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[1] The sensitivity of passive microwave satellite observations to snow characteristics is
evaluated, between 19 and 85 GHz, for a winter season, for the Northern Hemisphere.
The surface emissivities derived from the Special Sensor Microwave/Imager
measurements are systematically compared with in situ snow measurements at
2784 stations, in North America and Eurasia. In addition, coincident satellite responses
from active microwave sensors (ERS scatterometer) and visible observations
(AVHRR) are also analyzed. Vegetation interferes with the signal that is received by the
satellites. Snow emissivities also react to scattering by the snow grain growth that is
related to the snow metamorphism during the winter. This phenomenon increases with
frequency and is already very sensitive at 37 GHz. Passive microwaves at high frequency
(85 GHz) are very sensitive to the presence of snow on the ground, even for very low
snow depth. None of the tested satellite measurements is well correlated to the snow depth
at a global scale, making snow depth retrieval from these observations very difficult on a
global basis. The sensitivity of the satellite observations to snow characteristics depends
on local conditions. To partly alleviate these difficulties, a neural network inversion
scheme based on local statistics is developed to combine satellite observations, in situ
measurements, and land surface model outputs. The combination of different wavelengths
partly limits the ambiguities related to the individual sensitivity of each satellite
observation to the various sources of variabilities. The final retrieval algorithm is
compatible with an assimilation strategy that would better constrain the behavior of
surface models. Finally, a clustering algorithm is applied to the suite of satellite
observations and clearly shows a strong sensitivity to the snow characteristics and
metamorphism during the winter. Characterization of the snowpack using satellite
observation classification can yield qualitative information for snow model
parameterization.

Citation: Cordisco, E., C. Prigent, and F. Aires (2006), Snow characterization at a global scale with passive microwave satellite
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1. Introduction

[2] The land area covered by snow in the Northern
Hemisphere ranges from �4.106 km2 at its minimum in
August to�47.106 km2 at its maximum in January [Robinson
et al., 1993]. Because of its high albedo, snow extent is a
primary factor controlling the amount of solar radiation
absorbed by the Earth. Even a shallow snow cover can
increase the albedo of a bare landscape from 0.2 to 0.8.
Any decrease in snow cover related to a warming trend
results in increased absorption of solar radiation, melting
the snow and inducing a positive feedback. As a conse-

quence, the cryospheric components of the climate are
regarded as sensitive indicators of changes. Snow cover
also interacts with and modifies the overlying air masses,
considerably influencing the atmospheric circulation, not
only in polar regions but also at midlatitudes, making
assimilation of observations in polar regions crucial for
Numerical Weather Prediction (NWP) models. The snow
cover as well as the snow depth, its albedo and other thermal
characteristics are of importance in the interaction with the
atmosphere [Gong et al., 2004]. In addition, snow is a
dominant source of delayed water supply in the northern
regions, with large impact on the global hydrological budget.
Sud and Mocko [1999] insist on the influence of the snow
melting processes on modeled soil moisture.
[3] A snowpack is a complex medium with large spatial

and temporal variability [Frei and Robinson, 1999]. It can
consist of several layers having different densities and
crystal-size distributions. The properties of these layers
reflect the snowpack history and relate to location and
elevation. Sturm et al. [1995], for instance, suggest sepa-
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rating the snow into six classes (tundra, taiga, alpine,
maritime, prairie, and ephemeral), each type having a
unique ensemble of textural and stratigraphic character-
istics, including the sequence of snow layers, their thick-
ness, density, crystal morphology, and grain size.
[4] Unfortunately, conventional measurements in remote

polar areas are sparse, thus limiting the ability to accurately
monitor the snow characteristics, its coverage, its depth, and
season length. In addition, point measurements are often
considered not suitable for regional and continental appli-
cations. Satellite observations provide a unique opportunity
to continuously monitor the whole polar region at regional
scales.
[5] Microwave radiation responds to snow properties

such as density, depth, crystal-size distribution, vertical
temperature gradient, surface wetness, melting-refreezing
cycles, and embedded or covering vegetation. The
responses of microwave radiation to these surface character-
istics are usually highly dependent on frequency. An exten-
sive amount of research has been directed toward a better
understanding of the mechanisms responsible for the mi-
crowave emission of snow, from both modeling analysis
and ground based or aircraft experiments. Modeled micro-
wave emissivities of snow are particularly sensitive to snow
water equivalent, grain size, and snow wetness. The dielec-
tric losses in dry snow are very small, so the extinction
coefficient is dominated by scattering, this effect being
stronger at shorter wavelengths, for larger particles and
drier snow. The first numerical results for dry snow used
conventional Mie scattering theory and predicted a steep
decrease of the brightness temperatures with grain size [e.g.,
Chang et al., 1976]. Calculations using dense-medium
theory show that the scattering is less than predicted with
the assumption of independent scattering assumed by the
Mie scattering theory [e.g., Tsang, 1992]. Large differences
in the dielectric properties of liquid and frozen water at
microwave frequencies produce substantial variations of the
snow emissivity with wetness and melting. With increasing
wetness, the dielectric losses become large and the scatter-
ing negligible. Wet snowpacks radiate like black bodies at
the physical temperature of the upper snow layer. In the
spring, snow undergoes melting and refreezing cycles
during which large spherical grains are formed. Grain sizes
can increase by a factor of 2–3 by the end of the winter
[Sturm and Benson, 1997]. Thus the microwave signature of
the snowpack varies between black body behavior for wet
snow to high reflectivities due to strong volume scattering
by the large heterogeneities. This effect is especially sensi-
tive at higher frequencies. Field experiments have been
conducted to analyze the snow emissivity with respect to
the characteristics of the snowpack. The University of Bern
has been particularly active with ground-based measure-
ments in the Alps [e.g., Schanda et al., 1983; Matzler,
1994]. The University of Helsinki and the UK Met Office
conducted several aircraft measurement campaigns [e.g.,
Kurvonen and Hallikainen, 1997; Hewison and English,
1999]. Measurements confirm the large variability of the
snow emissivities with snow characteristics and history.
Matzler [1994] measured emissivities of various landscapes
in winter between 5 and 100 GHz at 50� incidence and
searched for specific microwave signatures that would
enable unambiguous retrieval of snow parameters from

microwave observations. He concluded that estimation of
snow water equivalent is not feasible solely from passive
microwave observations in this range. However, snow cover
can be discriminated from other surfaces, even for fresh
powder snow when using the higher frequencies. Passive
microwave satellite observations over snow have been
used to estimate snow cover and depth [e.g., Kunzi et al.,
1982; Chang et al., 1987; Hall et al., 1991; Foster et al.
1996a; Grody and Basist, 1996; Pulliainen and Hallikainen,
2001; Josberger and Mognard, 2002], with the substantial
advantages over visible observations that the microwave
observations do not depend on the solar illumination, are not
limited to cloud-free areas, and are sensitive to snow depth.
However, global applications of snow depth algorithms are
questioned and several studies have suggested the need
for regionally specific adjustments [Foster et al., 1996b;
Robinson and Spies, 1994] or for adding extra information
in the retrieval process (e.g., land classification, topography,
air temperature [Singh and Gan, 2000] or temperature
history [Josberger and Mognard, 2002]). In addition, com-
pared to visible or infrared observations, microwave obser-
vations have coarser spatial resolution, creating problems
when interpreting heterogeneous footprints that cover
mixtures of surface types and snow characteristics.
[6] The objective of this study is to investigate the

sensitivity of passive microwave satellite observations
between 19 and 85 GHz to snow properties on a global
basis for a whole winter (1992–1993) with the help of
ancillary information to better characterize the parameters
that influence the microwave responses over snow. Passive
microwave information is provided by the SSM/I from
which the microwave land surface emissivities are calculated
[Prigent et al., 1997, 2001]. The in situ snow measurements,
the satellite observations and the ancillary data sets are
described in section 2. Section 3 presents the observations
analysis, with special emphasis on the spatial and temporal
variability of the emissivity over snow-covered regions.
Section 4 examines the possibility to retrieve snow depth
and water equivalent from satellite observations. In addition,
a snow classification based on microwave emissivity is
proposed in section 5 and is compared to the classification
of Sturm et al. [1995]. Section 6 concludes this study.

2. Passive Microwave Satellite Observations,
In Situ Measurements, and Ancillary Data Sets

[7] This study examines passive microwave satellite data
in coincidence with a large data set of in situ snow
measurements. Ancillary information concerning vegetation
and topography helps analyze the microwave signal. The
Sturm et al. [1995] classification gives insight into the snow
microphysical properties. For comparison purposes, coinci-
dent ERS scatterometer observations and visible reflectan-
ces is also analyzed.

2.1. Passive Microwaves: SSM/I Emissivities Between
19 and 85 GHz

[8] The SSM/I instruments on board the Defense Mete-
orological Satellite Program (DMSP) polar orbiters observe
the Earth twice daily at 19.35, 22.235, 37.0, and 85.5 GHz
with both vertical and horizontal polarizations, with the
exception of 22 GHz which is vertical polarization only.
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The observing incidence angle is close to 53�, and the fields
of view decrease with frequency, from 43 km � 69 km to
13 km � 15 km [Hollinger et al., 1987]. Brightness temper-
atures are often directly used in snow characterization
algorithms. They include the contribution from the atmo-
sphere and potentially from clouds. Prigent et al. [1997,
2001] estimate microwave emissivities of land surfaces from
SSM/I observations by removing contributions from the
atmosphere, clouds, and rain using ancillary data from the
International Satellite Cloud Climatology Project (ISCCP)
[Rossow and Schiffer, 1999] and the NCEP reanalysis
[Kalnay et al., 1996]. Cloud-free SSM/I observations are
first isolated using collocated visible/infrared satellite obser-
vations (ISCCP data). The cloud-free atmospheric contribu-
tion is then calculated from an estimate of the local
atmospheric profile from NCEP reanalysis. Finally, with
the surface skin temperature derived from IR observations
(ISCCP estimate), the surface emissivity is calculated for the
seven SSM/I channels. The calculated emissivities are
related to the surface properties themselves, decontaminated
from atmospheric contributions or from modulations by
the surface temperature Ts. They are estimated on an equal
area grid of 0.25� � 0.25� at the equator, each pixel
covering 773 km2. Monthly mean emissivities (at 53�
incidence angle) are presented in Figure 1 at 19 GHz
(Figure 1a), 37 GHz (Figure 1b), and 85 GHz (Figure 1c)
for the horizontal polarization, for November 1992,
January 1993, and March 1993.

2.2. In Situ Snow Measurements

[9] We consider three sources of in situ data: the Cana-
dian Daily Snow Depth Database established for the

CRYSYS project from Environment Canada [Brown,
2000], the snow depth station measurements gathered by
the National Centers for Environmental Prediction over
North America, and the Historical Soviet Daily Snow Depth
[Armstrong, 2001]. The in situ snow depth measurements
cover Canada (2032 stations), USA (552 stations), and the
former Soviet Union (200 stations) during the 1992–1993
snow season, with an accuracy of 2.54 cm (1 inch) in the
USA and 1 cm elsewhere. We carefully quality-control the
measurements and all anomalous measurements are
rejected. American and nearly 250 Canadian stations
include the air temperature at 2 m above ground level.
[10] Comparisons between satellite and point measure-

ments are challenging because of the differences in spatial
scales [Brubaker et al., 2000]. In this study, no spatial
interpolation has been applied and only coincident measure-
ments are analyzed. For monthly mean snow depth calcu-
lations, we only consider the stations with at least 10
measurements during the month. For comparison with the
satellite observations, for each box of the equal area grid of
0.25� � 0.25� at the equator, the in situ measurements are
averaged. Figure 1g shows the monthly mean snow depth
for November 1992, January 1993, and March 1993. The in
situ measurements cover a large variety of environments in
the Northern Hemisphere, for a whole winter season.
[11] Snow water equivalent is also measured at

672 stations in Canada, every 2 weeks with an accuracy of
1 mm [Schmidlin, 1990]. These measurements provided by
the Canadian Meteorological Service result from the melting
of five snow cores near the station. The density of new
snow ranges from about 50 kg.m�3 when the air temperature
is low, to about 200 kg.m�3 when the temperature is close to

Figure 1. Monthly mean effective emissivities at (a) 19, (b) 37, and (c) 85 GHz for horizontal
polarization from SSM/I; (d) the ERS scatterometer backscattering coefficient interpolated at 45�
incidence angle in dB; (e) the visible reflectances from AVHRR in percentage; (f) NOAA snow cover
product; and (g) the in situ snow depth at the local stations in centimeters. The results are presented for
November 1992, January 1993, and March 1993, from left to right.
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0�C. Snow density increases with time after snow fall,
because of gravitational settling, wind packing, melting,
and recrystallization. The relationship between snow depth
and snow water equivalent is presented in Figure 2 for all
the available measurements. As the density of the snow
changes with depth, the relationship between snow water
equivalent and snow depth is not linear, with density
increasing with snow depth. In addition, as expected, during
the winter season for a given snow depth, the snow water
equivalent increases, as shown in Figure 2 from the in situ
measurements.
[12] The operational NOAA snow data product is also

presented in Figure 1f, as the percentage of time during a
month that a given pixel is snow covered. The NOAA
Northern Hemisphere Weekly Snow and Ice Cover Charts
are prepared from inspection of all available visible satellite
imagery on a daily basis.

2.3. Ancillary Information

2.3.1. Vegetation Classification and Topography
[13] Matthews [1983] vegetation and land use data sets

are compiled from a large number of published sources. At
a 1� spatial resolution the vegetation classification distin-
guishes a large number of vegetation types, that are further
grouped into 9 classes [Prigent et al., 2001]. Associated
with the vegetation classification is a land use data set that
distinguishes five levels of cultivation intensity, ranging
from 0 to 100% cultivation for 1� cells. Combining the
vegetation and land use data set gives information about the
actual land cover. For each vegetation class, areas with
cultivation intensity greater than 20% are defined as culti-
vation, which makes up a tenth class. For topography
information, the Global Land One-kilometer Base Elevation
(GLOBE) digital elevation model with a 3000 spatial sam-
pling is used.
2.3.2. Sturm et al. [1995] Snow Classification
[14] A snow cover classification is proposed by Sturm et

al. [1995]. It is a unified compilation of different classi-

fications in which each class is uniquely defined by a set of
textural and stratigraphic properties of the snow. Six classes
are identified (tundra, taiga, maritime, prairie, mountain,
and ephemeral), each one having representative densities,
grain size, stratigraphy, and thermal properties. Each class is
simply related to climate regime and the snow cover class
can be inferred from routinely measured variables such as
wind, air temperature, and precipitation. The derived clas-
sification is available with a 0.5� spatial resolution.
2.3.3. ERS Backscattering Coefficient
[15] The European Remote Sensing (ERS) polar orbiters

provide observations in the active microwave domain at
5.25 GHz. The scatterometer nominal spatial resolution is
50 km and the observations are gridded on the equal area
grid of 0.25� � 0.25�. For each grid point, the backscatter-
ing coefficients are considered for all incidence angles and a
linear angular regression is used to estimate the
corresponding monthly mean backscattering coefficient at
45� [Prigent et al., 2001]. Figure 1d shows the resulting
backscattering coefficient for 3 months during the winter
season.
2.3.4. AVHRR Visible Reflectances
[16] The Advanced Very High Resolution Radiometer

on board the NOAA meteorological polar orbiters pro-
vides daily observations of the Earth in the visible (0.58–
0.68 micron). The monthly composite AVHRR visible
reflectances generated under the joint NASA and NOAA
Earth Observing System Pathfinder project [James and
Kalluri, 1994] are used in this study. We average the nominal
8 km Pathfinder resolution to the resolution of the equal area
grid. Figure 1e shows the resulting visible reflectances for
the 3 months.

3. Analysis of the Spatial and Temporal
Variability of the Passive Microwave Signatures
Over Snow

[17] First, satellite signatures over snow have a large
spatial variability, in the microwave and in the visible, for
a given month (Figure 1). In March for instance, the region
North of 50�N is almost completely covered by snow during
the whole month but shows very contrasted responses at all
frequencies. As an example, the plains in Kazakhstan north
of the Aral Sea are associated with very high visible
reflectances and low emissivities (especially at 85 GHz),
whereas low reflectances and higher emissivities are
observed in Siberia around 60�N. There is also a sharp
discontinuity in the signatures of passive and active micro-
waves at a given latitude from the east to the west of the
Ural mountains. In January in North America, north of
45�N, contrasted signatures are observed even in the visible,
although the snow cover is total. Second, for a given region,
the satellite observations can undergo significant changes
during the winter season, without large variations in the
snow cover or snow depth. The Labrador in Canada is such
a region, with large temporal variations in the emissivity
even at 19 GHz, although the snow cover is constant and the
snow depth does not vary much.
[18] What are the variations in the snowpack character-

istics that explain these differences in the satellite
responses?

Figure 2. Relationship between snow depth (d) and snow
water equivalent as derived from the available measure-
ments in Canada for the winter 1992–1993. The measure-
ments are separated by months and a regression is given for
each winter period: beginning (circles), middle (triangles),
and end (crosses) of the winter.
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[19] The monthly mean satellite-derived parameters and
ancillary information are compared along a cross section at
55�N in Russia, for the 3 months previously considered
(Figure 3). Snow totally covers the region for this whole
period. Along with the microwave and visible satellite
information (the first six plots), the snow depth at the
stations, the air temperature (from the ECMWF reanalysis),
and the topography are indicated. Several noticeable geo-
graphical features can be mentioned: the Ural Mountains
(between 55 and 60�E), the Altay Mounts (between 85 and

90�E), or the Volga River (�49�E). Mountains are charac-
terized by an increase in the backscattering coefficient and
in the microwave emissivities, due to the sensitivity of these
measurements to the topographic roughness. However, the
snow signatures at 37 GHz and 85 GHz are still observable
over the Ural (the signal is much weaker over the Altay
Mounts likely because of denser vegetation). In November,
the emissivities decrease over rivers: the dielectric proper-
ties of water induce low emissivities that contrast with the
surrounding areas. For the rest of the winter, the rivers are
frozen and/or snow covered and they do not have distinct
signatures. In rather flat regions, the backscattering and the
microwave emissivities decrease with time during the
winter season. By the end of the winter, larger snow grains
are formed [Sturm and Benson, 1997]: the microwave
signature of the snowpack then varies between the charac-
teristic of wet snow in November to lower emissivities due
to scattering by the large heterogeneities by the end of the
winter. East of the Ural Mountains, the emissivity decrease
at the end of the snow season is more pronounced than on
the west: even at 19 GHz, significant scattering is observed
in March between 65 and 85�E. This is consistent with the
snow classification by Sturm et al. [1995] that distinguishes
between mostly ‘‘prairie’’ snow west of Ural and mostly
‘‘tundra’’ snow east of the mountain range. By late winter,
‘‘tundra’’ snow contains a large percentage of depth hoars
that cause scattering even at 19 GHz. The lower mean air
temperatures observed east of the mountain is also consis-
tent with this snow type, the lowest temperature coinciding
well with the lowest observed emissivities (i.e.,
corresponding to the highest probability of depth hoar
formation). The differences between 19 and 37 GHz have
often been used as representative of the snow depth varia-
tions [Chang et al., 1987]: on this cross section, this
relationship between the satellite data and the in situ snow
depth measurements is not clear. East of the Ural Moun-
tains, vegetation is dominated by deciduous forest whereas
cultivation and grassland prevail in the west [Matthews,
1983]. As expected, for similar snow depth, the sensitivity
of the emissivities to the snow signal is more pronounced
where the vegetation density is lower. The visible reflec-
tances also show large variations along this cross section
during the winter. The reflectances increase from November
to the middle of the winter, then decrease by the end of the
winter although snow still covers the surface. This is
expected as the concentration of snow impurity (deposition
of dust and vegetation debris) and grain size increase with
snow aging and reduces the snow visible reflectances [Aoki
et al., 2000].
[20] The effect of vegetation on the snow emissivities is

illustrated in Figure 4. In the region between 60–90�E and
52–63�N where the snow cover and topography are rather
homogeneous, the normalized histograms of various satel-
lite observations are presented for three types of vegetation
in January 1993. Cultivation, grassland, and tundra corre-
spond to low vegetation density, especially in winter. The
density of the vegetation cover is high all year long for
evergreen forest. The deciduous forest in winter corre-
sponds to an intermediate vegetation density between the
two previous ones. The sensitivity of the snow emissivity to
vegetation density increases with frequency, with the
19 GHz only weakly responding to the vegetation changes.

Figure 3. Cross section of the various monthly mean
measurements at 55.5�N in Russia between 40 and 90�E.
From top to bottom are the SSM/I microwave emissivities at
19, 37, and 85 GHz (horizontal polarization) along with the
emissivity difference between 19 and 37 GHz; the ERS
scatterometer backscattering coefficient interpolated at 45�
incidence angle and the AVHRR visible reflectances; the
ECMWF surface air temperatures; the in situ snow depth
at the local stations; and the topography. Most variables
are presented for November 1992, January 1993, and
March 1993.
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At 85 GHz, the presence of dense evergreen vegetation
increases the emissivity, as expected: emissivity histograms
of evergreen forested areas are well separated from the other
two that correspond to lower density vegetation cover,
during winter time. The 19H–37H and 37H–85H emissiv-
ity differences are also very sensitive to the presence of
vegetation, confirming that these differences are not simply
and uniformly proportional to the snow depth. In active
microwave, the backscattering decreases because of the
presence of the snow on a low topographic roughness but
this decrease is limited by vegetation influence. In the
visible as well, the effect of the vegetation cover is evident,
with the reflectances decreasing with increasing vegetation
density.
[21] To further investigate the mechanisms that drive the

relationship between satellite observations and in situ meas-
urements, time series for each variable are presented at two
selected sites (Figure 5 (left) in Siberia 134.75�E 60.37�N
and Figure 5 (right) in Canada 80.70�W 51.39�N). The
microwave emissivities are calculated for all clear sky
situations. Monthly mean visible reflectances are added to
the figures for comparisons. Compared to the lowest fre-

quencies, the 85 GHz reacts much more strongly to the first
centimeters of snow on the ground, with sharply decreasing
emissivities as soon as snow appears. It then reaches a
minimum (around beginning of December in Siberia) and
stabilizes although the snow depth keeps increasing. This
behavior has also been observed by Rosenfeld and Grody
[2000]. The 37 and 19 GHz emissivities also decrease
during the winter season but with a much lower rate. For

Figure 4. Normalized histograms of the SSM/I microwave
emissivities, ERS backscattering coefficients, and the
visible reflectances for three types of vegetation, for January
1993 for all the pixels that are fully snow covered in the
area between 60 and 90�E and 52 and 63�N.

Figure 5. Time series of the various measurements from
October 1992 to May 1993 for two locations: at 134.0�E
60.4�N (deciduous forests) in Russia and at 80.7�W 51.4�N
(evergreen forests) in Canada. From top to bottom are the
microwave emissivity daily estimates (clear sky only) at 19,
37, and 85 GHz for the horizontal polarization; the daily
emissivity differences for horizontal polarization; monthly
mean ERS backscattering; monthly mean AVHRR visible
reflectances; the surface skin temperature from ISCCP; and
the in situ snow depth measurements.

D19102 CORDISCO ET AL.: SNOW FROM PASSIVE MICROWAVE OBSERVATIONS

6 of 15

D19102



these two cases, the 37 and 85 GHz emissivities are similar
around February. In Siberia, the emissivity difference at 19
and 37 GHz smoothly increases with snow depth. As
the skin temperature approaches melting at the end of the
winter, the emissivities strongly vary from a day to the
other. The thawing transition induced a rather strong defect
on the microwave signal, as already explored by Judge et al.
[1997] to classify the freeze/thaw prairie soils with SSM/I.
The backscattering coefficient and the visible reflectances
increase as the snow covers the surface but decrease in
February, although snow still covers the area. This phe-
nomenon coincides with the sharp decrease in the emissivity
difference between 37 and 85 GHz. The visible reflectances
are expected to be sensitive to dust deposition on the surface
and to a lesser extent to snow grain variations. Given that
the difference between 37 and 85 GHz is likely driven by
snow particle metamorphism, the impact of the snow grain
on the visible reflectances is suspected to be significant as
well.
[22] Figure 6 presents the histograms of the satellite

responses for the different winter months over a fully snow
covered region (located between 263–297�E and 46–
52�N). The emissivities decrease from November to Febru-
ary but start increasing in March, when the snow depth is
still increasing. This change in the behavior also appears on

the differences between the 19 and 37 GHz. Kelly and
Chang [2003] also report on an ‘‘hysteresis’’ phenomenon:
the difference between the brightness temperatures at 19 and
37 GHz increases with increasing snow depth during the
first part of the winter, but after a maximum, it decreases
more rapidly than the measured snow depth. They actually
do not apply their regression algorithm to the late winter
period because of this phenomenon. Rosenfeld and Grody
[2000] also insist on this aspect that they characterize as an
anomalous signature. Similar phenomenon appears on the
visible reflectances.

4. Information Content of Satellite Observations
on Snow Depth

[23] Snow Depth (SD) is a key characteristic of the
snowpack that plays important roles in land surface and
hydrological models. The relationship between this quantity
and the satellite observations is now examined.
[24] First, we calculate the linear correlation between the

various satellite products and the snow depth, on a monthly
mean basis, for the 1992–1993 winter for all the available
station measurements. Emissivity combinations are also
considered. Most algorithms to retrieve snow depth and
water equivalent from passive microwaves are based on a
linear function of the brightness temperatures between 19
and 36 GHz, usually for horizontal polarization [Chang et
al., 1987]: SD (cm) = a � (Tb18H � Tb36H) + b. In the
initial algorithm, a is fixed to 1.59 cm.K�1 with the
assumption that the grain radius is 0.3 mm and the snow
density is 300 kg.m�3. Table 1 summarizes the results of the
linear regression calculations. Whatever the satellite vari-
able, the linear correlations are very low (maximum of 0.26
for the backscattering coefficients) on a global basis, show-
ing that the snow depth will be difficult to retrieve globally
from simple and unique satellite information. Limiting the
correlation calculations to a given winter period (beginning,
middle, and end of the winter) does not improve the
correlation significantly. Restricting the calculation to low
vegetation density and to a specific period during the winter
increases the linear correlation, but remains too low to
warrant a quality retrieval even in sparsely vegetated
regions. Rosenfeld and Grody [2000] also find very low
and changing correlations during the winter between the
brightness temperatures and the snow depth.
[25] Considering the questionable applicability of the

static method to the globe, Kelly and Chang [2003] revisit
it by tuning the coefficient a and b in the previous equation
for each region and considering a vegetation cover. They
observe that errors are slightly smaller with this ‘‘dynamic’’
algorithm than with the ‘‘static’’ one, especially at the begin
of the snow season. Josberger and Mognard [2002] also
develop an algorithm. It is based on the Chang et al. [1987]
approach but parameterized with the temperature gradient
between the air and the ground, to account for the depen-
dence of the microwave scattering on the snow grain size.
The method has been evaluated over Siberia [Grippa et al.,
2004] and again, it performs sightly better than the static
algorithm for the first part of the snow season but not for the
second part of the winter, when the snow has already
undergone metamorphism. Kelly et al. [2003] model the
grain radius growth and the snow densification process to

Figure 6. Same as Figure 4 but for 5 months during snow
season in North America (92.7�W 88.9�W 49.1�N 52.89�N)
over evergreen forest.
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parameterize their initial static model, but the new model
does not show significant improvement over the static
algorithm. They insist on the fact that locally the algorithms
can perform better.
[26] For each selected in situ station, we calculate the

linear correlations between the 19 and 37 GHz emissivity
difference and the snow depth during the winter. Locally,
good correlations are obtained (Figure 7). From one location
to another, the satellite observations are affected by different
sources of variability, the snow depth being one among
several others like the vegetation. At a given location, there
is a reduced number of sources of variability and the
correlation between the in situ snow depth measurements
and the satellite observations is much larger. The global
correlations are recalculated, subtracting for each location
and each observations the mean value over the winter and
normalizing them by the standard deviation for that location
(Figure 8). The linear correlation is larger (0.6). This local
standardization procedure has the effect of partly suppress-
ing the variability that is location-dependent (see Aires et al.
[2005] for the same approach in a soil moisture study).
[27] This means that locally snow depth information

could realistically be extracted from the passive microwave
observations, provided that statistics on the snow depth in
the region are available (mean and standard deviation of the
snow depth during the winter). This information is obvi-
ously available at the in situ measurement stations. Is it
possible to interpolate this information in space? Cline and
Carroll [1999] or Brubaker et al. [2000] use pure statistical
spatial interpolation method based on kriging. For instance,
Cline and Carroll [1999] obtain gridded snow water equiv-

alent estimates in the upper Mississippi River Basin from
ground-based and remotely sensed snow data. If informa-
tion on the spatial patterns of the snow depths can be
obtained, then the local statistics could be interpolated in
space which would allow to apply the retrieval process
outside the in situ stations. To examine this possibility, we
analyze the outputs from a land surface model. ISBA-ES
(Interactions between Soil, Biosphere and Atmosphere–
Explicit Snow) [Douville et al., 1995; Boone and Etchevers,
2001] includes a so-called intermediate complexity snow
scheme, to better understand which snow processes are the
most important for atmospheric and macroscale hydrolog-
ical applications. An explicit multilayered approach
resolves the large vertical density and temperature gradients,
distinguishes the thermal properties between the snow and
the soil-vegetation layer, includes the effects of liquid water
transmission and storage refreezing in the snow pack, and
models the absorption of incident radiation within the
snowpack. We study ten years of ISBA-ES snow depth
outputs, on a monthly mean basis with a 1� � 1� spatial
resolution. A Principal Component Analysis (PCA) is
performed on this database to identify the predominant
spatial patterns, globally, and separately on the Eurasia
and North America.
[28] For the three situations, the first component explains

�75% of the variance and clearly indicates a latitude
gradient whereas the second component (representing less
than 10% of the variance) shows more complex structures
partly related to the topography and distance to the coasts.
Higher order components are less interpretable but for a
good representation of the spatial variability of ISBA, 50

Table 1. Linear Correlation Between the in Situ Snow Depth and, From Top to Bottom, Monthly Mean Effective Emissivities at 19 GHz,

37, and 85 GHz for Horizontal Polarization and for Frequency Differences From SSM/I, ERS Scatterometer Backscattering at 45�, Visible
Reflectances From AVHRRa

Snow Depth Versus Global

Winter Period Vegetation Density

Oct to Dec Jan Feb to May High Low

Emissivity at 19H �0.06 �0.03 0.11 �0.01 0.12 �0.05
Emissivity at 37H �0.12 �0.21 �0.01 0.08 �0.01 �0.23
Emissivity at 85H 0.04 �0.14 0.13 0.18 0.04 0.21
Emissivity at 19H–37H 0.11 0.31 0.15 �0.13 0.21 0.29
Emissivity at 37H–85H �0.21 0.02 �0.20 �0.26 �0.07 �0.49
Backscattering 0.26 0.15 0.27 0.30 0.22 0.19
VIS reflectance �0.04 0.16 �0.05 �0.04 0.14 �0.13

aResults are presented globally and then for different winter periods and vegetation densities.

Figure 7. Local linear correlation between the in situ snow depth and the emissivity difference at
horizontal polarization (19H–37H) for all available stations during the 1992–1993 winter season.
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components need to be used, representing a total of 99.5%
of the variance. Once the components are extracted by the
PCA, each monthly snow depth map can be represented by
the weighted sum of the first 50 PCA components. For each
month and for the year 1992–1993, a minimization proce-
dure based on a quasi-Newton method is then used to
minimize the difference between the in situ measurements
and the ISBA derived snow depth PCA-representation. The
minimization has been performed for the three previous
cases (globally, Eurasia, and North America). The correla-
tion between the resulting snow depth and the in situ snow
depth measurements is very satisfactory for Eurasia (�0.8),

less over North America (<0.6) and globally. Table 2 shows
the improvement of the statistics with optimized ISBA. The
correlations are usually better while the biases are closer to
zero as compared to the genuine ISBA: the Root Mean
Square (RMS) errors are thus lower in the optimized
version. Mitigated results for America are due to a lower
density of stations and a more complex snow cover vari-
ability (coastal influence due to smaller coast-to-coast
distance in North America, less strong topographic gradient
in Eurasia). In the following, we focus on the Eurasian case
since a more detailed spatial study would be required for the
global or the American cases.
[29] Calibrating the ISBA outputs is not the main goal

here: we optimize ISBA outputs for interpolating the local
statistics outside the in situ stations. However, it should be
noticed that, by design, the optimized ISBA outputs are
much closer to in situ measurements (Table 2): this calibra-
tion technique is interesting by itself for any model calibra-
tion to sparse in situ measurements. Over Eurasia and for
each pixel, the mean and standard deviation of the snow
depth are derived from our optimized ISBA-ES estimates.
The improvement of the local statistics is represented in
Table 3. The RMS errors decrease, from the original ISBA-
ES prediction to the optimized configuration, from 5.9
(respectively 6.0) to 3.6 (resp. 4.2) for the mean (resp.
standard deviation). The quality of these local statistics is
now more compatible with inversion experiments.
[30] We tested different inversion methods to derive the

snow depth from satellite observations: linear, multilinear,
and various neural networks. Neural Networks (NN) give
the best results since they offer a better ability to merge the
information. The chosen NN has 7 inputs (i.e., satellite
observations), 30 units in the hidden layer, and 1 output
(i.e., the standardized snow depth estimate). The inputs are
the standardized emissivities at 19H, 37H, 85H, 19H–37H
and 37H–85H derived from SSM/I, the backscattering
coefficient (ERS) and the visible reflectances (AVHRR).
For each pixel, both the inputs and output are standardized
(i.e., centered and normalized) by their respective (interpo-
lated) local statistics. The learning phase of the NN uses
75% of the database composed of the satellite observations

Figure 8. Global linear correlation between the normal-
ized in situ snow depth and the normalized emissivity
difference at horizontal polarization (19H–37H) for the
1992–1993 winter season. The correlation coefficient is
indicated.

Table 2. Summary of the Statistics of the Prediction Methods for the 25% of the Data With Which These Methods Have Been Evaluated

for the Winter 1992–1993a

Month 1992/1993

In Situ

ISBA Retrievals

Satellite Retrievals: NNISBA ISBA � 50 PC opt

�SD �SD � b � RMS � b � RMS � b � RMS

Jul 0.0 0.0 ND 0.0 0.0 0.0 ND 0.0 0.1 0.1 0.06 1.6 3.3 3.7
Aug 0.0 0.0 ND 0.0 0.0 0.0 ND 0.0 0.1 0.1 0.12 1.9 4.4 4.8
Sep 0.0 0.2 0.76 0.0 0.2 0.2 0.59 0.0 0.2 0.2 0.22 2.1 4.2 4.7
Oct 1.9 3.9 0.87 0.0 2.5 2.5 0.89 0.0 1.8 1.8 0.78 1.8 5.1 5.4
Nov 9.1 11.7 0.91 1.2 5.6 5.7 0.97 0.0 3.0 3.0 0.88 0.8 6.2 6.2
Dec 15.8 16.1 0.88 2.9 8.6 9.1 0.95 �0.4 5.1 5.1 0.86 0.0 3.9 3.9
Jan 22.8 21.0 0.86 3.6 11.1 11.7 0.93 0.0 7.8 7.8 0.90 1.3 7.9 8.0
Feb 28.6 26.7 0.85 2.5 14.5 14.7 0.92 0.0 10.6 10.6 0.93 �1.3 9.7 9.8
Mar 26.4 27.7 0.73 �3.2 18.7 19.0 0.91 0.8 11.4 11.4 0.94 �0.5 9.7 9.8
Apr 13.6 23.7 0.59 �4.9 19.8 20.4 0.89 1.0 10.8 10.8 0.91 0.8 9.7 9.7
May 1.9 8.7 0.68 �0.7 6.4 6.4 0.97 0.0 2.3 2.3 0.90 2.3 5.8 6.2
Jun 0.0 0.0 ND 0.0 0.0 0.0 ND 0.0 0.4 0.4 0.00 1.7 3.8 4.1

a�, the linear correlation; b, the bias; �, the standard deviation; RMS, the root mean square error; In Situ, the mean and the standard deviation of the in
situ measurements for all the stations; ISBA column, genuine predictions of the model; ISBA � 50 CP opt, the ISBA configuration with 50 optimized
components; NN column, the neural network prediction with 7 inputs.
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and the in situ snow depth in coincidence. The generaliza-
tion database uses the last 25% to test the ability of the NN
retrieval scheme to generalize its behavior to unknown data.
[31] The statistics of the inversion are indicated in Table 2.

Similar results are found between the snow depth prediction
of optimized ISBA-ES and those derived from satellite
observations, especially for the winter months with signif-
icant snow. For the months with a low level of snow,
optimized ISBA shows a really good agreement as opposed
to satellite-derived NN inversion which focuses on higher
contents by design. During the winter, the bias is usually
negligible with optimized ISBA and gets close to 2 cm for
many months with NN. The lower performance of the
approaches at the end of the season is related to the fact
that the 37 GHz signal starts to be sensitive to the scattering
by large particles at this period of the winter, and thus does
not react anymore to the snow depth. These differences
between the NN and the optimized-ISBA approaches are
due mainly to the annual learning of NN in opposition to
the monthly optimization of ISBA which is a huge advan-
tage. However, RMS is always less than 10.0 cm for the
NN inversions while optimized ISBA reaches 11.4 cm in
March. The methodology is actually only limited by the
number and quality of in situ measurements. (If the data-
base of measurements was larger, the NN learning could,
for example, be done on a monthly scale rather than on the
whole year. This would have a strong impact on the
results.) More important, optimization of ISBA monthly
outputs will always require calibration by in situ measure-
ments whereas our retrieval is ready to use for other periods
of time, without any additional in situ information.
[32] Figures 9a and 9b compare SD time series during the

winter, from in situ measurements and from the NN
retrievals. Figure 9a presents retrievals with limited success,
illustrating the limitations of the technique. For instance, in
one case (black circles), in situ SD has a smooth standard
behavior whereas the inverted SD presents abrupt varia-
tions. For two of these cases (circles and triangles), the
snow accumulation is rather important: high snow depths
are often incorrectly predicted since they are rare in the
learning database and as a consequence the NN has not a
good statistical representation of them. On the third example
(white circles), the snow melting is predicted too early.
Figure 9b shows examples of successful inversions that
represent the majority of cases. For these cases, the time
series of retrieved SD are coherent with the in situ measure-
ments. One case (black circles) illustrates the capacity of the

algorithm to estimate the absence of snow. Another (tri-
angles) demonstrates the expected performance of the NN
for commonly observed seasonal cycles of SD. The third
example (white circles) shows that the algorithm can also
correctly detect two maxima in the seasonal cycle.
[33] Figure 10 presents the predicted snow depths for

December 1992 over Eurasia, as compared to in situ
measurements. The patterns observed in the in situ data,
are also present on the neural network retrieved products.
For example, the area with significant snow depths near
90�E and 65�N is correctly reproduced. The snow depth
gradient south of 60�N agrees also very well with the in
situ observations. However over some regions, the retrieval
does not perform well: for instance over Kamchatka
(160�E, 55�N), the measured snow depths are less than
30 cm whereas the satellite inversion predicts values close
to 50 cm.
[34] Finally, an important point to be made is that

globally the satellite retrieval is better than the ISBA
prediction alone. This means that satellite observations
provide additional information on the snow depth and that
this information could benefit land surface model outputs.
Variational assimilation of satellite observations in surface
models would improve the quality of the simulations, by
taking profit of both model and satellite observation poten-
tials. This could be done either by direct assimilation of the
satellite observations (although that can be hampered by the
lack of accurate radiative transfer models for the snow) or
by assimilation of the retrieved snow depth products pro-
vided that related uncertainties are estimated [Aires et al.,
2004].

5. Satellite-Derived Snow Classification

[35] Snow classifications using passive microwave obser-
vations have already been developed based directly on
SSM/I brightness temperatures up to 37 GHz, using linear
[i.e., Neale et al., 1990] or more sophisticated classification
method [Sun et al., 1997]. Classification results do not
directly translate into quantifiable properties but they can
yield valuable qualitative information on the snow proper-
ties. Additional information that is not directly measured
remotely can be deduced from them. It is a synthetic method
to compress the information: each cluster of snow will
summarize a specific set of snow characteristics. It can give
indications to modelers (climate and hydrology), each
cluster of snow being related to specific snow properties
that can help parameterization in the model.
[36] In addition, snow cover classification can be a first

step toward the development of snow retrieval algorithms.
The classification then helps group pixels with similar
satellite signatures (i.e., with limited variability) and a
specific algorithm is developed for each class. This has
also been suggested by Kelly et al. [2003].
[37] We apply an unsupervised (i.e., without a priori on

the classes) clustering technique to the microwave satellite
observations on a monthly basis: the emissivities at 19, 37,
85 GHz at horizontal polarizations, the emissivity differ-
ences (19H–37H and 37H–85H), and the microwave
backscattering coefficient are used for the clustering. Only
pixels that are completely covered by snow during the
month are considered. Kohonen [1984] topological method,

Table 3. Summary of the Statistics of the Estimates of the Local

Statistics (Local Mean � and Standard Deviation �) for the Three

Configurations of ISBA-ES Predictionsa

Configuration

Eurasia

� �

� b RMS � b RMS

ISBA genuine 0.84 0.2 5.9 0.85 0.8 6.0
ISBA 50 PC 0.84 0.2 6.0 0.85 0.8 5.9
ISBA 50 PC + optimization 0.94 0.2 3.6 0.93 �0.1 4.2

a�, the linear correlation; b, the bias; RMS, the root mean square error;
ISBA genuine, genuine predictions of the model; ISBA 50 PC, the ISBA
predictions projected in the first 50 Principal Components; ISBA 50 PC +
optimized, the ISBA projection with 50 optimized components.
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also called self-organizing maps have already been used to
analyze satellite data sets [Prigent et al., 2001]. The special
feature of this classification algorithm is that neighborhood
requirement is imposed on the clusters, so that when it
converges, prototypes corresponding to nearby classes have
nearby location in the data space: this additional informa-
tion helps interpret the classes. Using this Kohonen classi-
fication, for each month and each location, a snow cluster is
associated to the satellite observations. The clustering
technique synthesizes all the observations to obtain an
analysis of the variations of one spectral band with respect
to the others and gives insight into the relationships between
the observations. The number of classes is chosen so that for
each cluster, at least one information provides statistical
discrimination, thus limiting ambiguities between clusters.
Figure 11 shows the variation of the center of each cluster
for each piece of information along with its standard
deviation around the center value. The visible information
has not been used for the clustering because it is not always
present over northern latitudes. However, for each class, the
variation of the visible reflectances, when present, is indi-
cated in Figure 11d. The standard deviation of the visible

reflectances in each cluster is large, as expected, because
this channel is not used in the classification.
[38] For 3 different months in the winter, for each snow-

covered pixel, Figures 12b–12d shows the result of the
clustering. Figure 12a indicates for each location the snow
cluster that is more frequent during the winter. The snow
classification by Sturm et al. [1995] and the vegetation
classification by Matthews [1983] are added to Figures 12e
and 12f.
[39] From cluster 1 to cluster 8, there is a clear increase of

the scattering contribution, especially at 37 and 85 GHz,
likely related to increasing grain sizes in the snowpack: in
Figure 11a the 37 and 85 GHz emissivities decreases from
cluster 1 to cluster 8. For the last classes (6 to 8), the 85 GHz
emissivity reaches saturation while the 37 GHz emissivity
still decreases. This is also observed on the 37H–85H
emissivity difference (Figure 11b) that first increases
(because of stronger scattering at 85 GHz) and then decreases
(with the 85 GHz emissivity saturating with the 37 GHz
emissivity still decreasing). The backscattering coefficient
decreases from cluster 1 to 8 because of the topographic
influence. Anticorrelation between the visible reflectances
and the 85 GHz emissivities is clear (see Figures 11a and

Figure 9. Samples of in situ (dashed lines) and retrieved (solid lines) snow depth time series for the
1992–1993 winter. (a) Not correctly predicted. (b) Correctly predicted.
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11d). The following analysis tends to show that these
successive clusters are related to the snow aging.
[40] From the beginning of the winter to its end, there is a

clear trend toward larger proportion of high snow classes in
Figure 12: at the beginning of the winter, classes 1 to 5

dominate but are then progressively replaced by higher
classes.
[41] Cluster 1 is characterized by high emissivities close

to vegetation emissivities (Figure 11). It is predominantly
located in regions dominated by forests, both evergreen and
deciduous (in the Matthews vegetation classification, see
Figure 12), in the beginning of the winter. A few areas
(north and north east of the Great Lake for instance or the
Ural Mountains) that are covered by evergreen forest belong
to cluster 1 all winter long. Snow cluster 2 is similar to
cluster 1 and is almost always located in the regions
surrounding the cluster 1 regions: it is a transition cluster
between classes 1 and 3, located in regions of less dense
vegetation, in the transition zone between forest and wood-
land/tundra. Class 3 corresponds to dryer snow: it is present
at rather high latitude at the beginning of the winter and in
the middle of the winter at lower latitude (Figure 12). It is
characterized by significant scattering at 37 and 85 GHz
(i.e., dry snow with rather large grains) and higher visible
reflectivities. The Yenisey River Valley in Russia (around
90�E) belongs to that cluster all winter long. Cluster 5
covers the northern latitude at the beginning of the snow
season and is dominant southward in the middle of the
winter: it has almost disappeared at the end of the winter.
On the contrary, clusters 7 and 8 are rarely present in the

Figure 10. Map of the snow depths retrieved from the
satellite observations using a Neural Network method along
with the in situ measurements for December 1992 over
Eurasia, as compared to the in situ measurements.

Figure 11. Result of the multisatellite classification. (a–c)
Variation of the center of each cluster for each piece of
information along with its standard deviation around the
center value. (d) Corresponding values for the visible
reflectances.

Figure 12. Maps of the clustering results. (a) Dominant
class for the winter, (b–d) the results for 3 different months
in the winter, (e) the snow classification by Sturm et al.
[1995], and (f) the vegetation classification by Matthews
[1983].
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beginning of the snow season: for these clusters, emissiv-
ities at 37 and 85 GHz are of the same order (lower
emissivity differences between 37 and 85 GHz) and the
19 GHz emissivity also decreases indicating the presence of
large grains.
[42] How does this satellite-derived classification com-

pare with the static snow classification from Sturm et al.
[1995]? For the most representative classes in the Sturm et
al. classification, Figure 13 gives the percentage of each
satellite-derived clusters for 3 months in the winter, along
with the cumulative percentage for the whole winter (left
column). As already described, for the tundra, taiga, and

prairie classes in the Sturm et al. classification, the propor-
tion of high classes in the satellite-derived classification
increases as the snow ages. This clearly shows that for a
given cluster in the Sturm et al. classification, the snow
parameters that influence the microwave emissivities evolve
significantly: depending on the snow classification applica-
tion, using a satellite-derived classification that describes
the snow evolution during the winter might be more
adequate. The maritime snow type however is particularly
stable all winter long, the mountain type as well but to a
lower extent. This snow type could be interpreted as the
mountain snow type with a strong influence of the cluster 8,

Figure 13. Distribution of the classes deduced from the microwave satellite observations for each
dominant class in the Sturm et al. [1995] classification. From left to right are distributions for the whole
winter season, for November, for January, and for March.
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associated to metamorphism. This stability through the
season is due to the proximity of the coast which generates
a high precipitation rate and air temperatures close to zero.
One will also notice abrupt transitions in the satellite-
derived classification that do not appear on the Sturm et al.
one. For example, during most of the winter, the satellite
signatures are significantly different east and west of Lena
River (around 120�E in Russia): this transition, although not
present on the Sturm et al. classification certainly corre-
sponds to real changes in the snow properties.
[43] The satellite-derived snow classification summarizes

the spatial and temporal variability of the snowpack during
the winter season. It is a synthetic method to derive snow
information that is not directly measurable, that is not
captured by static snow classification although this infor-
mation can be very relevant for modeling activities. For
instance, Sud and Mocko [1999] attribute the delay in snow
melt in the models partly to neglecting the snow aging on
the thermal diffusivity and albedo: using the satellite-
derived snow classification would make it possible for each
snow covered location to give an indication on the snow
aging.

6. Conclusions and Perspectives

[44] The sensitivity of passive microwave satellite obser-
vations to snow characteristics has been systematically
analyzed, for a whole snow season in the Northern Hemi-
sphere. The emissivities have been first calculated from the
measured brightness temperatures from SSM/I, thus sup-
pressing the variable contribution of the atmosphere and
surface temperature from the signal. The analysis includes
the 85 GHz measurements, that is often neglected because
of its higher sensitivity to the atmosphere. Coincident
satellite-derived visible reflectances and active microwave
backscattering coefficients are also examined to help un-
derstand the passive microwave signatures.
[45] The emissivity at 85 GHz strongly reacts to the

presence of snow as soon as it covers the ground.
[46] Vegetation does interfere with the signal that is

received by the satellite. Snow emissivities also react to
scattering by the snow grain growth related to the snow
metamorphism during the winter. This phenomenon
increases with frequency and is already very sensitive at
37 GHz.
[47] Comparison with in situ snow depth measurements

shows low correlation with the microwave emissivities on a
global basis. As a consequence, snow depth retrieval is very
difficult to retrieve with accuracy from passive microwave
observations only, on a global basis for the full snow
season, confirming previous studies [e.g., Kelly et al.,
2003; Grippa et al., 2004]. To partly alleviate these diffi-
culties, a scheme is developed that combines satellite
observations, in situ measurements, and land surface mod-
els. This retrieval method is very general and can be used
for any other applications for which there is a need to merge
the satellite observations with sparse in situ measurements
and model outputs. Furthermore, the combination of differ-
ent wavelengths partly limits the ambiguities related to the
individual sensitivity of each satellite observation to the
various sources of variability (snow depth, vegetation, snow
metamorphism, among others). The final retrieval algorithm

is compatible with an assimilation strategy that can better
constrain the behavior of surface models.
[48] The microwave observations can also help charac-

terize the snow physical properties. A clustering algorithm
is applied to the microwave satellite observations for a
whole snow season for the Northern Hemisphere and clearly
shows a strong sensitivity to the snow metamorphism
during the winter. Given that the snow metamorphism
drives the snow cover evolution, first its albedo and second
its mechanical properties, characterization of the snowpack
using satellite observation classification can yield qualita-
tive information for snow model parameterization.
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