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[1] Land surface skin temperature Ts plays a key role in meteorological and climatological
processes but the availability and the accuracy of Ts measurements over land are still
limited, especially under cloudy conditions. Ts estimates from infrared satellite observations
can only be derived under clear sky. Passive microwave measurements are much less
affected by clouds and can provide Ts regardless of the cloud conditions. A neural network
inversion including first guess information has been previously developed to retrieve Ts,
along with atmospheric water vapor, cloud liquid water, and surface emissivities over
land from Special Sensor Microwave/Imager measurements, with a spatial resolution of
0.25° × 0.25°, at least twice daily. In this study, Ts estimates are evaluated through careful
comparisons with in situ measurements in different environments over a full annual cycle.
Under clear sky conditions, the quality of our microwave neural network retrieval is
equivalent to the infrared International Satellite Cloud Climatology Project products,
for most in situ stations, with errors ∼3 K as compared to in situ measurements. The
performance of the microwave algorithm is similar under clear and cloudy conditions,
confirming the potential of the microwaves under clouds. The Ts accuracy does not depend
upon the surface emissivity, as the variability of this parameter is accounted for in the
processing. Our microwave Ts have been calculated for more than 15 years (1993 to
mid-2008). These “all weather” Ts are a very valuable complement to the IR-derived Ts,
for use in atmospheric and surface models.
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1. Introduction

[2] Land surface skin temperature (Ts) controls and is
determined by the balance of radiative heating/cooling and
evaporative cooling at the surface. Despite the recognition
of its key role in meteorological and climatological pro-
cesses, accurate Ts measurements over land areas are not yet
available for the whole globe under both clear and cloudy
conditions.
[3] Surface skin temperature can be obtained from mea-

surements of infrared radiation at the surface, if the land
surface emissivity is known; however, this measurement

is not routinely performed at weather and other research
stations. Skin temperatures have been estimated from satel-
lite infrared radiance observations [e.g., Rossow and Garder,
1993; Rossow et al., 1993; Rossow and Schiffer, 1999; Prata,
1993, 1994; Trigo et al., 2008], but direct determinations
are possible only under clear sky conditions because clouds
block the surface view at these wavelengths.
[4] Several studies have already explored the potential

of satellite microwave measurements for land surface tem-
perature retrieval. Microwave wavelengths, being much less
affected by water vapor and clouds than infrared, are an
attractive alternative especially under cloudy conditions.
Note nevertheless that the spatial resolution of passive
microwave is much lower than that provided in the infrared
(above 10 km with the current microwave radiometers). In
addition, passive microwave observations are only available
from polar orbiters, contrarily to infrared also observed from
geostationary orbits, limiting the time sampling of passive
microwave. A few studies correlate the microwave bright-
ness temperature measurements to in situ measurements of
near-surface air temperatures made at surface weather sta-
tions: since the microwave measurements do not actually
sense near-surface air temperature, this approach assumes

1NOAA Cooperative Remote Sensing Science and Technology Center,
City College of New York, New York, New York, USA.

2Laboratoire d’Etudes du Rayonnement et de la Matière en
Astrophysique, Observatoire de Paris, CNRS, Paris, France.

3NASA Goddard Institute for Space Studies, Columbia University,
New York, New York, USA.

4Now at Laboratoire d’Etudes en Géophysique et Océanographie
Spatiales, IRD, Toulouse, France.

5Estellus, Paris, France.

Copyright 2011 by the American Geophysical Union.
0148-0227/11/2011JD016439

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116, D23105, doi:10.1029/2011JD016439, 2011

D23105 1 of 11

http://dx.doi.org/10.1029/2011JD016439


that the surface air and skin temperatures vary together,
but this is only approximately true at small spatial and tem-
poral scales and can be badly in error for arid or frozen
locations. For instance, MacFarland et al. [1990] investi-
gated the correlation between observations from the Special
Sensor Microwave /Imager (SSM/I) and “surface air” tem-
perature measurements and used a multivariate regression of
the microwave brightness temperatures to retrieve the “sur-
face air” temperature. Later, Basist et al. [1998] suggested
including the variation of emissivity into account in the
regression, using a simple land classification scheme (that
algorithm has been evaluated by Williams et al. [2000]).
Jones et al. [2010] also derived a daily estimate of the “sur-
face air” temperature from AMSR-E observations. Njoku
[1995] concluded from simulations that surface skin tem-
peratures could be estimated from multichannel microwave
observations with an accuracy between 2.0 and 2.5 K. A
physical retrieval of surface skin temperature using SSM/I
observations at 19 and 22 GHz has been developed byWeng
and Grody [1998]: the two frequencies have approximately
the same emissivities so that the emissivity effect on the
measurements can be neglected. Note, however, that the
actual temperature error is nearly 3 K for every 1% error in
surface emissivity at microwave wavelengths. Compared to
surface air temperature measurements, the Weng and Grody
[1998] results exhibited root mean square (r.m.s.) differ-
ences of 4.4 K, with a larger bias in colder environments.
Holmes et al. [2009] proposed a very simple land surface
temperature algorithm, based on a single frequency channel
(37 GHz in vertical polarization). Other methodologies have
been developed for regional studies using algorithms that
cannot be directly adopted globally, e.g., the methodology of
Wen et al. [2003] for over the Tibetan Plateau or of Royer and
Poirier [2010] for in Boreal North America. Aires et al.
[2001] developed a global method based on a neural net-
work inversion of a radiative transfer model and ancillary
data sets describing the properties of the atmosphere. The
scheme retrieves simultaneously over land the surface skin
temperature (Ts), the atmospheric column water vapor
abundance, the cloud liquid water path and the surface
emissivities for all SSM/I channels. The algorithm uses pre-
calculated monthly-mean emissivities, cloud and surface
parameters from infrared and visible satellite information,
and the meteorological reanalysis as first guess information.
So far, the accuracy of these retrieved surface skin tempera-
tures under cloudy conditions has only been evaluated by
comparison with in situ surface air temperature [Prigent
et al., 2003a].
[5] In this study, we evaluate the microwave-based Ts

retrieval based on neural network inversion by comparison
with in situ Ts measurements collected during the Coordi-
nated Energy and water cycle Observations Project (CEOP).
The comparisons cover diverse environments over a full
annual cycle (for 2003). The neural network retrieval method
is briefly described, along with the data sets used in the
comparison study in Section 2. In section 3, the microwave-
derived Ts estimates are compared to the satellite IR retrie-
vals under clear sky conditions, and then carefully evaluated
with respect to the CEOP measurements, under both clear
and cloudy conditions. Section 4 summarizes our results and
argues for the value of producing merged satellite infrared-
and microwave-derived surface skin temperature to better

characterize the energy exchanges at the land-atmosphere
interface, regardless of the cloud conditions.

2. Ts Retrieval Methodology and Evaluation
Data Sets

2.1. Microwave-Derived Ts Retrievals

2.1.1. Neural Network Retrieval
[6] A Neural Network (NN) inversion scheme with a novel

feature of employing a first guess input has been developed
by Aires et al. [2001] to retrieve simultaneously the land
surface Ts, the atmospheric column water vapor abundance
WV, the cloud liquid water path CLW, and the surface emis-
sivities, ef, for all SSM/I channels between 19 and 85 GHz.
This NN method optimizes the use of all the SSM/I channels
and a priori information to constrain the inversion problem
and retrieves simultaneously surface and atmospheric param-
eters that are consistent among themselves and with the sat-
ellite observations.
[7] The database used to train the NN is calculated with

a radiative transfer model and a global collection of coinci-
dent surface and atmospheric parameters extracted from
the National Center for Environmental Prediction (NCEP)
[Kalnay et al., 1996], the International Satellite Cloud Cli-
matology Project (ISCCP) cloud parameters and Ts [Rossow
and Schiffer, 1999], and pre-calculated monthly-mean land
surface emissivities [Prigent et al., 1997, 2006].
[8] To the extent that the training data set provides a real-

istic joint distribution of the surface and atmospheric
parameters, including their correlations, the neural network
represents a global statistical fit of the inverse radiative
transfer model. The training database is composed of
2 months of global data during 1993 (January and June). The
atmospheric relative humidity and temperature are taken
from the NCEP reanalysis data set, every 6 h with a spatial
resolution of 2.5° in latitude and longitude. The WV is also
used as the first guess a priori information with an assigned
error of 40 % of the initial value. This first guess errors is
similar to that obtained from the error covariance of each
humidity level as given by Eyre et al. [1993]. In the ISCCP
data set, cloud and surface parameters are retrieved from
visible and infrared radiances provided by the set of polar and
geostationary meteorological satellites. In this study, the
ISCCP data set provides estimates of the cloud-top and sur-
face skin temperatures (http://isccp.giss.nasa.gov). The error
assigned to the surface temperature values is estimated to be
4 K (see section 2.2.1 below for more details on the ISCCP Ts
estimates). The first guess information for the microwave
emissivities at each location is derived from the monthly
mean land surface emissivities previously estimated by
Prigent et al. [1997, 2006]. The standard deviation of day-to-
day variations of the retrieved emissivities within a month for
each channel and location is used as the estimate of first
guess errors. For more information on the a priori first guess
information and related background errors, see the work of
Aires et al. [2001].
[9] To better constrain the problem, the clear/cloudy flag

information provided by the ISCCP data set is used to train
two neural networks: one for clear scenes and one for cloudy
scenes. Both NN retrieve simultaneously Ts, seven SSM/I
ef and the WV. For the cloudy NN, CLW is also retrieved.
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Continuity between the NN retrievals at very low CLW has
been verified.
[10] The inversion method provides Ts for each SSM/I

observation over land with a theoretical r.m.s. error of 1.3 K
in clear-sky and 1.6 K in cloudy scenes (see Aires [2004] and
Aires et al. [2004a, 2004b] for further analysis of the theo-
retical inversion errors). Prigent et al. [2003a] evaluated the
Ts values with respect to surface air temperature Tair by a
comprehensive analysis of the differences expected between
the estimated Ts and the Tair measured at meteorological
stations as a function of diurnal and seasonal solar insulation,
vegetation cover, and cloudiness variations. The method has
also been applied with success over snow and ice [Prigent
et al., 2003b].
2.1.2. Single Microwave Channel Ts Estimate
[11] The neural network Ts estimates (hereafter MW1) will

be systematically compared to the single channel algorithm
(hereafter MW2) developed by Holmes et al. [2009]. In
MW2, the 37 GHz vertical polarization channel is selected
for its low sensitivity to the surface characteristics and rela-
tively high atmospheric transmittance. Over 2005, FLUX-
NET observations were collected [Baldocchi et al., 2001]
and the longwave fluxes were compared to the SSM/I
brightness temperatures (Tb) at 37 GHz vertical polarization
(Tb37V), using carefully determined infrared emissivities. A
simple linear regression was developed from coincident data
at 17 stations in midlatitudes, over a year (2005). Tb37V <
259.8 K were discarded, as they likely represent frozen
conditions. In addition, pixels with more than 4% coverage
of standing water are excluded as the authors specify that the
accuracy of the retrieval is reduced in cases of low emissivity
surfaces (the fractional coverage of ocean and permanent
inland water bodies is calculated from the International
Geosphere-Biosphere Programme (IGBP) one-minute land
ecosystem classification map [Loveland et al., 2000]).
Radiative transfer simulations were conducted to assess the
sensitivity of the retrieval to various parameters (atmospheric
water vapor, scattering albedo, roughness, soil moisture,
incidence angle, and frequency). The standard deviation of
the estimates, as compared to the in situ measurements (not
accounted for in the training of the regression but represen-
tative of similar environments) is of the order of 2 K for
forests and up to 4 K for low density vegetation. The bias was
estimated to be within 1 K for most surfaces. The technique is
applicable to a large set of microwave imagers (SSM/I, TMI,
AMSR-E) all of which provide observations close to 37 GHz
in vertical polarization, with an incidence angle around 50°.
The authors specify that changes in overpassing time from
a satellite to the other and satellite drift can increase the error
budget, when calculating long time series.

2.2. Evaluation Data Sets

2.2.1. Infrared-Derived Ts
[12] The ISCCP data set provides the longest satellite Ts

product available today, covering the period from 1983 to
present every 3 hours with a spatial sampling interval of
30 km for the full globe under clear-sky conditions (a new
version will soon be released with 10 km sampling). Some
limitations of this product have been documented [e.g.,
Zhang et al., 2006] but its potential for climate studies makes
it a unique data set. C. Jiménez et al. (manuscript in prepa-
ration, 2011) also compare the ISCCP Ts database with other

more recent infrared estimates of Ts. Note that in the frame-
work of the present work with SSM/I, MODIS estimates
would not be usable, due to the mis-match of its overpass
time with the SSM/I for a given location. In the ISCCP data,
cloud parameters and related quantities are retrieved from
visible (VIS ∼0.6 mm wavelength) and infrared (IR ∼11 mm
wavelength) radiances provided by the set of polar and geo-
stationary meteorological satellites [Rossow and Schiffer,
1999]. The surface skin temperature is retrieved from clear
IR radiances using satellite-derived products to specify the
atmospheric temperature and humidity profiles (TIROS
Operational Vertical Sounder (TOVS) estimates). Rossow
et al. [1993] show that the ISCCP sea surface temperatures
are in good agreement with other measurements. The local
uncertainty of about 2 K combines errors in cloud detection,
the satellite radiance calibration, the atmospheric temperature
and humidity used in the retrieval, the radiative transfer
model treatment of the water vapor absorption, the assump-
tion of unit surface emissivity (instead of roughly 0.98), and
the effect of real differences between the skin and bulk sur-
face temperatures. Thus the uncertainties of land surface
temperatures associated with these same factors (cloud
detection, atmospheric correction, and radiance calibration)
are about the same magnitude, 2 K. Two other sources of
surface temperature uncertainty that are more important over
land are larger and much more rapid temperature variations
and larger emissivity variations. Rossow and Garder [1993]
and Rossow et al. [1993] show how the ISCCP algorithm
successfully separates these two types of variations and
confirm the accuracy of individual surface temperature var-
iations to within about 4 K. In our study, the ISCCP Ts
estimates, initially calculated with unit emissivity, are cor-
rected for the spatial variation of the surface infrared emis-
sivities at 11 mm [Zhang et al., 2010]. The correction is a
simple fit to match the radiation calculations. The variation of
emissivity depends on surface type, based on the vegetation
database from Matthews [1983]. The impact of the correc-
tion is limited, less than 1 K even over deserts, because the
decrease of upward radiance as emissivity decreases is par-
tially offset by increasing reflection of the downwelling
radiance from the atmosphere). We estimate that the infrared
emissivity variability is equivalent to a spurious temperature
variability smaller than 2 K, well within the 4 K uncertainty
associated with synoptic variations [Zhang et al., 2006].
2.2.2. CEOP Measurements
[13] The CEOP network was designed to provide in situ

measurements of meteorological parameters in a variety of
environments during the period 2001–2004 (see http://www.
ceop.net/ for more details). Specific references are available
for each of the measurement stations. In our study we use the
surface skin and air temperature measurements from this
network for comparison with the Ts derived from satellite
data. Each data set in the CEOP network has been quality
controlled by the provider by documented procedures. We
selected only those stations with good enough quality as
specified by the providers over the selected year (2003). The
uncertainties in the in situ Tsmeasurements are not discussed
in detail in the CEOP documentations. Major sources of
uncertainties are expected to be related to uncertainties in the
IR emissivities, to radiometric noise, and to the variability of
Ts during the measurement integration time. From very
careful in situ measurements, Trigo et al. [2008] estimated an
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uncertainty of the order of 0.5 K during the night, and up to
1.5 K during the day. The uncertainties in the CEOP mea-
surements are expected to be of the same order. The in situ
measurements are matched to the nearest in space and time
satellite observations: two measurements are considered
coincident when they are within 30 min in time and 25 km in
space. Only a limited number of stations in the network
provide measurements coincident in time and space with the
SSM/I retrievals. For a meaningful comparison of the satel-
lite spatially integrated measurement and the in situ point
measurement, stations located in heterogeneous environ-
ments are discarded, especially the ones located in coastal
regions. Microwave observations are particularly sensitive to
the presence of water (the ocean emissivity being much lower
than the land emissivity). The presence of the ocean in even a
small portion of the field-of-view can significantly impact the
observations. Examination of maps (Google Maps) made it
possible to filter out the stations located in heterogeneous
areas. We also checked the spatial variability of the Ts IR
estimates. The selected stations are grouped into three cate-
gories, temperate, tropical, and boreal, to provide a robust
and consistent interpretation of the results (see Figure 1).

3. Evaluation of the Microwave-Derived Ts
Estimates

3.1. Production of the Microwave-Derived Ts

[14] The global SSM/I Ts product has been produced for a
15 year period from 1993 to mid 2008. This involves col-
lecting all SSM/I observations available from the different
platforms, along with the ISCCP cloud property and surface
temperature data set, and atmospheric properties from the
NCEP reanalysis. The products are collocated in space and
time and are inputs to the trained neural network inversion
process [Aires et al., 2001]. In this study, we concentrate on
the evaluation of the Ts values retrieved in this analysis over
the year 2003. To provide a simple reference, the retrieval by

Holmes et al. [2009] is also applied for 2003; this method
does not require any ancillary data.
[15] At the end of the neural network inversion process, the

quality is checked by applying a radiative transfer model to
the retrieved parameters (Ts, ef, WV, and CLW) and com-
paring the results with the observed brightness temperatures.
R.m.s. differences with the input Tbs are calculated. When
this quantity is larger than a threshold corresponding to two
standard deviations of the cost function distribution over a
full year, the retrieval is labeled as bad. Bad retrievals
account for ∼1% and ∼6% of the observations under clear sky
and cloudy sky conditions, respectively. ∼61% of the bad
cases are related to snow covered surfaces: since the snow
emissivity is very variable in space and time, the surface and
atmospheric retrieval is particularly difficult [Prigent et al.,
2003b; Cordisco et al., 2006]. Unlike the NN method, the
Holmes et al. [2009] method does not apply to land surfaces
with more than 4% of open water, and to frozen or snow
covered surfaces. Using the filter for frozen conditions
(Tb37V < 259.8 K) suppresses ∼18% (resp. ∼32%) under
clear (resp. cloudy) sky.

3.2. Comparison With Infrared Estimates Under
Clear-Sky Conditions

[16] Under clear sky conditions, the microwave retrieval
can be compared to the ISCCP collocated estimates obtained
from infrared radiances. The overpass times of the SSM/I
satellite are around 6:00 in the morning and 18:00 at night.
These times correspond to significant changes in Tswithin its
diurnal cycle, but the largest variations observed around noon
are avoided. Note that in the literature comparisons between
Ts are often limited to nighttime to benefit frommore thermal
stability. Figure 2 presents maps of monthly mean Ts for
July, calculated for the SSM/I morning overpasses, under
clear sky condition only (as specified by the ISCCP cloud
flag). The IR estimates and our retrieval present similar
Ts spatial structures. In the Holmes et al. [2009] Ts map,

Figure 1. Map of the selected CEOP stations. The colors indicate the different environments: green for
temperature stations, orange for tropical ones, and blue for the boreal region.
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specific patterns appear related more to changes in surface
emissivities rather than to real changes in Ts. This is the
case for all unfiltered hydrological structures such as the
Amazon River, the Congo River, or the many lakes in
Canada: the low emissivity of the standing water induces
a decrease of the measured Tbs at 37 GHz that is confused
with a decrease in Ts in this algorithm, which does not
account for surface emissivity changes. By the same token,
the carbonate outcrops in Oman or in Egypt that are
associated with low emissivities [Prigent et al., 2005;
Jiménez et al., 2010] are also falsely interpreted as low Ts.
Figure 3 presents the histograms of the differences under
clear sky conditions between the infrared Ts from ISCCP
and the microwave Ts derived from the NN method (solid
line) and the Holmes et al. [2009] scheme (dotted line),
for January and July. The comparison is limited to the
pixels for which both microwave retrievals are valid (as
described above). Since the NN method uses the IR Ts as a
priori information, only small biases are expected between
the IR Ts and our microwave estimates. Note nevertheless
that the NN methodology has been trained over 2 months

of data in 1993: any changes in the ISCCP methodology or
drifts in the different satellite observations (SSM/I and/or
IR satellites) can introduce spurious biases. The r.m.s. for
January and July are smaller than the r.m.s. differences
assigned to the Ts first guess (4 K). Holmes et al. [2009] Ts
shows much more bias: this methodology underestimates
Ts since it was tuned for high emissivities (vegetated areas)
and cannot account for lower values. Over snow, the NN
method provides a mean difference of −1.0 K and a r.m.s.
of 3.5 K in January (the method from Holmes et al. [2009]
does not provide many estimates over snow because of the
threshold on the Tbs).
[17] In order to further analyze the microwave retrieval

under clear condition, the comparison results are separated
into microwave emissivity ranges. The microwave emissivity
is highly variable in space and time, much more than the
infrared emissivity. The lower the emissivity, the lower the
contribution from the surface to the radiation (it is propor-
tional to ef × Ts). Table 1 provides the mean and r.m.s.
difference between the ISCCP Ts estimates and the
microwave retrievals, when stratified by the microwave

Figure 2. Averaged maps of the retrieved Ts for July morning orbits, for clear pixels (as indicated by the
ISCCP cloud flag): (a) from the IR retrieval from ISCCP, (b) from the Neural Network inversion (MW1)
[Aires et al., 2001], and (c) from the single frequency method (MW2) [Holmes et al., 2009].
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emissivities at 37 GHz vertical polarization. The mean
emissivities directly calculated from SSM/I data [Prigent
et al., 2006] are used here. Table 1 shows that the NN
results are insensitive to changes in surface emissivities
with similar performance regardless of the emissivity. This
is expected as the emissivity information is accounted for in
the retrieval. In contrast, the Holmes et al. [2009] retrieval
implicitly assumes a constant surface emissivity. As a
consequence, varying surface emissivities (due for instance
to the presence of soil moisture, standing water, or snow)
affect the Ts retrieval. The land surface emissivities are
typically close to 0.95 at 37 GHz vertical polarization and
the Holmes et al. [2009] Ts retrieval performs better for
high emissivities.

3.3. Comparison With the CEOP Measurements

3.3.1. Detailed Analysis of Selected CEOP Stations
[18] Detailed comparisons with the CEOP measurements

are made for a few stations representing three very differ-
ent environments over 2003. The selected stations provide
quality measurements for most of the year. The two first
stations (stations 2 and 67) are located in the temperate cli-
mate zone: station 2 is located in a rural landscape in eastern
Germany and station 67 is located in Bondville, Illinois,
USA, in corn and soybean crops. Station 44, located in
northeast Thailand in a region of manioc fields, represents
tropical conditions. Station 100 is representative of the arctic
climate and is located in northern Alaska in a tundra envi-
ronment. Note that this station is in a region of lakes and the
Holmes et al. [2009] algorithm cannot be applied. Initially,
we had also selected stations in Mongolia and Tibet, but
found very large discrepancies between these measurements
and all satellite estimates. An examination of the spatial
variability exhibited by the satellite products suggested
a correlation of the large discrepancies and very large
spatial heterogeneity as would be expected in elevated, arid
environments with significant variations of topographic
height. Thus it was not possible to conclude if differ-
ences were related to the unrepresentativeness of the in situ

measurements or to limitations of the satellite retrievals in
these environments.
[19] Figure 4 shows the time series of the Ts (Figure 4, left,

top panel for each station) and the difference between the
satellite estimates and the in situ measurement (Figure 4,
left, lower panel for each station). The microwave-derived
estimates have the lowest temporal sampling (about two
overpasses a day), so the comparisons are limited to the
times coincident with the SSM/I microwave observations.
The infrared Ts estimates are available under clear sky
condition only, so the statistics are separated into clear and
cloudy sky (clear and cloudy Ts estimates are presented
with different symbols in Figure 4, with the cloud flag
derived from the ISCCP data set). Figure 4 (right) shows
the scatterplots of the estimated Ts with respect to the
in situ measurements. The mean and r.m.s. differences
between the Ts CEOP measurements and the satellite-
derived estimates are indicated below each plot, along with
the linear correlation coefficient. The Holmes et al. [2009]
estimates are not available for low Ts values (Tb 37 GHz
below 259.8 K) so the statistical analysis is limited to the
situations when the Holmes et al. [2009] estimates are
available (in the plots the NN retrievals are shown when-
ever they are available).
[20] The Ts time series and scatterplots show that the two

microwave estimates, clear and cloudy, capture the in situ Ts
variability reasonably well. For stations 2 and 67 (temperate
zone) the annual cycle is correctly reproduced (high corre-
lation coefficient between the satellite estimates and the in
situ measurements), as well as significant synoptic changes
(e.g., the cold air outbreak in mid-March at station 2). At
station 44 in the Tropics, the amplitude of the annual cycle is
small and, as a consequence, the correlation coefficient tends
to be lower. There are notable very large Ts values reported at
CEOP station 44 (in May for instance) that are not repro-
duced by the satellites (similar situations occur in summer for
station 2). Measurements of the surface air temperature are
more direct and easier to make than in situ Tsmeasurements:
the consistency of the Ts CEOP measurements at station 44
has been evaluated by comparison to the observed surface air
temperatures. These large fluctuations observed under
cloudy conditions in May for this station do not coincide with
comparable changes in surface air temperatures, so they are
suspect. For the two temperate stations, the performances of
the Holmes et al. [2009] algorithm are very different: for
instance the bias is −1.5 K under clear conditions at station 2
but −5.16 K at station 67. This behavior is caused by different

Table 1. Statistics of the Difference Between the IR and the
Microwave Estimates for Different Surfaces, as Separated by Their
Microwave Emissivities at 37 GHz Vertical Polarizationa

emis37V < 0.90 0.90 < emis37V < 0.95 0.95 < emis37V

MW1 Retrieval
January 0.70 (3.52) 0.52 (3.40) 0.47 (3.89)
July 1.75 (4.43) 0.68 (3.54) 0.48 (3.49)

MW2 Retrieval
January 14.49 (4.19) 4.52 (3.16) −1.50 (1.99)
July 17.32 (4.73) 4.45 (3.56) −1.31 (1.86)

aThe mean value is indicated as well as the standard deviation into
brackets. MW1 indicates the neural network microwave retrieval [Aires
et al., 2001], and MW2 the single channel algorithm [Holmes et al., 2009].

Figure 3. For (left) January and (right) July, histograms of
the difference under clear sky conditions between the infra-
red Ts from ISCCP and the microwave Ts derived from the
NN method MW1 (solid line) and the single frequency
scheme MW2 (dotted line). The comparison is limited to
the pixels for which both retrievals are valid (condition on
the cost function for the first algorithm and threshold on the
Tb at 37 GHz V for the second one, see text). The mean
values are indicated, along with the r.m.s. in brackets.
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Figure 4
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surface emissivities at these two locations, a variable that
is not accounted for in this algorithm. Our NN retrieval
obtained annual average emissivities at 37 GHz vertical of
0.92 and 0.95 at these two locations, which would explain
temperature differences of nearly 6 K. At station 100 (boreal
climate) the differences between the in situ and satellite-
derived estimates are larger than elsewhere, although the
correlation coefficient is still good for our retrieval. The snow
and ice emissivities are highly variable in time [Prigent et al.,
2003b; Cordisco et al., 2006], and as a consequence, larger
errors in the Ts estimates are expected over these surface
types, especially during transition times, when the surface
undergoes freezing and thawing cycles.
[21] Regardless of the station, our microwave retrieval

performances are similar to the infrared products under clear
conditions. In addition, the microwave retrieval approach
performs just about as well under cloudy as under clear
conditions: the impact of clouds on the microwave mea-
surements is correctly accounted for in the retrievals. This
confirms the ability of the microwave observations to pro-
vide Ts estimates, regardless of the cloud conditions.
[22] Figure 5 examines the problem of comparing spatially

integrated satellite measurements and in situ point mea-
surements. For two contrasted months (January and July),
the difference between the CEOP Ts measurements and
the satellite estimates are plotted, for stations 2 (temperate)
and 44 (tropical). The analysis for the other stations
showed similar results. Regardless of the satellite estimates,
microwave or infrared, the relationship between the two
variables shows a linear decrease with increasing CEOP Ts
temperatures. Even larger variations and differences were
found for other, less homogeneous locations. Closer exami-
nation of this relationship shows that it is related to the
averaging effect of the satellite estimates: within a month,
the extreme high and low temperatures that are captured by
the CEOP in situ measurements are smoothed out within the
satellite field-of-view, and, as a consequence, the satellite
estimates tend to overestimate (resp. underestimate), the
lowest (resp. the highest) values.
[23] As a further evaluation of the satellite estimates, their

sensitivity to the water vapor (WV) and to the cloud water
(CLW) is analyzed. Figure 6 shows the difference between
the CEOP and satellite Ts, for stations 2 and 44, first versus
the WV derived from coincident NCEP reanalysis [Kalnay
et al., 1996], second versus the CLW derived from ISCCP
[Rossow and Schiffer, 1999]. There is no obvious influence
of WV or CLW on the Ts retrieval, regardless of the method
(of course, the IR estimates is not considered under cloudy
conditions). The lack of sensitivity of the microwave
retrieval to the cloud liquid water path is very encouraging,
making this technique a powerful complement to the infra-
red methods under cloudy conditions.
[24] To evaluate the sensitivity of the microwave satellite

retrieval to the changes in surface emissivities, we compare
differences between the CEOP and satellite Ts values

versus the emissivities at 37 GHz (vertical polarization), for
all midlatitude stations during 2003 (Figure 7). Here again, it
appears that when the emissivity is not taken into account in
the retrieval as in theHolmes et al. [2009] method, the quality

Figure 4. (left) Time series for the selected stations, from top to bottom: two temperature stations (2 and 67), one tropical
station (44), and one boreal station (100). For each of the stations, the top plot represents the different LST versus time and
the lower one represents the Ts differences (CEOP Ts -satellite Ts) versus time, for year 2003. (right) Relationship between
the satellite-derived Ts estimates and the CEOP measurements. The linear correlation (C), the r.m.s. of the difference (R),
and the mean difference (M), are indicated for each satellite retrieval, separated by clear and cloudy conditions.

Figure 5. Difference between the CEOP and the satellite Ts
versus the CEOP Ts, for the two selected stations and for two
months.
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of the microwave estimate of Ts depends upon the situation,
with more errors attached to the situations that are not well
captured by the retrieval (the situations of lower
emissivities in our case). This confirms what has already
been observed in section 3.1. Note nevertheless that a
slightly negative slope is also observed for the ISCCP and
microwave NN results: It is actually related to the fact that
higher emissivities tend to occur for higher temperatures
in the data set we have, and larger differences are associ-
ated to these situations.
3.3.2. Statistical Analysis of the CEOP Data
for Different Environments
[25] The previous comparisons are extended to the com-

plete set of selected CEOP stations over a full annual cycle.
Table 2 presents the results for each station and each satellite

retrieval. For a specific environment, the results are similar
among the stations, except for the Holmes et al. [2009]
retrieval. To summarize the results, Figure 8 shows the
standard deviation of the differences between CEOP and
satellite Ts versus the correlation coefficient for all selected
stations, along with the bias. For the IR and NN MW
methodologies, the stations located in the temperate region
show rather large correlation with small standard deviations
and biases. For the microwave retrievals, the results are
very similar for both clear and cloudy situations, confirm-
ing the role of the microwave estimates to complement the
IR methodologies under cloudy conditions.
[26] The r.m.s. differences are typically of the order of 4 K

for the midlatitude environment, but can be larger for other
environments. Particularly large errors are observed at station
6 in the Tropics, regardless of the satellite method. For this
station, we compared the Tair and Ts in situ measurements,
along with the satellite Ts from different sources under clear
sky conditions (ISCCP, MODIS, AIRS) (see C. Jiménez
et al., manuscript in preparation, 2011). Both Ts and Tair are
lower during the day than during the night (more than 10 K
lower in January) and it seems that the Ts and Tair variables
have been switched because there is good agreement between
the satellite Ts and the in situ Tair, but not with the in situ Ts.
The validity of the in situ measurements at this station is
suspect.
[27] For all comparisons, a portion of the error is related

to the comparison area-averaged satellite data with in situ
point measurements. It has been shown that for a given
location, satellite retrieval tends to underestimate the largest
Ts values and to overestimate the smallest Ts values because
of the averaging. The errors that are observed in this study
are in line with other results, from independent comparisons
involving satellite estimates and in situ measurements. For
instance, Trigo et al. [2008] compared Ts derived from the
Meteosat Second Generation SEVIRI instrument and in situ
measurements under very controlled conditions and found
biases up to 2.5 K, during nighttime. At SSM/I overpassing
times (around 6:00 and 18:00), insolation can yield large
temporal and spatial gradients of Ts, making it more difficult

Figure 7. For the stations in mid latitude environment
(group 2), difference between the CEOP and the satellite Ts
versus the surface microwave emissivity at 37 GHz vertical
polarization. The linear fits have been added to the plots.

Figure 6. For two selected stations, difference between the
CEOP and the satellite Ts versus the water vapor (WV) esti-
mated by NCEP (top for each station) and versus the cloud
liquid water path (CLW) estimated by ISCCP (bottom for
each station).
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to compare in situ and satellite observations that are not
exactly coincident in time and space.

4. Conclusion

[28] Microwave satellite estimates of surface skin tem-
perature are carefully evaluated through comparisons with
in situ CEOP measurements in different environments that
include temperate, tropical, and boreal regions, over a full
annual cycle (2003). In addition, the IR ISCCP Ts are also
examined and compared to the other measurements. Com-
parison between satellite observations over extended pixels
and in situ point measurements is always challenging and
requires great care. In this exercise, we select in situ sta-
tions that are located in homogeneous environments and that
provide a significant amount of data all year long. A total of
twelve stations are analyzed.
[29] Under clear sky conditions, the quality of our micro-

wave neural network retrieval is equivalent to the IR ISCCP
products, for most stations. For a given location, the per-
formance of the microwave algorithm is similar under clear
and cloudy conditions, confirming that our retrieval has
accounted for the limited effect of the clouds. A simpler
approach, the Holmes et al. [2009] algorithm also yields
realistic estimates of Ts, when the surface emissivity at
37 GHz (vertical polarization) is similar to that for the loca-
tions used to test the algorithm, i. e., near unity. In these
regions, this simple algorithm can provide a Ts first guess
that could be further refined in a more complex algorithm,
such as in our NN methodology.
[30] Our microwave Ts estimates have been calculated

for more than 15 years (1993 to mid 2008), from all avail-
able SSM/I observations. The same methodology could be
applied to AMSR-E measurements. These “all weather” Ts
estimates are a very valuable complement to the IR-derived
Ts, for use in atmospheric and surface models.
[31] However, the accuracy of the products has to be

carefully considered, especially when used to calculate

radiative and turbulent fluxes. The longwave fluxes at the
surface vary by about 7 W.m−2 for every degree of temper-
ature [Zhang et al., 1995]. For sensible flux estimation, the
key variable is the difference between Ts and Tair and
the uncertainty in one estimate can result in large errors in the
fluxes. One of the objectives of the GEWEX LandFlux
program [e.g., Jiménez et al., 2010] is to determine the

Figure 8. Scatterplot of the standard deviation of the differ-
ence between CEOP and satellite Ts versus the correlation
coefficient between the two variables, for each selected sta-
tions. Symbols (circles, squares, and triangles) indicate the
considered satellite product. Empty symbols indicate clear
sky conditions and filled symbols indicate cloudy conditions.
The color of the symbols is representative of the station group
(see Figure 1). The size of each symbol gives an idea of the
bias (in absolute value).

Table 2. Statistics of the Difference Between the Satellite Estimates and the CEOP in Situ Measurements, Over 2003, for All Selected
Stationsa

Region and
Station

TIR − TCEOP

Clear

TMW1 − TCEOP TMW2 − TCEOP

Clear Cloudy Clear Cloudy

Mean RMS Corr Mean RMS Corr Mean RMS Corr Mean RMS Corr Mean RMS Corr

MidLat
1 −0.25 4.48 0.81 −0.21 3.73 0.85 −0.55 3.47 0.86 −7.96 8.69 0.87 −8.06 8.51 0.89
2 −1.64 4.97 0.91 −1.60 4.05 0.94 −1.61 3.51 0.94 −1.05 3.74 0.95 −1.47 3.30 0.95
3 −1.46 5.39 0.88 −1.50 4.22 0.93 −1.20 3.75 0.92 −0.89 3.78 0.93 −1.02 3.11 0.93
67 0.66 3.92 0.91 0.67 3.45 0.92 1.08 4.29 0.90 −5.16 6.57 0.87 −3.74 6.05 0.86
68 −1.12 4.89 0.71 −0.20 4.57 0.73 0.45 4.99 0.70 −3.75 6.68 0.54 −2.18 6.00 0.60
69 −2.26 4.97 0.80 −2.04 4.51 0.86 −1.09 3.13 0.88 −4.49 6.23 0.82 −3.37 4.69 0.85

Tropics
6 −8.54 11.48 0.06 −9.33 11.38 0.28 −8.79 10.53 0.30 −13.42 14.77 0.35 −12.24 13.51 0.29
44 0.94 6.16 0.29 0.57 5.31 0.49 −0.21 4.73 0.50 −4.00 6.52 0.53 −3.83 5.74 0.62
94 −1.97 3.91 0.22 −2.08 3.03 0.64 −2.20 3.09 0.56 −4.92 5.28 0.71 −4.03 4.44 0.64
95 −2.78 6.57 −0.05 −1.64 3.81 0.70 −1.12 3.87 0.62 −1.34 3.32 0.79 −1.45 3.63 0.69

Boreal
49 −6.46 9.11 0.74 −3.49 6.40 0.82 0.05 4.68 0.85
100 −1.86 7.04 0.86 4.93 6.79 0.81 5.92 7.74 0.77

aThe mean, the r.m.s. and the correlation coefficient are indicated, separately for clear and cloudy situations, respectively for the IR ISCCP estimates, for
the NN microwave retrieval (MW1), and for the single channel microwave retrieval (MW2). For the Boreal stations, MW2 cannot be applied as the pixels
have more than 4% water coverage.
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potential for estimating the turbulent fluxes, given the avail-
able input data, including Ts, and to guide development of
better products.
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