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[1] Despite the abundance and variety of remote sensing measurements, land surface
characterization from satellite observations is still very challenging. The links between the
three sources of surface information, namely the satellite observations, the in situ
measurements, and the land surface model outputs, are complex. Innovative techniques
have to be developed to merge these information sources and optimize the use of satellite
measurements for better surface products and more predictability. Concepts such as
multi-instrument/multiparameter retrieval algorithms are discussed, as well as the
synergetic use of satellite observations, model outputs, and in situ data. The need for
careful satellite calibration is stressed, and the scaling problem is emphasized. Recent
results are reviewed to indicate what the land surface remote sensing problems are and
how they might be attacked. Two concrete applications are presented: an ‘‘all weather’’
retrieval of surface skin temperature from combined microwave and infrared observations
and a soil moisture analysis from the merging of multisatellite observations and land
surface model outputs. This paper is intended to stimulate debates and collaborations
between the land surface modelers and the satellite remote sensing community for the
design of the next generation of land surface products.
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1. Introduction

[2] In addition to their key role in many applications
(e.g., hydrology or agriculture), land surface satellite-
derived products are very important in the framework of
Land Surface Models (LSM): first as inputs, to initialize the
models, to serve as boundary conditions, or for assimilation;
second, to validate the model outputs in order to comple-
ment the in situ measurements that are spatially and
temporally limited. Depending on their use in the LSM
and depending on the model application (e.g., energy-water
exchanges, biochemistry, ecosystem function), the set of
necessary land parameters differs as well as their spatial and
temporal requirements.
[3] The International Satellite Land Surface Climatology

Project (ISLSCP), started in 1983, provides a large number
of global gridded land surface data sets, related to land
cover, hydrometeorology, radiation, and soils, over 10 years
(more for some variables) with spatial resolution from 0.25�
to 1� (see Sellers et al. [1995], Hall et al. [1995], and the
other papers in this special ISLSCP issue). The available
surface products are not all estimated from satellite obser-
vations, some being derived from meteorological reanalysis

(e.g., ECMWF or NCEP reanalysis) or from upscaling of in
situ measurements (e.g., the Climate Research Unit near
surface information or the GlobalView CO2 and CH4

products). Most satellite products directly derived from
the ISLSCP activity focus on the vegetation and land cover
characterization, using essentially visible and near infrared
observations.
[4] A wealth of Earth satellite observations is now avail-

able, over long time series, covering the entire globe and
providing a large diversity of information, from the visible
to the microwave. However, land surface characterization
from satellite observations is still very challenging:
[5] 1. The signal received by the satellite is generally the

combination of contributions from different surface charac-
teristics (vegetation, soil, soil moisture, snow, roughness,
among others) and disentangling these various effects to
quantify one variable is often very difficult. In addition,
depending on the wavelength, the atmospheric contamina-
tion might need to be subtracted.
[6] 2. Limitations also come from the fact that no

Radiative Transfer Model (RTM) for soil/vegetation/snow
is satisfactory for global applications and for each wave-
length range. Empirical relationships are often fitted locally
for a given frequency range and their extension is question-
able. In addition, even if such RTM existed, it would need a
large variety of ancillary information that are not available
at a global scale.
[7] 3. The spatial resolution of the satellite observations is

not always compatible with the model scales, especially
when local processes are involved. Within a given satellite
field-of-view, the land surface parameters can exhibit large
spatial variability (e.g., soil moisture or vegetation), making
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it difficult to compare the satellite estimates with in situ
point measurements or with model outputs. Aggregation
and disaggregation techniques need to be developed in
order to change scales.
[8] 4. Up to recently, there was no satellite optimized for

the observations of key surface parameters like the soil
moisture. This means that the designs of the satellite pay-
loads are not optimal for the retrieval of these parameters in
terms of frequency selection or spatial/temporal resolution
and as a consequence, estimating these parameters is more
difficult. The GRACE mission launched in 2002 [Tapley et
al., 2004] is the first mission specifically designed to
quantify the terrestrial hydrological cycle, including the
aquifer, the soil moisture, and the snow pack, through the
gravimetric measurements of the vertically integrated water
mass changes. The Advanced Microwave Scanning Radi-
ometer–EOS (AMSR-E) is a passive microwave radiometer
on board the Aqua satellite, launched in 2002. It observes
atmospheric, land, oceanic, and cryospheric parameters,
including soil moisture [Njoku et al., 2003]. The European
SMOS [Kerr et al., 2001] is a soil moisture dedicated
mission with measurements at low microwave frequencies
(L-band) that will be launched in 2007.
[9] Figure 1 evidences the complex relationships between

the three sources of land surface information: the satellite
observations, the LSM, and the in situ measurements. The
objective of this paper is to analyze these links and suggest
methodologies to derive optimum land surface information
from the combination of these three sources.
[10] Since the start of the ISLSCP, the needs of the land

surface modelers in terms of satellite-derived products have
grown dramatically. Entekhabi et al. [1999] proposed an
agenda to answer the priority science questions in hydrol-
ogy, and it included optimizing the use of remote sensing
products. As an example, calibration of a model parameter-
ization was traditionally performed over a given region and
for a given period of time, using comparisons between one
model output and the corresponding in situ measurements.
There is today a demand to account for the full variability of
the model dynamics, temporally and spatially, and simulta-
neously for different outputs of the model [McCabe et al.,
2005]. In addition, several models are now often intercom-
pared (e.g., the Global Soil Wetness Project (GSWP) [Entin
et al., 1999]) and multimodel approaches tend to evaluate
the model uncertainties by using outputs from different
models [Murphy et al., 2004]. In these cases, the role of
the satellite observations could be to diagnose problems in
one model (or to invalidate one model), not to validate a
model: this difference in perspective can induce significant
changes in the way the satellite/model relationship is
considered.
[11] The three sources of land surface information have

their own limitations. One model using different sources of
inputs for the same variable can produce differences in
outputs that are difficult to explain [e.g., Schaake et al.,
2004]. Even separating the effects of erroneous forcing from
a lack of realism in the model is not obvious [Robock et al.,
1998]. Model intercomparisons have shown that even when
fed with the same inputs, the model outputs can be
significantly different (e.g., the Project for Intercomparison
of Land Surface Parameterization Schemes (PILPS)
[Henderson-Sellers et al., 1995]). Although often consid-

ered as the ‘‘truth,’’ in situ measurements are by nature very
local, are often labor intensive, and for the measurements of
some variables the experimental protocol can vary from a
campaign to the other with resulting biases. Satellite remote
sensing is clearly the solution for large-scale and long-term
calibration of the model as it encompasses all the variability
of the land surface system. However, as already stressed,
developments of the satellite retrieval is often difficult and
if several surface parameters have to be examined simulta-
neously, consistency is necessary between the retrieved
parameters.
[12] How to reconcile and merge the three sources of

information for a better final product and for more predict-
ability? How to optimize the use of satellite observations for
that goal?
[13] 1. Satellite retrieval is very often an ill-posed prob-

lem. Retrieval schemes have to optimize the use of com-
plementary observations and ancillary data. Merging of
different satellite observations is an attractive option.
[14] 2. For an efficient use of the satellite information in

the models, consistency has to be reached between the three
sources of land surface information, as well as between the
different satellite-derived parameters if several of them have
to be used. The simultaneous use of the three spatially
different information requires special attention to the scaling
problem.
[15] 3. Each information source having its own errors, it

is important to design techniques that can handle these
uncertainties.
[16] 4. The satellite derived parameters have to have

consistent characteristics globally and over long time series,
especially for climate monitoring objectives, thus imposing
strong constraint on the satellite intercalibration.
[17] These new challenges make it necessary to develop

new strategies. In this paper, we will focus on the method-
ologies to put in place to optimize the combined use of
satellite, model, and in situ data, and in particular, to
optimize the use of satellite data in the framework of land
surface modeling. We do not intend to examine each issue
and to suggest solution for each one, but rather to suggest a
few elements of reflection, describe few general strategies,
and list original efforts to make progress.
[18] We will first discuss the different possibilities and

describe some promising methodologies. The discussion
will be limited to schemes that can be realistically imple-
mented at a global scale. Second, examples of derived
parameters using these types of techniques will be briefly
presented in order to illustrate the concepts. Although these
examples concern the hydrometeorology, similar methodol-
ogies can be applied to other parameters as well. The
conclusion tends to describe, pragmatically, how to proceed,
insisting on the necessity of a dialog between modelers and
satellite product experts to optimize the use of satellite
observations in the land surface modeling framework.

2. Retrieval Methodologies

[19] The radiation that impinges on the satellite is often
the result of several contributions from the land surface.
Even for a homogeneous field-of-view, the satellite will
receive radiation from the soil, the vegetation, and poten-
tially the snow. The problem is even worse for a heteroge-
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neous pixel. Depending on the wavelength, contamination
from the atmosphere (gases, clouds, or rain) might also
interfere with the signal and needs to be accounted for by
using ancillary atmospheric data sets from satellites, mod-
els, or mixed outputs (e.g., reanalysis). Retrieval of land
surface parameters from the satellite measurement is thus
often an ill-posed problem that can require multiple and
independent measurements as well as quality a priori
information in order to disentangle the mixing effects in
the observations.
[20] There are different solutions to retrieve one or

multiple land surface parameters, using one or several
instruments from one or different satellites at the same time.
The various solutions are now discussed, from the simplest
to the most complex ones.

2.1. Satellite-Only Methods

2.1.1. One Instrument/Multi-Instrument
[21] Methodologies are developed that use one type of

wavelengths, measured on board one satellite to derive a
single land surface parameter. In order to suppress ambigu-
ities related to the contribution from other surface parame-
ters, these algorithms exploit the complementarity of close
frequency bands, of various incidence angles or the tempo-
ral information available from consecutive measurements.
The Normalized Difference Vegetation Index (NDVI) for
instance combines visible and near infrared observations to
isolate the effect of the vegetation photosynthetic activity on
the absorption in the visible and limit the contribution from
the soil [e.g., Tucker, 1979; Tucker et al., 1985]. The soil
moisture index developed by Wagner et al. [2003] from the
ERS scatterometer observations at 5.25 GHz capitalizes on

the multiangle observations and the temporal evolution of
the signal to subtract the vegetation effect.
[22] These methods have the advantage to provide param-

eters that are independent from other sources of informa-
tion, for potential comparison with other estimates.
However, the apparent simplicity of the algorithm should
not mask specific difficulties, like the treatment of the
atmospheric contamination in the case of the NDVI
[Gutman, 1999]. In addition, these methodologies can suffer
from their limited spectral range. This can translate into
saturation effect: for instance, although the NDVI offers a
good sensitivity over crops and grasslands, it tends to
saturate over denser vegetation types. The retrieval can also
experience interference with other surface parameters. As an
example, the estimation of snow depth from the differences
of two passive microwave channels is hampered by con-
tamination from vegetation as well as by the snow meta-
morphism during the winter season [Kelly et al., 2003].
Since the variations of the contaminating variables are
treated implicitly as random noise, they affect the quality
of the retrieved quantity.
[23] A strategy to avoid such deficiencies consists in

gathering satellite observations in different wavelength
ranges that have different sensitivities to the various surface
parameters. The synergetic use of satellite observations
helps separate the contribution of the various parameters.
For example, in clear sky condition, passive microwave
signal in window channels depends on both the surface
temperature and the surface emissivity: another source of
information like thermal infrared measurements can help
untangle the contribution of these two parameters [Aires et
al., 2001].

Figure 1. Schematic representation of the complex links between the three sources of land surface
information.
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[24] The sensitivity of the different satellite observations
for a given parameter has to be investigated, to analyze their
complementarity, and to assess the ability of combinations
of these satellite measurements for the estimation of the
parameter. A detailed information content analysis has to be
performed, on a global basis, to select the optimum satellite
information to be merged.
[25] The estimation of one parameter using several wave-

length ranges can involve one satellite only if the various
instruments are on the same platform. This could be the case
for precipitation retrievals that would use the synergy
between the radar and the radiometer on board the Tropical
Rain Measuring Mission (TRMM). In the case of multiplat-
forms, the appropriate time window has to be selected to
allow meaningful merging of the information. In both cases,
the satellite measurements from different instruments have
to be collocated in space, with potential problems related to
the various spatial resolutions.
[26] An additional benefit of satellite data fusion is that

the retrievals are more robust to noise since they use more
information. They can also be less sensitive to missing
data in one sensor. Furthermore, it can help fill up
temporal and spatial gaps. This is the case when infrared
observations from geostationary satellites are used to
complement the rain estimates from microwave instrument
on board polar satellites like in GPCP [Adler et al., 2003].
It can also help ‘‘calibrate’’ one retrieval with the other:
this is the case when the passive microwave rain retrieval
is used to ‘‘calibrate’’ the rain estimates from infrared
measurements.
[27] A multi-instrument retrieval scheme in this paper

refers to an algorithm that uses simultaneously or hierarchi-
cally the observations of two or more instruments in order to
benefit from the instrument synergy. The a posteriori
combination of retrievals derived independently from each
instrument does not constitute a multi-instrument retrieval
since there is no benefit from the synergy of instruments in
this case.
2.1.2. One Parameter/Multiparameter
[28] For the retrieval of a surface parameter (e.g., the soil

moisture), it is often necessary to use an auxiliary informa-
tion (such as surface temperature). This auxiliary informa-
tion can be derived from another satellite information, and
no control is possible on the coherency between these two
quantities. Independent and inconsistent calibration or
assumptions can be made for the two retrievals. These
various parameters put together can lack coherency, or
contrarily be too much dependent, because they are derived
from a very limited number of observations. Even if the
independence of the retrieved parameters was satisfactory
and would allow for the intercomparison of the retrieved
products, it is clear that the next step would consist in using
together multiple satellite observations and benefit from
their synergy in the retrieval of multiple surface parameters.
One major advantage of merging satellite observations for
multiple parameter retrieval is that the various retrieved
parameters are coherent. This means that the same set of
assumptions is adopted for the two retrieved parameters,
that these assumptions are controlled and known. This also
constrains part of the incoherencies among parameters
(incompatible surface temperature and soil moisture for
instance).

[29] Once the satellite observations are merged, in spa-
tiotemporal collocation, two basic strategies can be used:
the retrieval of the different parameters can be hierarchical
or simultaneous. In a hierarchical scheme, a major surface
parameter (e.g., the surface temperature) is first retrieved by
using all available satellite observations. Then, this retrieved
parameter is used together with the satellite measurements
for the subsequent retrieval of another variable (e.g., soil
moisture). This approach uses the fact that some surface
parameters are dependent on others and that some specific
retrieval algorithms need to follow this dependency struc-
ture. As an example, within the International Satellite Cloud
Climatology Project (ISCCP) [Rossow and Schiffer, 1999],
using IR observations from both geostationary and polar
satellites, the cloud presence is first analyzed and then, for
clear scenes, the surface skin temperature is estimated. An
inconvenience of this scheme is the cascade of errors in the
suite of retrieval algorithms. The other approach consists in
performing the multiparameter retrieval at the same time in
the algorithm. One advantage of this strategy is that the
uncertainty characterization is easier. The solution is deter-
mined simultaneously for each parameter (called ‘‘global
solution’’). This is preferable from an optimization point of
view than a solution built piece by piece. The optimization
process might be more difficult, but it is easier to obtain a
compromise choosing a solution that satisfies all the satellite
observations.
[30] A multiparameter retrieval scheme refers to the

simultaneous or hierarchical retrieval of two or more
parameters using a single algorithm in order to benefit from
the coherency among the retrieved variables. Again, the a
posteriori association of various parameters retrieved by
independent algorithms does not constitute a multiparameter
retrieval because the dependence among retrieved parame-
ters is not exploited.
2.1.3. Illustration With a Synthetic Example
[31] To illustrate the two concepts of multi-instrument

and multiparameter retrievals, a highly idealized example is
presented here that uses information content ideas
[Tarantola, 1987]. The general principles are developed in
the classical references [Twomey, 1977; Rodgers, 1976,
2000]. We use a bivariate/two-measurement linear case
(or a linearized nonlinear model):

F ¼ A � f þ e ð1Þ

where f = (f1, f2) is the state vector composed by two
geophysical variables (with covariance matrix Sf) that we
intend to retrieve from the measurements F = (F1, F2), e =
(e1, e2) is the measurement noise (with covariance matrix
Se) and A is the forward model (linear in this case) that
needs to be inverted.
[32] A Bayesian solution to the inverse problem is, under

Gaussian hypothesis:

f ¼ fg þ A0 � Se�1 � Aþ S�1
f

h i�1

� A0 � S�1
e � F � Fg

� �
ð2Þ

where fg is the first guess for f to which is associated the
measurement Fg, A

0 is the transpose of matrix A, Se is the
covariance matrix of the measurement errors e, and Sf is
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the covariance matrix of the first guess errors [Chédin et al.,
1985]. The uncertainty matrix on this retrieval is:

Q ¼ A0 � S�1
e � Aþ S�1

f

h i�1

ð3Þ

For illustrative purpose, we use the following numerical
values:

Sf ¼ 3 cor f1; f2ð Þ �
ffiffiffi
3

p ffiffiffi
4

p

cor f1; f2ð Þ �
ffiffiffi
3

p ffiffiffi
4

p
4

� �

Se ¼
1 0

0 2

� �

and

A ¼ 0:8 coef f1;F2ð Þ
0:1 0:9

� �

The values of Sf and Se impose that coef(f1, F2) = [cor(f1,
f2) � 0.08]/0.9. Only cor(f1, f2), the correlation between the
two geophysical variables f1 and f2, is now varying.
[33] This formulation allows to study the sensitivity of

q = Q(1,1) (i.e., the uncertainty estimate on f1) to the pa-
rameter cor(f1,f2). In Figure 2, three curves for three dif-
ferent retrieval configurations are represented:
[34] 1. In case 1, only one observation F1 and one

retrieval f1 are considered in the top curve (continuous line).
Since the measurement F2 is not used here for the retrieval

of f1, coef(f1,F2) has no impact on q and the curve is flat
with an uncertainty level at:

q ¼ 0:8 � 1�1 � 0:8þ 1=3
� ��1¼ 1:0309

[35] 2. In case 2, a unique variable f1 is retrieved but the
two observations F = (F1, F2) are used in the dotted curve.
As expected, the higher cor(f1,f2) is, the higher coef(f1, F2)
is, and the lower the uncertainty q becomes.
[36] 3. In case 3, the dotted/dashed curve is for the full

problem that considers the two measurements F = (F1, F2)
and the two variables to be retrieved f = (f1, f2). In this
configuration, again, the higher coef(f1, F2) is, the lower the
uncertainty becomes. Furthermore, it can be noticed that
when cor(f1,f2) is lower than about 0.6, retrieving only f1
gives better results than retrieving both geophysical varia-
bles f1 and f2, meaning that the retrieval of f1 is hampered,
part of the information F = (F1, F2) being ‘‘diverted’’ to
retrieve f2 which reduces the quality of the f1 retrieval.
When cor(f1, f2) is higher than 0.6, the uncertainty on f1,
using the same measurements F = (F1, F2), can decrease
dramatically and make a significant difference with case 2.
This improvement is only due to the simultaneous retrieval
of the second geophysical variable f2. The explanation is
that f1 being correlated to f2 and the second measurement F2

being a f2 information-carrier, the retrieval of f1 benefits
from this indirect relationship.
[37] This example illustrates well how information about

the dependencies among the geophysical variables can be
extremely beneficial for the retrieval.

Figure 2. Sensitivity of the error estimate to cor(f1, f2), the correlation between the two geophysical
variables to retrieve: for one retrieval and one measurement (solid line), for one retrieval and two
measurements (dotted line), and for two retrievals and two measurements (dot-dashed line).
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[38] It has been shown that multi-instruments cannot
bring improvements in some situations (no synergy) but
that it will not degrade results. On the contrary, the use of
multiparameter techniques can be detrimental (when there is
independence of the retrieved parameters) but is extremely
beneficial in some cases (strong correlations among geo-
physical variables). No dogma in the use of such or such
methodology should be imposed: each application has its
specificities and the needs have to be carefully analyzed to
design the optimum retrieval scheme. The good news is that
with the kind of simple tools used in this section, we can
quantify the possible synergies and therefore the type of
approach to be used.
[39] The example provided here is a linear model, or

the linearization of a nonlinear model. It should be
pointed out that the linear methods could be insufficient
because the relationships can be highly nonlinear among
the surface variables. This is particularly true with surface
problems that undergo high discontinuities, with threshold
effects and very different interactions depending upon the
situations. This means that the synergy can be different in
some situations and the use of nonlinear techniques is a
plus.
2.1.4. Technical Implications for the Multivariate Case
[40] In this section, we comment on some technical

implications arising when multivariate strategies are used.
The major requirement for this kind of approaches is the
exploitation of the dependencies between the measure-
ments, that need to be coherent, and between the geophys-
ical variables to be retrieved.
[41] We first consider multichannel, multi-instrument or

multiplatform algorithms. Such retrieval strategies need to
use coherent measurements. Is it possible to rely on RTMs
to elaborate physically based retrieval algorithms? The
radiation emerging from the surface is sensitive to a large
number of surface parameters, through intricate mechanisms
for each surface type. For instance, even for a bare soil in
the microwave, the response will depend upon the surface
roughness (at small and large topographic scales), upon the
dielectric properties of the medium (related to the soil
composition, texture, and humidity), and potentially upon
volume scattering below the surface. In addition, it is also
related to the observation characteristics, its wavelength, its
incidence angle, and its polarization among other parame-
ters. The interactions between the surface and the radiation
are complex to model, being dependent on a large number
of highly variable and difficultly accessible parameters.
Efforts have been made to better understand the mecha-
nisms responsible for the interaction between the surface
and the radiation, from both theoretical analysis and field
experiments, at all the wavelength ranges of interest.
Ground or airborne based measurements have also been
performed to help develop the RTM. The resulting RTMs,
even the most elaborated ones, still have difficulties to
perform well for all environments at the global scale,
although they can be efficient for the specific conditions
for which they have been tuned. Even assuming that a
perfect land surface RTM exists for a given wavelength
range, would the inputs it will require (e.g., soil composi-
tion, texture, surface roughness, vegetation density, geom-
etry, water content) be available on a global basis with a
resolution compatible with the satellite one and with the

required accuracy? The problem is even more complex
when using multiple instruments that cover different
wavelength ranges: the RTM should be coherent and
perform identically well over the full frequency domain.
Even for the same wavelength range, it can be difficult to
simulate the radiative transfer with the same accuracy
when combining active and passive modes. For instance,
there are very few RTMs developed to simulate both the
active and passive responses of the surface in the micro-
wave for a joint analysis of microwave radiometer and
radar observations.
[42] Most classical inversion techniques are able, and

were actually designed to deal with multiparameter
retrievals. In equation (2), an inversion formula was
given, describing the Bayesian estimator with Gaussian
hypotheses. Classical variational assimilation or iterative
methods are also based on the same estimator. Neural
Network (NN) schemes are technically different but are
based on the minimization of similar quality criteria, so
the essence of the estimation is very similar, and the
same type of a priori information is required (e.g.,
measurement characteristics, statistics on the variable
dependences). Each technique needs to use an informa-
tion describing the dependencies among the physical
variables to be retrieved. (First guess error dependencies
are also very important, for example in variational assim-
ilation [Rabier et al., 1998].) When a physical relation-
ship linking two or more of the variables exists, it is
extremely interesting to use it in the retrieval process. For
example, during the retrieval of atmospheric water vapor,
if one instrument provides information on the total
vertical content and another instrument gives a profile
description, then the total content can constrain the profile
retrieval. This type of physical constraints can be used in
each step of the iterative inversion methods or it can be
added as an additional strong constraint in the quality
criterion used by statistical techniques. Most of the time,
however, the dependencies are described statistically. In
the estimator of equation (2) (Bayesian, iterative, or
variational assimilation), it is given by the covariance
matrix Sf. For neural networks, the learning data set
describes implicitly the various complex relationships
and the NN disentangles them during the learning stage
to reproduce them adequately. This approach could appear
easier to use because no hypothesis is formerly required a
priori. In reality, extreme care needs to be exercised
during the development of the learning data set, with
sometimes the use of complex a priori information. For
example, in the work by Aires et al. [2001] the distribu-
tions of liquid water cloud top temperature are carefully
analyzed and then used in the development of the
learning data set.
[43] Finally, as already mentioned in the previous

section, the relationships between the geophysical varia-
bles can be dependent on the situation. This is referred to
as the nonlinearity of the a priori relationship and the
retrieval scheme has to be flexible enough to account for
it. A NN inversion is by nature designed to deal with this
difficulty. For classical approaches, a sensitivity analysis
of the a priori information must be conducted. For
example, the first guess errors on specific humidity are
dependent on the atmospheric situation and for atmo-
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spheric temperature, a different covariance matrix is used
for each 10� latitude bands [Rabier et al., 1998].

2.2. In Situ Measurements of Land Surface Model
Outputs to Help Satellite Retrievals

2.2.1. In Situ Measurements
[44] The complexity of surface parameter retrieval

together with the inadequacy of current surface RTMs make
the use of in situ measurements an attractive source of
additional information.
[45] First, in situ measurements are essential to under-

stand at a local and detailed scale how the parameters
interact with the radiation. This is generally done during
well-documented measurement campaigns that combine in
situ measurements of the land parameters with coincident
observations from ground-based or airborne instruments
(e.g., radiometers, radars, lidars). However, this analysis
can also be performed with coincident in situ and satellite
measurements: it enables comparisons over longer time
series and more diverse environments, provided that a large
data bank of consistent in situ measurements exists for the
variable of interest. This exercise has been recently con-
ducted for the surface soil moisture using the Global Soil
Moisture Data Bank [Robock et al., 2000] and a suite of
satellite observations [Prigent et al., 2005a], as well as for
the snow depth using a large collection of in situ measure-
ments in the Northern Hemisphere in coincidence with
satellite measurements [Cordisco et al., 2006].
[46] Second, in situ measurements can also be exploited

for the parameterization of the retrieval algorithms. Many
surface retrieval algorithms are actually based on the
parameterization (also called calibration) of regression
models between the satellite observation and the surface
variable of interest. When performed on a reduced number
of locations during a restricted period of time, the validity of
the parameterization for other conditions is questionable.
For instance, when developing a soil moisture algorithm,
the large-scale variability of the vegetation can be misrep-
resented by a parameterization performed on a local basis.
For a retrieval algorithm to be valid globally, its parame-
terization needs to use as diverse as possible in situ
measurements to sample local and large-scale variabilities.
The parameterization data set should account for the spatial
and temporal variability of the parameters in the satellite
observations. Note that depending on the variable, the
relevant temporal scale can span from the hour to several
years.
[47] Finally, in situ measurements are necessary for the

evaluation of the retrieval algorithms. This imposes that
independent measurements are available for the parameter-
ization of the algorithm and for its evaluation. A portion of
the in situ measurement data set is used to parameterize
the retrieval algorithm (i.e., the learning data set) and the
remaining part can be exploited to validate it (i.e., the
testing data set).
[48] One essential difficulty in using in situ measurements

is related to the scaling problems. Models and satellite
measurements have different spatial resolutions, which
makes difficult the direct comparison with point in situ
measurements. The link has to be found between the two
scales (i.e., local measurements and large pixels from
models or satellite observations) (see section 3.3).

[49] In addition, except for well-organized measurement
campaigns [e.g., Leese et al., 2003], the large majority of in
situ measurements performed regularly by multiple institu-
tions is very difficult to access, and can show very different
accuracy. An effort has to be done to create homogeneous
and quality-controlled collections of the key surface varia-
bles that are not part of the weather station routine measure-
ments. Entekhabi et al. [1999] already insist on this
necessity for hydrological purposes. The Global Soil Mois-
ture Data Bank [Robock et al., 2000] is such a database for
the soil moisture and similar efforts should be encouraged
for other variables.
2.2.2. Land Surface Models
[50] More and more studies couple LSM outputs and

satellite observations to help solve the retrieval of land
surface parameters by using the relationships between
surface variables and satellite observations. The inversion
problem being ill-posed, the LSM can provide auxiliary
information that helps constrain the retrieval.
[51] Outputs from a LSM can be directly adopted as

auxiliary input information to the retrieval algorithm. For
instance, a snow depth retrieval scheme could require a
LSM derived surface temperature information as input
[Boone et al., 2006].
[52] Differently, LSM outputs can be used to generate

databases from which a retrieval algorithm is derived. For
example, Lakshmi et al. [1997] adapt a LSM and couple it
to a RTM to simulate soil moisture and the corresponding
microwave responses that could be the basis for a retrieval
algorithm. In the work by Aires et al. [2005], the link
between the modeled surface variables and the satellite
observations is statistical: a database of coincident multi-
satellite observations and soil moisture model outputs is
created and an updated estimation of the soil moisture is
deduced. In these cases, the retrieval is clearly linked to a
specific LSM.
[53] The LSM can also be part of an iterative least square

inversion schemes. For instance, Ramillien et al. [2005]
develop such a method based on the LaD model [Milly and
Shmakin, 2002] to separate the contribution of the various
water reservoirs (surface water, soil moisture, ground-water,
and snow pack) that are vertically integrated within GRACE
gravimetric measurements.
[54] The important message is that the choices should be

clearly stated so that the user of the retrieved products
knows about the different assumptions and about the
potential links between the variables, other instruments,
and other variables. Otherwise, satellite retrieved parameters
could be illegitimately used to validate LSM from which
they are not independent.

2.3. Constraining Land Surface Models With
Satellite Data

[55] Methodologies have to be developed to combine
optimally satellite observations and land surface schemes
in order to produce better final products and more
predictability. As already mentioned, it is very difficult
to simulate the satellite observations directly from the
surface parameters (e.g., soil moisture, vegetation, snow)
using a RTM. As a consequence, traditional direct assim-
ilation of raw satellite observations is difficult. Satellite
remote sensing is a solution to constrain the model for
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one or several variables over large-scale and long time
periods. The retrieval parameter can be assimilated as a
state variable in the model, or as a geophysical variable
linked physically to the state variables of the model (i.e.,
wind, temperature, humidity, surface fluxes for soil mois-
ture retrievals [Mitchell et al., 2004]).
[56] The recent interest for techniques that evaluate si-

multaneously different outputs predicted by the model
[Gupta et al., 1999; Franks et al., 1999; Beven and Freer,
2001; McCabe et al., 2005] is driven by the fact that the
calibration of one variable only can bias the model toward
that variable while the others are not well reproduced.
Multiobjective calibration tends to evaluate the set of model
parameterizations that best reproduces multiple outputs.
However, several parameter combinations can reproduce
similarly different sets of one output (the ‘‘equifinality’’ as
defined by Beven and Freer [2001]). Likelihood methods
such as the Generalized Likelihood Uncertainty Estimation
(GLUE) are developed within the LSMs to select the
parameterization that fits the observed parameters better
[McCabe et al., 2005].
[57] Variational assimilation is a particular technique to

perform the assimilation of observations (satellite observa-
tions, weather station measurements, radiosondes) into a
numerical model [Ide et al., 1997]. Kalman filtering is
another technique that emphasizes the sequential assimila-
tion in forecasting problems. In the work by Reichle et al.
[2002a], soil moisture is assimilated using the ensemble
Kalman filter, an extension that uses ensembles of runs to
estimate the error covariances instead of propagating them
theoretically which is computationally intensive. An exper-
iment in similar conditions is conducted by Reichle et al.
[2002b] to test the extended Kalman filter designed for
nonlinear problems. Nudging is also a possible way to
constrain models with observations [Mitchell et al., 2004].
[58] A simpler approach consists also in using the satellite

remote sensing soil moisture to initialize climate model
simulations [Walker and Houser, 2001]. Other more spe-
cialized methods have been developed. For example, in the
work by Cordisco et al. [2006] a surface model is calibrated
by using in situ snow depth measurements from a network
of stations.
[59] For use in LSM, the absolute requirements on the

satellite retrievals in terms of accuracy or spatial and
temporal resolutions are often unclear (see the analysis for
soil moisture in the work by Walker and Houser [2004]).
However, there is a clear demand for consistency between
the satellite retrievals and the model variables, prior to the
use of the satellite retrievals within the model. Berg et al.
[2003] insist on the impact of potential biases in data sets to
force models and recommend the implementation of bias
reduction scheme to reduce the associated errors. Reichle et
al. [2004] compare soil moisture estimates from Scanning
Multichannel Microwave Radiometer, modeled soil mois-
tures, and in situ measurements, for nine years all over the
globe. The time averaged fields from the model and the
satellite agree well but the magnitude and variability of
the soil moisture estimates are very different. Local bias
correction or rescaling have to be performed before assim-
ilation of the satellite data into LSMs: tuning the local
statistics of the satellite retrievals to the model ones can be a
solution.

[60] Classical variational assimilation in surface models
suffers from limitations. First, surface parameters can have a
very strong spatial inhomogeneities with strong discontinu-
ities. Second, relation between surface parameters and
observations can be highly nonlinear. Lastly, no RTM
dedicated to surface is fully satisfactory. For all these
reasons, we believe that special techniques need to be
developed when using observations into a surface model.
Instead of the traditional approach that assimilates directly
the satellite observations, we suggest to use the inverse
model derived from a remote sensing algorithm. This has
various benefits: (1) It avoids the estimation of the Jaco-
bians of the RTM, (2) it does not add up uncertainties from
the forward model to the uncertainties from the Jacobians,
and (3) it makes it possible to work directly with the surface
state variables that are more directly related to the numerical
model.

3. Ancillary Data Processing

[61] Several processing steps are often necessary, espe-
cially when homogeneous long time periods of accurate
global products are expected, derived from multisatellite
approaches. Although sometimes neglected and often stren-
uous to perform, these processings are crucial if quality land
surface parameters are required. It is particularly important
to quantify the errors associated to these treatments (or their
absence) and to document them well.

3.1. Satellite Calibration

[62] A reliable instrument calibration is a prerequisite for
any remote sensing algorithm. The calibration has to be
stable over long time period and free from any biases. For
instance, Colton and Poe [1999] performed significant
intercalibration work on the series of SSM/I microwave
instruments. Even if only one type of instrument is in-
volved, satellite drift within the life span of one given
satellite and satellite intercalibration between successive
satellites of the same family can be very difficult to achieve.
The analysis of the AVHRR NDVI over long time series
suffers from these difficulties [Gutman, 1999]. In addition,
when trying to cover the whole globe and the full diurnal
cycle, the simultaneous use of several satellite types is nec-
essary and stringent constraints are then imposed on the
satellite intercalibration. For instance, the ISCCP [Rossow
and Schiffer, 1999] that supplies global cloud information
every three hours, combines all the visible and infrared
observations from the NOAA polar orbiters and the geo-
stationary satellites to provide both the spatial and temporal
coverages. A huge effort has been dedicated to the accurate
radiance calibration and intercalibration of all the instru-
ments over the long time series to archive the ISCCP results
[Brest et al., 1997].
[63] In addition to a detailed and systematic analysis of

each sensor calibration from an engineering point of view,
various methodologies have to be developed to intercali-
brate the observations. In order to perform multiparameter
retrievals from multiple satellite observations, the calibra-
tion of the instruments needs to be consistent at several
levels. First, the calibration has to be consistent among the
various channels of a given instrument. From an informa-
tion theory point of view, it is not optimal to calibrate
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independently the various channels (essentially by monitor-
ing the mean and standard deviation over the time, or by
indirect comparison with in situ measurements). The
covariance among channels can be exploited to perform
the calibration and this potential should be examined. At
least, monitoring the interdependence among the channels
can help check the calibration quality. However, caution has
to be exercised in this procedure as too stringent constraints
could mask some real extreme behavior in one channel.
Second, the intersatellite calibration has to be performed
and consistency has to be ensured across platforms. Obser-
vations from coincident overpasses can be compared, pro-
vided that the measurements are performed exactly in the
same conditions (frequency, incidence angle, polarization);
otherwise, products retrieved from the two coincident sat-
ellite measurements can be compared. Rigorous statistical
comparison of RTM calculations and satellite observations
can also be performed, with the same assumptions for the
two satellites, in order to diagnose the radiance biases
between instruments. The retrieved products across satel-
lites can also be compared.
[64] A generic calibration method that includes many of

these above aspects is under development at NOAA/NES-
DIS to intercalibrate radiometer in the visible, infrared, and
microwave [Weng et al., 2005]. It has already been applied
to MSU. In the Global Precipitation Mission framework,
efforts are also conducted to intercalibrate the passive
microwave imagers on a common standard to ensure con-
sistency among precipitation products [Kummerow et al.,
2001; see also http://mrain.atmos.colostate.edu/LEVEL1C/
index.html].
[65] Having together all the satellite observations, and

using the same methods and data to calibrate them would
inevitably benefit the retrieval. For instance, it is worrying
to realize that there is not one uniformly calibrated set of
SSMR and SSM/I observations over the full period of
satellite operation that is easily available to the community.
A strong effort, with dedicated funding, should be supported
by the agencies to systematically apply these new calibra-
tion approaches. The resulting multiplatform calibrated data
sets should be easily accessible to the community and
would stimulate the developments of the next generation
of retrieval algorithms.

3.2. Subtracting the Atmospheric Contribution

[66] Depending on the wavelength, the satellite observa-
tions can be contaminated by the atmospheric contribution.
At low microwave frequencies, the atmospheric effect is
negligible, making this wavelength range particularly suit-
able for land surface analysis (e.g., the ERS scatterometer
data at 5.25 GHz [Prigent et al., 2001, 2005b]). For other
wavelength ranges, even if this effect is limited, it can
modulate the received signals both in time and space and be
mistakenly interpreted in terms of land surface variations.
Suppressing the atmospheric signal is particularly important
when analyzing the interactions between the land surface
and the atmosphere. Different techniques are adopted to
eliminate this effect. For instance, the traditional NDVI
processing relies on the selection of the maximum value of
the NDVI for a location for a given period of time to
minimize the atmospheric contamination [Holben, 1986].
Physical methods based on radiative transfer calculations

have also been developed. In the ISCCP analysis the surface
skin temperature is retrieved from clear IR radiances using
the TOVS products to specify the atmospheric temperature
and humidity profiles and a RTM to calculate the atmo-
sphere radiative contribution. The passive microwave obser-
vations up to 37 GHz are adopted in a large number of
studies to provide information on soil moisture [Vinnikov et
al., 1999], snow [Kelly et al., 2003], or floods [Sippel et al.,
1998]: usually, the brightness temperatures are directly used
in the algorithms, assuming that the atmospheric effect is
negligible. However, as noted by several authors [e.g., Kerr
and Njoku, 1993], atmospheric effects, especially cloud
cover, may be responsible for a large part of the 37 GHz
signal, casting doubt on the interpretation of simple bright-
ness temperature combinations solely in terms of surface
properties. In addition, although very sensitive to some
surface parameters like the snow [Cordisco et al., 2006],
the 85 GHz channel that is present on the SSM/I or TMI is
often not used because it is deemed too contaminated by the
water vapor absorption. In order to avoid such limitations,
some work has been conducted to extract from the passive
microwave observations the information that is directly
related to the land surface, its emissivity, by removing the
contributions from the atmosphere, clouds, and rain using
ancillary satellite data, atmospheric profiles from meteoro-
logical reanalysis, and a RTM [Prigent et al., 1997, 2006].
[67] This preprocessing step is often strenuous, as it can

involve significant amount of coincident ancillary informa-
tion as well as complex RTM to estimate the atmospheric
contribution. However, it is necessary if unambiguous
surface information is required, with good accuracy.

3.3. Scaling

[68] Spatial and temporal scales of observed or measured
surface variables cover a wide range. General principles of
upscaling (i.e., aggregation (when the scale change is
performed in the same variable, which is not always the
case) or downscaling (i.e., disaggregation) have been de-
veloped to link one scale to another but the definition of
such general terms is sometimes confusing. In this paper,
we simply refer to the ‘‘downscaling’’ (respectively
‘‘upscaling’’) as a technique that increases (respectively
decreases) the spatial resolution of the original data.
[69] ‘‘Regionalization’’ [Von Storch et al., 1993] is one

application of the downscaling: it makes it possible to
describe the specific behavior of a region by combining
large-scale outputs from a climate model with small-scale
information from the surface. It is not directly of interest in
the study. Another application of the down-/up-scaling is
the simple scale change of a particular field with the same
variable in both scales: the terms ‘‘aggregation’’ for
‘‘upscaling’’ and ‘‘disaggregation’’ for ‘‘downscaling’’
could be used for clarity purpose. This (dis)aggregation is
performed for various reasons. For example, the downscal-
ing from a satellite estimate or a climate output to a local
measurement allows for the comparisons of the sources of
information and can be used for validation or the calibration
of models and retrieval algorithms. Techniques for (dis)ag-
gregation require some knowledge of the scale spectrum of
variation magnitude.
[70] In dynamical/physical approach, a physical model

describes the dynamics of the system at the regional
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resolution of interest. The physical model is then run under
some constraints coming from the other information scale.
This can be done through simple forcing, nudging, or
(variational) assimilation. The inconveniences of this ap-
proach are twofold: such physical model is not always
available and it can be computationally prohibitive.
[71] Statistical methods try to infer cross-scale relation-

ships using a random or a deterministic function. The
relationship is deduced from a data set of pairs of cross-
scale samples, derived from observations (empirical scale
change) or from model outputs (model-based scale
change). A statistical technique (e.g., singular value
decomposition, canonical correlation analysis, regular re-
gression, classification, or neural networks) is ‘‘trained’’
to reproduce the link between each pair. Different
approaches can be used: (1) The weather generator is a
stochastic model defined to describe the evolution of the
(dis)aggregated field. For example, a Markov chain can
be used, allowing for temporal coherency in the field.
This approach is essentially a complex random generator
that depends upon cross-scale information. The sample
data set is used to calibrate the stochastic model. (2) In
the weather typing approach, weather regimes are defined
(by using the data set of samples) and a classification
algorithm links one scale-field of the weather regimes to
the other scale in a deterministic or stochastic way. (3) In
the transfer function method, a deterministic or stochastic
model is defined to perform the cross-scale transfer, using a
linear regression technique (e. g., singular value decomposi-
tion, canonical correlation analysis, regular regression) or
a nonlinear one (e.g., artificial neural networks [Cavazos,
1999], kriging [Biau et al., 1999]). Weather typing could
also be included in this general approach when considering
the categorization of the transfer function response. Other
techniques are interpolation schemes (e.g., cubic spline,
geostatistics).
[72] Statistical methods are computationally inexpensive

and very flexible so that they can be adapted to specific
situations. However, their extension to unobserved condi-
tions is questionable (for global warming experiments or for
regions not yet observed).
[73] The data set used to parameterize the statistical

models has to describe correctly all the relationships among
the variables. Spurious results such as artificial correlations
can be misleading. Furthermore, small-scale heterogeneities
relevant to the (dis)aggregation must be represented. For
example, a few ground stations inside a large-scale cell can
help estimate this heterogeneity. When this data set is
available, the (dis)aggregation process uses explicitly or
not this heterogeneity information. Some methods require a
statistic-only information (geostatistics use a variogram
(covariance of a same variable but at two varying distant
locations) [Wackernagel, 2003]) but this information might
not represent well enough the spatial nature of the infor-
mation, in relation with surface properties (vegetation,
elevation, geology of the soil, etc.). In this case, very fine
geographic information must be extracted from the spatial
patterns in the observed or modeled output data sets. The
limitation of this approach is that the fine spatial informa-
tion is region-dependent and cannot be extrapolated to other
regions. Depending on the particular problem to solve and
the quality of the available data set, a compromise will be

find between using very fine-scale information specific to a
region and more widely applicable statistic analysis.

4. Examples of Retrieved Surface Parameters
Using Some of These Methods

4.1. Surface Skin Temperature: An Example
of Multisatellite/Multiparameter Retrieval

[74] The surface skin temperature and the soil moisture
largely control energy and water exchanges at the land-
atmosphere interface. The skin temperature represents the
soil skin temperature for bare soil, the canopy surface
temperature in densely vegetated region, and an average
of the above for sparse vegetation. Measurements of the
skin temperatures are required to study the energy and water
exchange processes at the land-atmosphere interface, with
time resolution high enough to resolve the diurnal cycle
under all synoptic conditions, and covering a long enough
period to examine how different seasonal and interannual
conditions affect them.
[75] In situ surface skin temperature can be calculated

from observations with an infrared radiometer, if the land
surface emissivity is known: this measurement is not
performed at weather stations and is not part of the
conventionally measured data. Skin temperatures have been
estimated from satellite infrared observations, with the
limitation that cloud free observations are required (i.e.,
infrareds are blocked by clouds). Microwave land surface
skin temperature retrieval is a very promising complement
to infrared estimates, with the significant advantage that it
can be effective even under cloudy conditions. However,
because of the larger surface emissivity variations in the
microwave than in the infrared, a combined analysis is
required to isolate the temperature variation accurately.
[76] The analysis of microwave observations over land to

determine atmospheric and surface parameters is still lim-
ited because of the complexity of the inverse problem. A
Neural Network (NN) having the particularity of using first-
guess information has been developed in [Aires et al., 2001]
to retrieve simultaneously the surface skin temperature, the
integrated water vapor content, the cloud liquid water path,
and the microwave surface emissivities between 19 and
85 GHz over land from SSM/I observations. The simulta-
neous retrieval of all these quantities improves the results
for consistency reasons. A database to train the NN has been
calculated with a RTM and a global collection of coincident
surface and atmospheric parameters extracted from NCEP
reanalysis, from ISCCP data, and from microwave emissiv-
ity atlases previously calculated. The results of the NN
inversion are satisfactory. The theoretical r.m.s. error (based
on radiative transfer simulations) of the surface tempera-
ture (Ts) retrieval over the globe is 1.3 K in clear sky
conditions and 1.6 K in cloudy scenes. Similar methodology
has also been applied with success over snow and ice
regions [Prigent et al., 2003b].
[77] The thorough evaluation of the retrieved product is

difficult. In the absence of routine in situ surface skin
measurements, retrieved Ts values have been evaluated by
comparison with the surface air temperature Tair measured
by the meteorological station network [Prigent et al.,
2003a]. The Ts � Tair difference shows all the expected
variations with solar flux, soil characteristics, and cloudi-

D22S10 AIRES AND PRIGENT: TOWARD NEW SATELLITE SURFACE PRODUCTS?

10 of 15

D22S10



ness. During daytime the Ts � Tair difference is driven by
the solar insulation, with positive differences that increase
with increasing solar flux. With decreasing soil and vege-
tation moisture, the evaporation rate decreases, increasing
the sensible heat flux, thus requiring larger Ts � Tair differ-
ences. Nighttime Ts � Tair differences are governed by the
longwave radiation balance, with Ts usually closer or lower
than Tair. The presence of clouds dampens all the difference.
After suppression of the variability associated to the diurnal
solar flux variations, the Ts and Tair data sets show very
good agreement in their synoptic variations, even for cloudy
cases, with no bias and a global r.m.s. difference of 	2.9 K
(Figure 3). This value is an upper limit of the retrieval r.m.s.
because it includes errors in the in situ data as well as errors

related to imperfect time and space collocations between the
satellite and in situ measurements.
[78] The diurnal cycle of surface skin temperature has

also been analyzed almost globally (60�N–60�S over snow-
free areas), using a Principal Component Analysis (PCA)
[Aires et al., 2004]. The first three components are identi-
fied as the amplitude, the phase, and the width (i.e., daytime
duration) of the diurnal cycle and represent 97% of the
variability. The PCA is used to regularize estimates of the
diurnal cycle at a higher time resolution. A new temporal
interpolation algorithm, designed to work when only a few
measurements of surface temperature, has been developed
on the basis of the PCA representation and an iterative
optimization algorithm using good quality monthly clima-
tological first guess information. The method is very flex-
ible: only temperature measurements are used (no ancillary
data), no surface model constraints are used (which is
interesting for the comparison to model outputs, or for the
assimilation of satellite estimates on surface models), and
the time and number of measurements are not fixed. The
performance of this interpolation algorithm has been tested
for various diurnal sampling configurations. In particular,
the potential to use the satellite microwave observations to
provide a full diurnal surface temperature cycle in cloudy
conditions has been investigated [Aires et al., 2004].
Figure 4 represents the resulting averaged diurnal cycle
amplitude of the surface temperature in June 1993. No
geostationary satellites were available at that time over large
parts of Eurasia explaining the impossibility to estimate
accurate surface temperature diurnal cycles. The next step is
to use AMSU (from NOAA platforms) or AMSR (from
Aqua or Adeos II missions) radiometers in addition to the
SSM/I instruments. The time sampling of these various
instruments should provide a better characterization of the
full diurnal cycle of Ts, even under cloudy skies.
[79] An all-weather time record of land surface skin

temperatures has been produced from the merging of
10 years of microwave SSM/I satellite measurements and
ISCCP products. The resulting global satellite observations
of land surface skin temperature is now merged with surface
weather observations of near-surface air temperature, hu-
midity, and winds to study the diurnal, synoptic, and

Figure 3. Normalized histogram of the difference between
retrieved surface skin temperature from combined micro-
wave and infrared observations and the surface air
temperature at meteorological stations, for all coincident
sites, accumulated over July and December 1992. The
diurnal cycle has been removed from the two data sets
separately.

Figure 4. Amplitude of the reconstructed surface skin temperature diurnal cycle for June 1993 (in K).
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seasonal variations of land-atmosphere energy and water
exchanges.

4.2. Soil Moisture: An Example of Synergetic Use of
Multisatellite Observations and LSM Outputs

[80] Soil moisture is a key land surface variable that
partly controls the surface energy and water exchanges at
the atmosphere interface. It is also very important for
agriculture, water management, or flood monitoring. The
SMOS dedicated mission that will provide soil moisture
estimates from measurement in L-band (1.4 GHz) will not
be launched before several years. Land surface modelers are
now producing soil moisture estimates (e.g., GSWP-2) and
there is an urgent need for consistent global data sets to
evaluate model outputs [Entin et al., 1999]. What can be
done now with the available observations?
[81] A number of existing satellite observations have

shown sensitivity to the soil moisture: it includes passive
and active microwave measurements, as well as thermal
infrared observations. Most studies are geographically lim-
ited but there are at least two global attempts. Owe et al.
[2001] derive a global soil moisture index over 9 years from
SMMR observations. The 6.63 GHz polarization difference
makes it possible to take vegetation into account whereas
the 37 GHz band gives access to the surface temperature.
Wagner et al. [2003] analyze the temporal variation of the
ERS scatterometer observations at 5.25 GHz to retrieve a
global soil water index over 10 years from ERS.
[82] We examined systematically and objectively the

sensitivity of the available satellite observations on a global
basis, in order to analyze their complementarity, and to
assess the ability of combinations of these satellite measure-
ments for soil moisture estimation [Prigent et al., 2005a;
Aires et al., 2005]. For each type of observations, the
optimum products are selected. The thermal infrared obser-
vations come from both the NOAA polar orbiters and the
geostationary meteorological satellites, as processed by the
ISCCP to obtain direct determination of the diurnal cycle of
land surface skin temperature [Aires et al., 2004]. Passive
microwave information is provided by the SSM/I from

which the microwave land surface emissivities have been
calculated; this analysis separates the atmosphere, Ts, and
emissivity contributions to the observed signal, unlike
previous studies [Prigent et al., 1997, 2006]. The active
microwave observations are extracted from the ERS scatter-
ometer. In addition, the AVHRR NDVI is used to quantify
and eventually separate the vegetation contribution from the
other factors.
[83] First, for a two year period (1993–1994), the

selected satellite observations are compared to the Global
Soil Moisture Data Bank [Robock et al., 2000] that provides
in situ soil moisture measurements in five separate regions.
This analysis makes it possible to objectively compare the
sensitivity of each measurement type to the soil moisture,
and to estimate the relative contribution of the vegetation
for each one. Most studies are limited to one instrument,
usually assuming it is the best for the given purpose, and it
is very difficult to assess the relative sensitivity of the
observations to the studied surface characteristic. The linear
correlation coefficients between the in situ soil moisture
measurements and the satellite variables are low when
considered over all regions (�0.15 for the microwave
emissivity polarization difference at 19 GHz from SSM/I
and 0.41 for the active microwave ERS scatterometer
measurements at small angles). Each satellite observation
is differently sensitive to a large number of surface charac-
teristics such as soil moisture, vegetation, soil texture, or
roughness. Some of these parameters vary strongly from
region to region but not strongly at each location and
locally, the time variability of some of these parameters
being limited, the correlation between the satellite informa-
tion and the soil moisture is much stronger [Prigent et al.,
2005a].
[84] Second, the in situ soil moisture data set being

unable to represent the full range of variability, outputs
from Numerical Weather Prediction (NWP) reanalysis from
ECMWF and NCEP along with the satellite variables have
been analyzed over the globe, for two years. Figure 5 shows
the linear correlation between the SSM/I emissivity polar-
ization difference at 19 GHz (V-H) [Prigent et al., 1997,

Figure 5. Linear correlation between the SSM/I emissivity polarization difference at 19 GHz (V-H) and
the ECMWF surface soil moisture estimates, for the 1993–1994 period.
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2006] and the ECMWF surface soil moisture estimates, for
the 1993–1994 period. A positive correlation is expected
between these two variables: with increasing soil moisture,
the emissivity polarization difference should increase. In
midlatitude regions, this is confirmed. However, strong
negative correlations dominate in semiarid regions, the
passive microwaves reacting primarily to the vegetation
density. When the vegetation density and the soil moisture
are negatively correlated, the passive microwaves vary as
expected with soil moisture only because of the opposing
effects of soil moisture and vegetation on the signal. This
confirms what was observed with in situ measurements. On
the basis of the statistical analysis of the comparison
between the NWP soil moisture estimates and the satellite
variables in addition to the understanding gained from the
study with coincident in situ measurements, a method is
derived to establish a statistical relationship between the soil
moisture and satellite observations. A NN model is devel-
oped to describe the link between the satellite observations
and the NWP soil moisture. No RTM today can accurately
replicate this link on a global basis, for the wavelength
range covered by the observations used. The NN model can
reproduce the NWP soil moisture outputs (Figure 6) with a
r.m.s. error of 5% volumetric soil moisture, close to what is
expected from the future SMOS mission retrieval (4%
volumetric soil moisture). More details are given by Aires
et al. [2005].
[85] Although the NN model cannot be strictly considered

as a retrieval algorithm because of its tight relationship with
the NWP soil moisture, the fact that the independent
satellite observations can be related to model outputs
with this level of accuracy is a positive sign for relating
these observations to the real-world soil moisture. The
fact that the NN model is able to work on a global scale
comes from the synergetic use of observations from various
wavelengths.
[86] Comparisons between the NN model outputs and the

NWP soil moisture reanalysis revealed some particular
problems with the NCEP land surface models that have
been confirmed by modelers. This statistical link can be

used to check the consistency between modeled soil mois-
ture and satellite measurements and diagnose specific model
problems (i.e., to invalidate them). We suggest applying the
same analysis to the GSWP-2 results.
[87] The soil moisture estimates from our NN model can

be assimilated in the LSM model. The necessary consis-
tency between the satellite estimate and the LSM [Reichle et
al., 2004; McCabe et al., 2005] is intrinsically verified.

5. Conclusion and Perspectives

[88] A great diversity of satellite measurements exists
today and they are sensitive to various land surface param-
eters. Although these satellite observations might not be
optimal for surface estimates, they have already shown
some potential and optimized methodologies can be devel-
oped to fully exploit these satellite data for continental
surface characterization. In this paper, innovative retrieval
schemes are suggested that benefit from the synergy
between the satellite observations, in addition to in situ
measurements or land surface model outputs. Two concrete
examples are presented for illustration: an ‘‘all weather’’
retrieval of surface skin temperature from combined micro-
wave and infrared observations and a soil moisture analysis
from the merging of multisatellite observations and LSM
outputs.
[89] This study focuses on the application of the land

surface remote sensing for land surface modeling. However,
similar methodologies can also benefit other applications
such as hydrology or agriculture as the primary objective of
these methods is to derive better land surface products.
[90] How to proceed in a practical way to extend the use

of the new methodologies and provide the community with
improved satellite land surface products?
[91] First, the multi-instrument approaches have to be

adopted, although it is more complex to put in place.
Different methods can be applied and the selection of a
specific one depends upon the application and upon the
variable of interest. The retrieval methodology has to be
clearly documented for the users and a detailed analysis of

Figure 6. Volumetric soil moisture difference between the ECMWF estimate and the NN retrieved
values for October 1993.
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the uncertainties associated with the satellite estimates has
to be performed. The underlying assumptions and the use of
any ancillary information have to be described. Modelers
are often reluctant to use remote sensing data: the retrieval
algorithms are unclear and there are doubts on their accu-
racy. As a consequence, they often prefer the in situ
measurements that they know well and that represent the
‘‘truth.’’ With better estimates of the errors, the remote
sensing data could be used more quantitatively in the
models [McCabe et al., 2005].
[92] Second, there is a strong need for consistent and

accurate calibration of satellite data, across instruments and
across platforms, over the life spans of the missions. Within
the ISCCP framework, IR and visible radiances are carefully
intercalibrated, over more than 20 years and for a large
number of platforms. Similar work has to be performed for
other sensors. Some actions have recently been undertaken
but this tedious long-term effort has to be strongly supported.
[93] Third, the in situ observations required to evaluate

the satellite retrieval and the models have to be easily
accessible, over long periods of time and covering a large
range of environments. Variables that are not part of the
routinely measured meteorological observations are gener-
ally difficult to access, although frequent measurements
might be performed all over the world. Initiatives such as
the Global Soil Wetness Database must be encouraged, to
foster the development of databases of unified, well for-
matted, and quality controlled long-term in situ measure-
ments. In addition, there is a need for the development of
measurement sites for some key variables such as turbulent
fluxes for which only a limited number of observations
exists.
[94] These efforts could be conducted within the frame-

work of a future ISLSCP initiative, that would aim at
providing a synthetic data record in which inconsistencies
among LSMs, satellite data, and in situ measurements are
reconciled to the degree possible. In order to reach these
ambitious goals, an improved communication between the
different actors of the land science community is necessary.
The link between modelers and the field experimenters has
been naturally and historically tight. There is now a neces-
sity for the satellite community to work in close collabora-
tion with the land surface modelers to understand their
needs and define common strategies. This collaboration
will benefit both communities.
[95] The next challenge of the satellite community is the

estimation of the turbulent fluxes over land, at a global
scale, which are key variables of the land surface models. It
will inevitably require a synergetic use of multiple sources
of information, including a large range of satellite observa-
tions and model outputs. This can be a very good opportu-
nity for the modelers and the satellite experts to join forces
toward a common goal.
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GISS), Hervé Douville (Météo-France), Alan Robock (Rutgers University),
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