Sensor Microwave/Imager (SSM/I) and interpreted it with the help of a radiative transfer model to show that the presence of mostly horizontally oriented non-spherical particles is needed within the stratiform anvil part of convective systems to explain the larger polarization magnitudes observed.

[4] In this study, the polarized scattering signatures observed with the Tropical Rainfall Measuring Mission (TRMM) Microwave Instrument (TMI) are analyzed. Compared to SSM/I, TMI provides significantly increased spatial resolution that makes it possible to resolve smaller structures associated with deep convection. In addition to positive polarization differences already observed in the scattering signal, negative polarization differences are also found (section 2). Using the same radiative transfer model, the negative polarization differences can be explained by mostly vertically oriented non-spherical particles (section 3). A relationship between the negative polarization difference and electrical activity in the cloud is shown, thanks to coincident observations from the Lightning Imaging Sensor (LIS) also on board the TRMM satellite (section 4). Section 5 concludes this study with special emphasis on the potential of passive microwave scattering signatures to characterize the convective processes in tropical cloud systems.

2. Observations of Polarized Scattering Signatures With TMI

[5] Since 1997, the TRMM satellite carries a suite of instruments designed for precipitation studies of the tropics [Kummerow et al., 1998], including TMI and LIS that are used in this study. TMI measures the microwave radiation emitted by Earth and its atmosphere at five frequencies between 10 and 85 GHz in both vertical and horizontal polarizations (for most channels). It provides these measurements at a spatial resolution of 5 × 7 km at 85 GHz, compared to 15 × 13 km for the same channel on SSM/I.
whereas the negative polarization differences are dominant with areas with lower spatial standard deviations (i.e., the larger positive polarization differences are associated with areas with smaller standard deviation of the 85 GHz observations, we find that over land than over ocean (not shown). Using the spatial scatterplots is observed, although the signal is again stronger over ocean, respectively. At lower microwave frequencies, less ocean, respectively. At lower microwave frequencies, less scattering is observed, likely because these regions are too small scale to be resolved by the lower resolution of SSM/I. What cause the negative polarization differences observed with TMI? Could it be due to vertically oriented non-spherical particles in the convective cores of convective systems?

3. Radiative Transfer Calculations of Polarized Scattering

To explore this explanation, the radiative transfer equation is solved for a plane-parallel atmosphere of gases and hydrometeors with the assumption that the hydrometeors are totally or at least azimuthally randomly distributed spheroids is included according to Mishchenko [1993, 2000]. The gas absorption is included according to Pardo et al. [2001]. Finally, the radiative transfer is performed following the Doubling-Adding method described by Evans and Stephens [1995]. For more details, see Prigent et al. [2001].

A standard tropical atmosphere is assumed, similar to Prigent et al. [2001]: the only difference is that the monodisperse ice particles between 6.5 and 8.0 km are considered to be prolate spheroids with preferred vertical orientation instead of oblate spheroids with horizontal orientation as in the previous study. The particle orientation is considered to have its longest axis randomly distributed between $-\alpha_0$ and $+\alpha_0$ from the vertical. A refined weighting function in α could also be used to account for a steady oscillating behavior. Figure 2 shows the results of these simulations at 85 GHz: negative values of $(T_{bV} - T_{bH})$ are obtained with realistic prolate ice particles that are vertically oriented.

4. Particle Orientation and Electrical Activity

Non-spherical particles that are large enough (>100 μm) with aspect ratios significantly different from unity are expected to align approximately horizontally as they fall. What mechanism could cause such particles to align vertically instead? Vertical orientation of particles in thunderstorms has already been suggested as early as 1965 [Vonnegut, 1965]. The first observations of electrically-
induced particle alignment with ground radar were done by Hendry and McCormick [1976] and more recent developments [Metcalf, 1995; Krehbiel et al., 1996] indicate the possibility of remotely characterizing the electrical fields in clouds by polarized ground radar measurements. Could the negative polarization differences observed by TMI in the scattering regime be related to electric fields?

[12] This hypothesis can be tested with the observations of LIS on the same TRMM platform. LIS senses and locates the radiation emitted by both cloud-to-ground and cloud-to-cloud flashes at 777 nm wavelength during day and night [Christian et al., 2003]. It consists of a 128 × 128 CCD array with a time sampling of 2 ms coupled to wide-angle lens. LIS detection efficiency exceeds 90% [Boccippio et al., 2002]. At the altitude of TRMM and for the periods studied here, LIS can observe a point on Earth within its field-of-view for about 80 s. Typically a flash is sensed by LIS as a succession of 2 ms samples (not necessarily continuous in time) with a given number of illuminated pixels providing a two-dimensional image of the flash extent. Within the reference 0.2° × 0.2° spatial grid box adopted in this study, all illuminated LIS pixels are considered along with their radiance. Radiance corresponds to the cloud-top for the range of LIS narrowband filter and is not from flash channels themselves but from multiple scattering processes within the cloud.

[13] Similar to Figure 1, Figure 3 shows the scatterplots of the (TbV - TbH) versus TbV at 85 GHz for July 1998 over land and ocean separately with the colors indicating the average percentage of flash detection with LIS for each 1 K by 1 K box. The scatterplots are limited to the cloudy pixels for which both LIS and TMI observations are available. Over land more than 50% of the cases with TbV below 180 K is associated with lightning detection and with (TbV - TbH) close to or below 0 K. Over ocean much less lightning is detected, confirming previous studies by Toracinta et al. [2002] and Christian et al. [2003].

[14] Figure 4 focuses on the strong scattering regime over land and presents histograms of the radiance index of the detected flashes for each 10 K interval of TbV and 3 K interval of (TbV - TbH) at 85 GHz for July and October 1998, January and April 1999. In each box the number of considered cases (when > 100) is indicated along with the percentage of pixels with lightning detection. For a given range of TbV, the percentage of pixels associated with lightning events increases with decreasing (more negative) polarization difference.

[15] The coincidence of LIS detections and low-to-negative polarization differences at 85 GHz from TMI in deep convective clouds (low TbV, low cloud top temperature, high optical thickness, not shown) is meaningful and appealing. The physical interpretation we offer involves a microphysical composition of the cores of deep convective systems containing a substantial amount of non-spherical graupels. The graupel is the key factor for promoting electrical activity, a high microwave scattering efficiency and negative polarization differences, all occurring in the same location as viewed from TRMM. Non-inductive charging mechanisms due to dry graupels colliding with small ice crystals and supercooled droplets are at the origin of the electrification of tropical convective clouds [Takahashi, 1979]. Lightning flashes follow when a polar electric field structure emerges due to the sedimentation of the charged hydrometeors. Although full understanding of electrical phenomena is not yet complete, the high correlation at cloud system scale between the occurrence of lightning flashes and graupel (as indicated by the microwave scattering signature) is consistent. In addition, recent radar observations at 95 GHz reported by Wolde and Vali [2001] show that dry graupels may lead to a slight negative polarization difference in radar reflectivity (Z). The shape of the graupel (prolate elongation or cone-like) and the preferential vertical orientation of the symmetry axis of these particles can explain this feature. Extension of this property to passive microwave radiometry, with Tb instead of Z, is straightforward. As a result, the simultaneous observation of a LIS signal and of a negative TbV-TbH at 85 GHz on TMI gives a reasonable indication of graupels.

5. Conclusion

[16] The negative polarization difference signature observed by TMI has been analyzed with the help of a radiative transfer model and coincident LIS lightning observations. The negative polarization difference is interpreted in terms of large, non-spherical mostly vertically oriented rimed particles to explain the electrical activity. The TMI spatial resolution at 85 GHz makes it possible to resolve the presence of vertically oriented graupels localized in small areas where the strongest convective updrafts occur. This study confirms that a careful analysis of the passive micro-
wave observations, especially at higher spatial resolutions, is a very sensitive indicator of structures in tropical cloud systems, particularly concerning the ice particles and differences in behavior between the convective and stratiform parts of these systems. With adequate spatial resolution, passive microwave can also help characterize the relationship between cloud microphysical properties and electrical processes. This information can be used in the development and evaluation of realistic microphysical schemes in cloud models that also account for electrical activity.

Acknowledgment. This study was supported, in part, by NASA funding for TRMM and ISCCP.

References

E. Defer, Institute for Environmental Research, National Observatory of Athens, P.O. Box 20048, Thissio, GR-11810 Athens, Greece.

J. R. Pardo, Instituto de Estructura de la Materia, Departamento de Astrofísica Molecular e Infrarrojo, Consejo Superior de Investigaciones Científicas, E-28006 Madrid, Spain.

C. Pearl and W. B. Rossow, NASA/Goddard Institute for Space Studies, New York, NY 10025, USA.

J.-P. Pinty, Laboratoire d’Aéologie, Toulouse, France.

C. Prigent, Laboratoire d’Études du Rayonnement et de la Matière en Astrophysique, CNRS, Observatoire de Paris, 61, avenue de l’Observatoire, F-75014 Paris, France. (catherine.prigent@obsppn.fr)