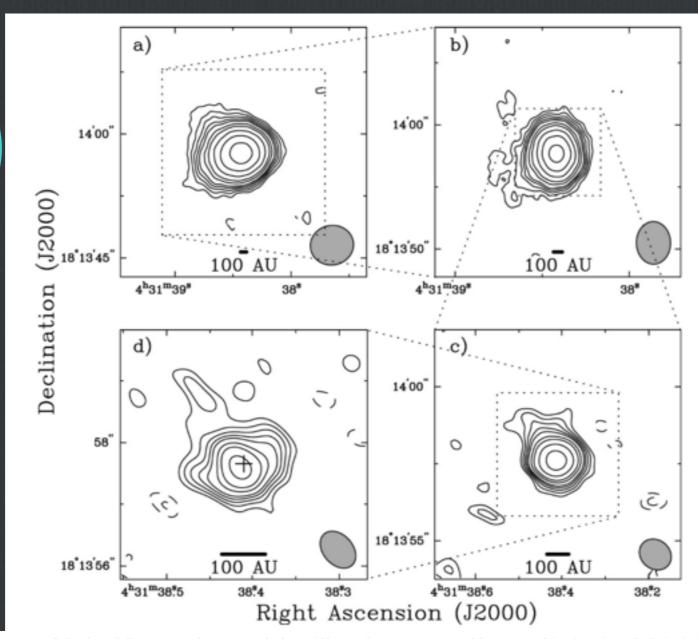
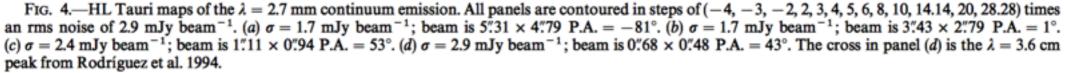
Handling ALMA data

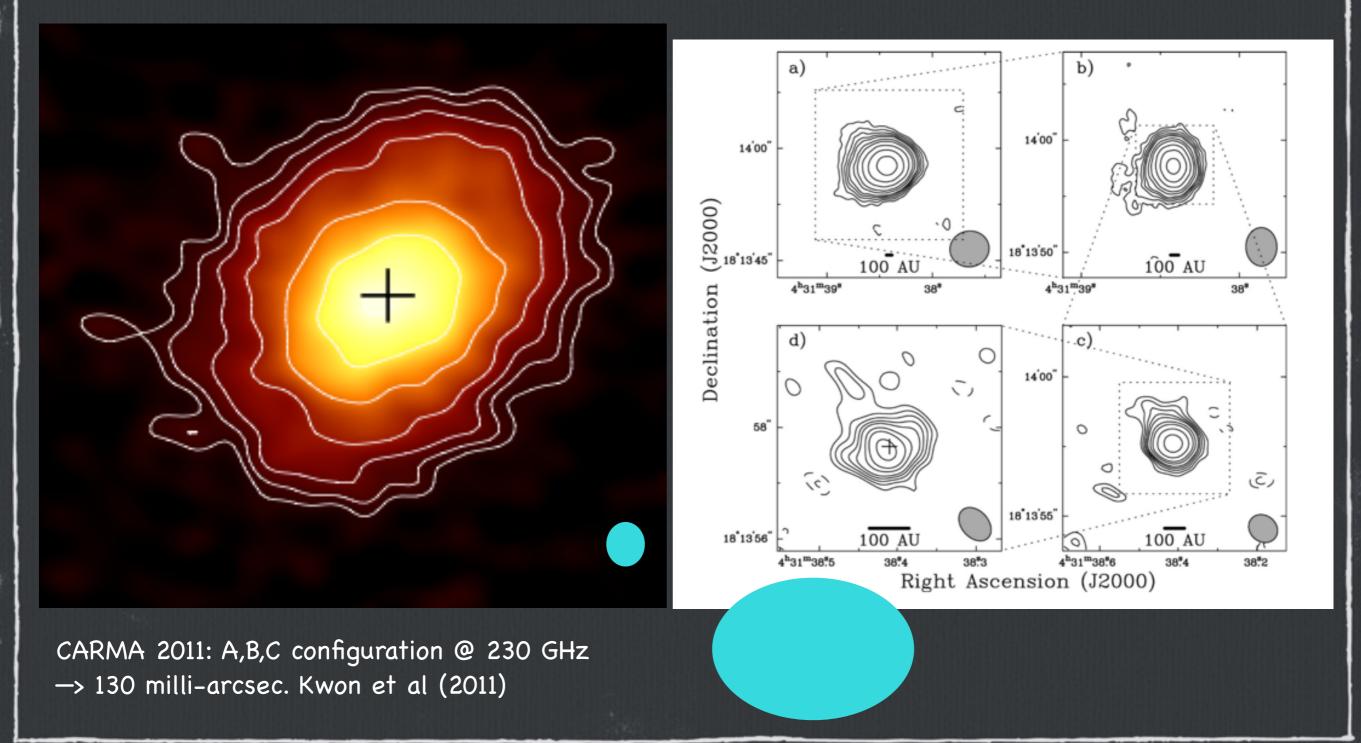
Philippe Salomé (LERMA, Observatoire de Paris)

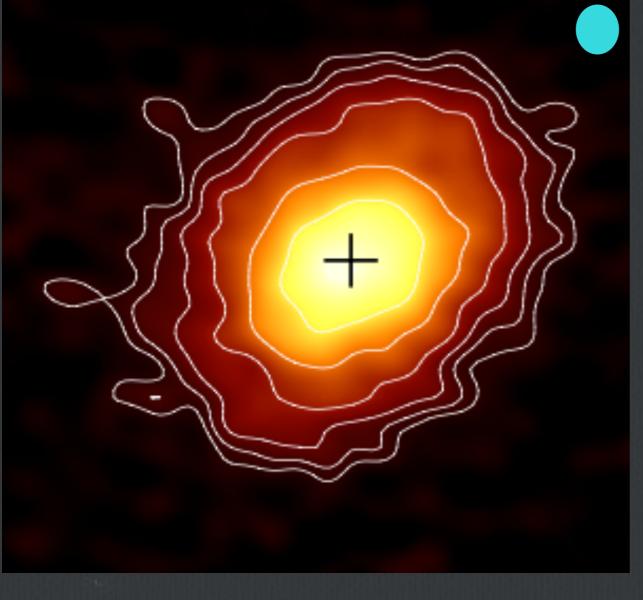

Credits : F. Stoer (ESO - ALMA Archive), ALMA European Science Portal, M. Massardi (Italian ARC-node) talks...

Paris Workshop - MIS - ALMA/NOEMA/Herschel - CTA synergies 30/09/2015

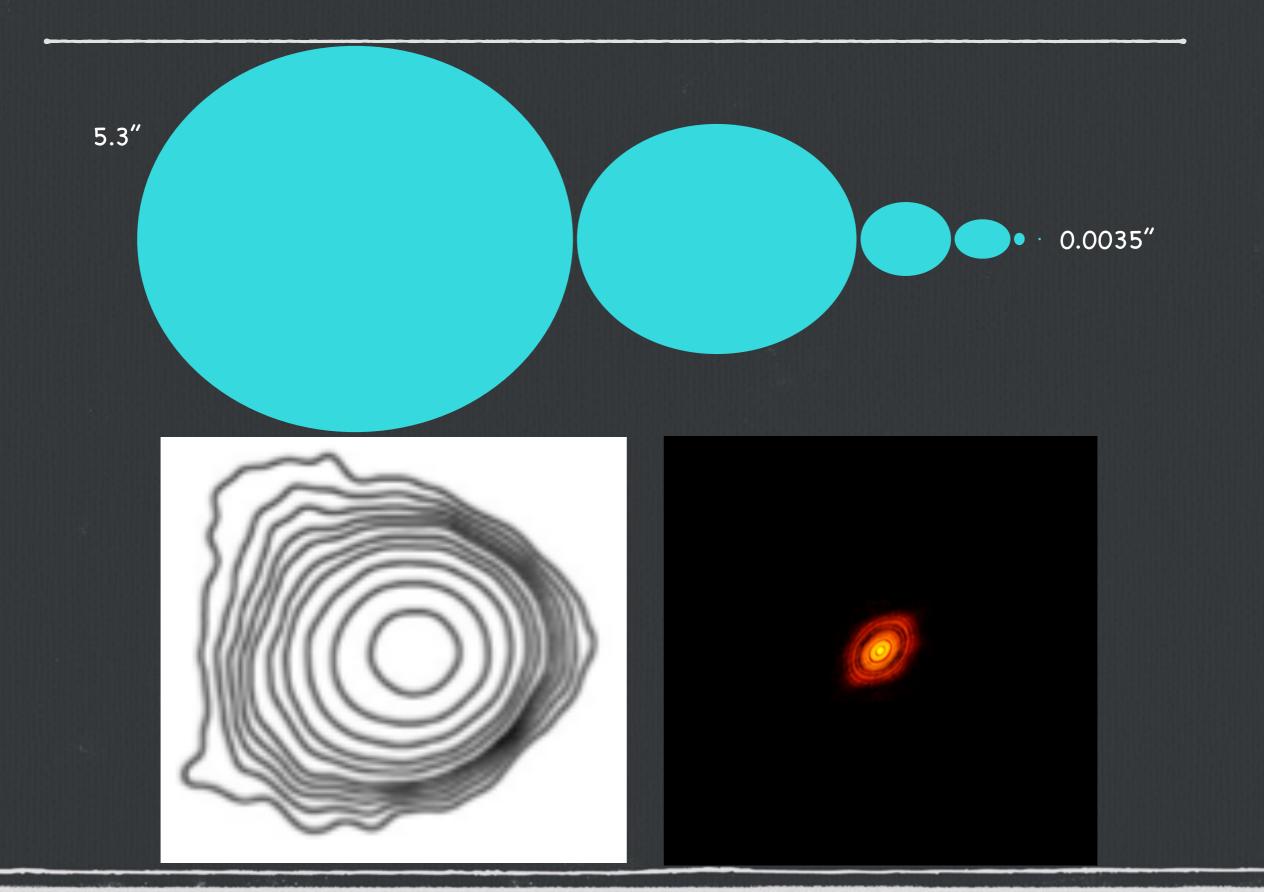

« ALMA as a high spatial resolution instrument »

- First large baseline campaign -


A planet-forming disc around a young star


Looney et al (2000) BIMA observations

A planet-forming disc around a young star



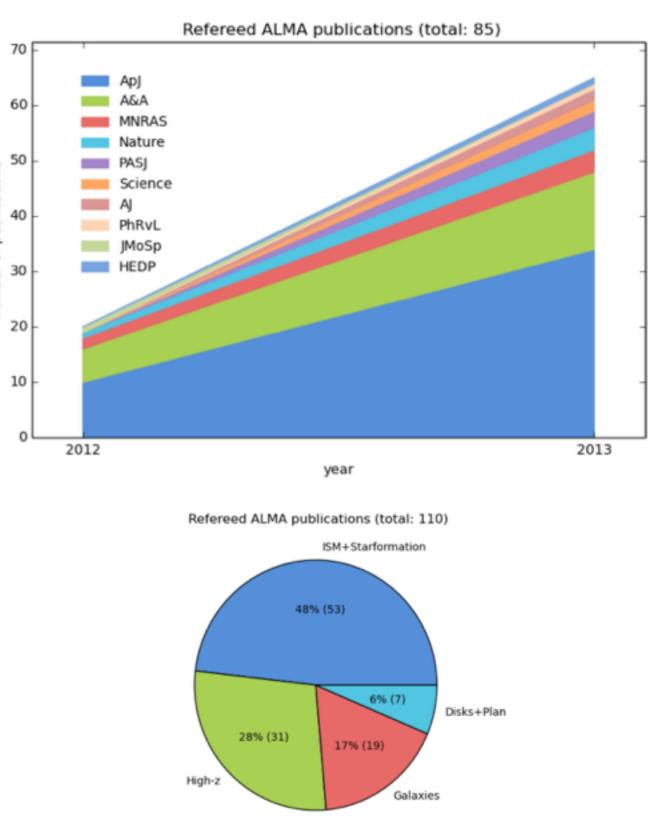
A planet-forming disc around a young star

CARMA 2011: A,B,C configuration @ 230 GHz //

ALMA 2014: 15 km-baseline @ 233 GHz 4.5 hours ->35 milli-arcsec

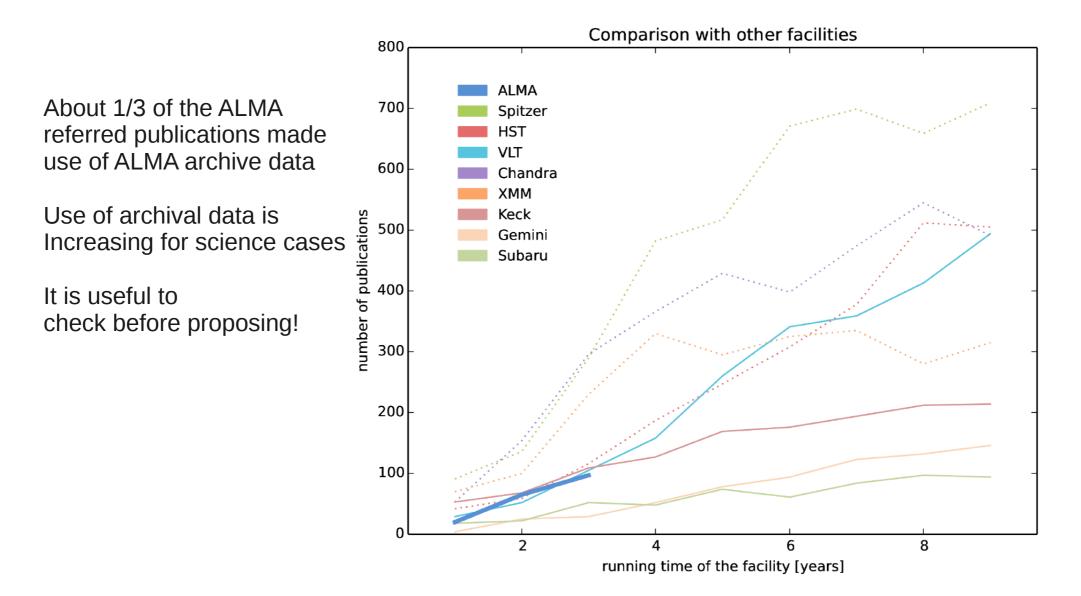
Good imaging capability needs :

- if necessary : spatial resolution (and good weather)
- uv-coverage (sampling of the equivalent larger telescope area by the collection of smaller apertures)
- sensitivity


Data and publications

Proprietary :

- Once data have been taken, they are made available to the PI
- A proprietary period of 12 months is applied, starting at the time when data is delivered to the PI
- Director's Discretionary Time project : 6 months


By the end of 2013 :

- 85 refereed papers were published using ALMA data (2012: 20; 2013: 65).
- ALMA publications typically experience a delay of less than a year.
- The fraction of published data is around 70%.
- Fraction of papers appeared in *ApJ* (almost 52%), *A&A* (approx. 24%) and *MNRAS* (more than 7%). High number of publications (8%) have been published in the high-impact journals *Nature* and *Science*

Meakins et al. (2014)

The ALMA Archive https://almascience.eso.org/alma-data/archive

The ALMA Archive

Articles 8	& Publica	tions			
ESO ESO REFINE	Telescope Bib	liography ⊯			
Results 1 - 2 instrument:A	5 of 280 found LMA_Bands Аитнов	for	INSTRUMENTS	Access to data	« Previous Next
2015	Viikinkoski, M. et al.	VLT/SPHERE- and ALMA-based shape reconstruction of asteroid (3) Juno	<i>ALMA_Bands</i> , NACO, SPHERE	086.C-0785, 2011.0.00013.SV, 60.A-9379	₽2015A&A581L3V
2015	Öberg, Karin I. et al.	Double DCO+ Rings Reveal CO Ice Desorption in the Outer Disk Around IM Lup	ALMA_Bands	2013.1.00226.S	₽ 2015ApJ810112O
2015	Tadaki, Ken-	SXDF-ALMA 1.5	ALMA_Bands	2012.1.00756.S	₽2015ApJ811L3T

Intro thoughts

- Example of the **HST** archive where the total number of **archival papers even outnumbers the PI papers**
- Larger data rates of individual observatories, AND multi-wavelength science. Astronomers have "less time" for the analysis of data of a given wavelength range.
- Very large data size : visual inspection is impossible for future facilities
- « Future observatories will compete for astronomers to work with their data that observatories will have to reorient themselves from providing good data only to providing an excellent end-to-end user-experience » F. Stoer et al. (2015) arXiv:1504.07354

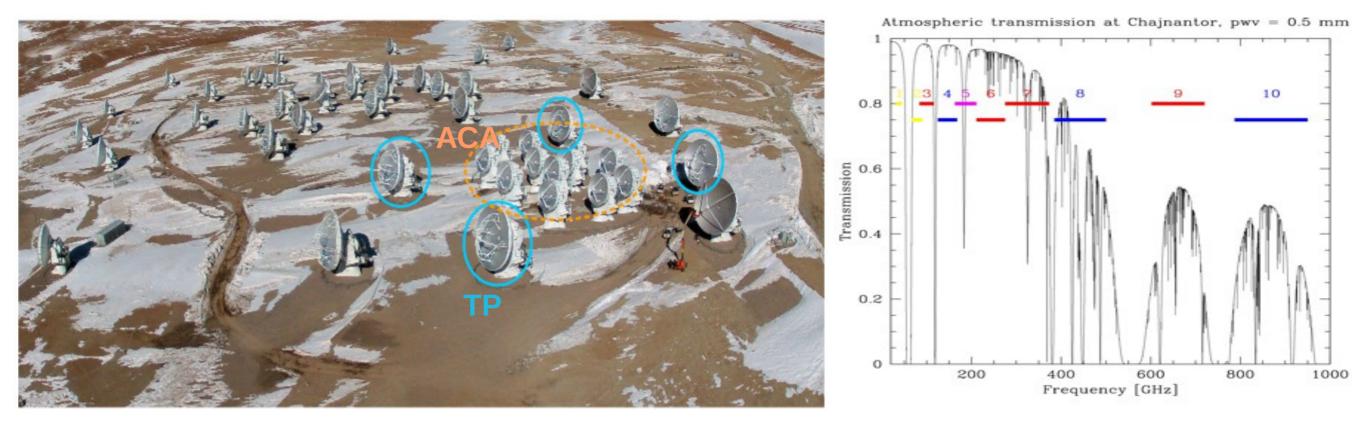
-> Need of Data Mining Tools (+ analysis)

- The ALMA Archive is designed to manage the **200 TB of data that will be taken each year** (full operations) with short-term peak data-rates of ten times as much
- Typical project size ~200 Go. But ~To with data reduction products, i.e. need of temporary large disk space
- Operating for 30 to 50 years will have to follow the general hardware evolution. Over such large timescales, scalability and flexibility in hardware and software solutions are mandatory

ALMA full array

The Atacama Large Millimeter Array is a **mm-submm reconfigurable interferometer**

Inaugurated in March 2013 on the Chajinantor plain (5000m, Chile)


- Frequency range: **10 bands between 30-900 GHz** (0.3-10 mm)
- **50x12m** main array + 12x7m ACA + 4x12m Total Power Antennas:
- **Baselines length:** 15m ->150m-16km 9m->50m
- **Bandwidth**: 2 GHz x 4 basebands
- **Polarimetry:** Full Stokes capability
- Angular Resolution:
- Velocity resolution:

0.2" x (300/freq_GHz)x(1km/max_baseline) 40 mas @ 100 GHz, 5 mas @ 950 GHz As narrow as 0.008 × (Freq/300GHz) km/s

~0.003 km/s @ 100 GHz, ~0.03 km/s @ 950 GHz

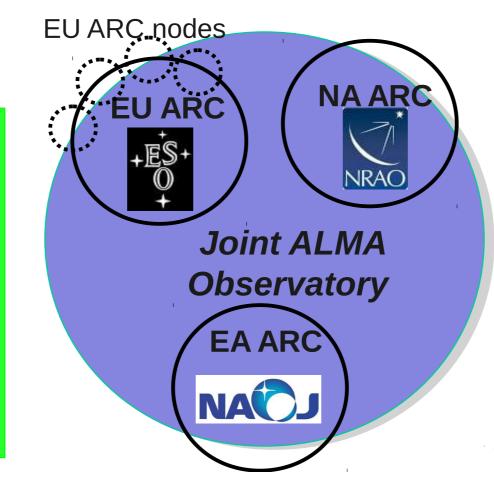
1000

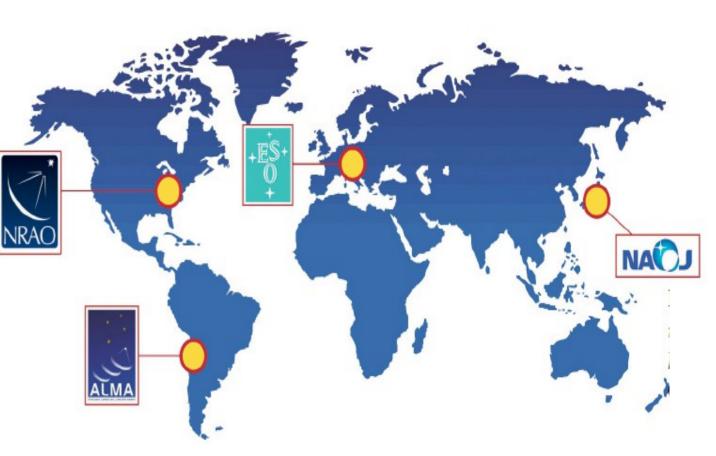
High instantaneous imaging capabilities & setup flexibility

ALMA organization

World wide collaboration

- Europe: ESO (33.75%)
- North America: **NRAO** (33.75%)
- East Asia: NAOJ (22.5%)
- Chile (10%)

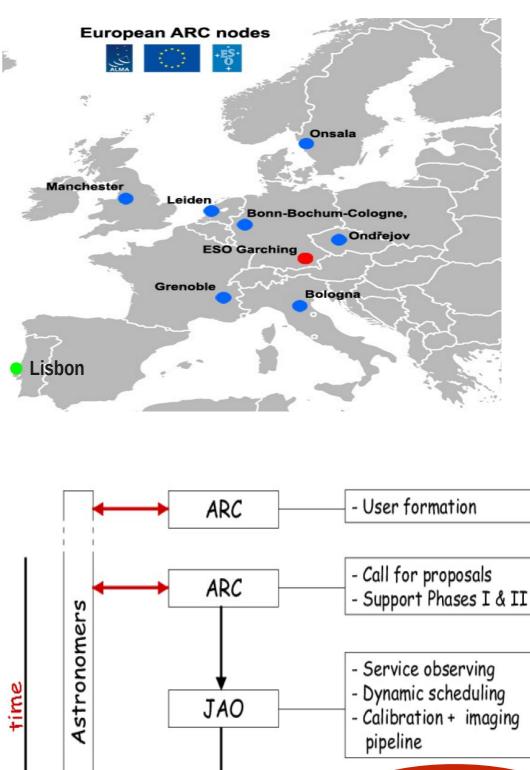

Contributors share the observing time


PI affiliation defines the time share on which the project is executed

(Chilean have additional rules from Cycle 3 on)

Joint ALMA Observatory

- Execution of observations
- Array operations
- Scheduling of projects
- Data quality assurance and trend analysis
- Calibration plan maintenance
- Delivery of data to the archives
- Archive operations
- Pipeline operations

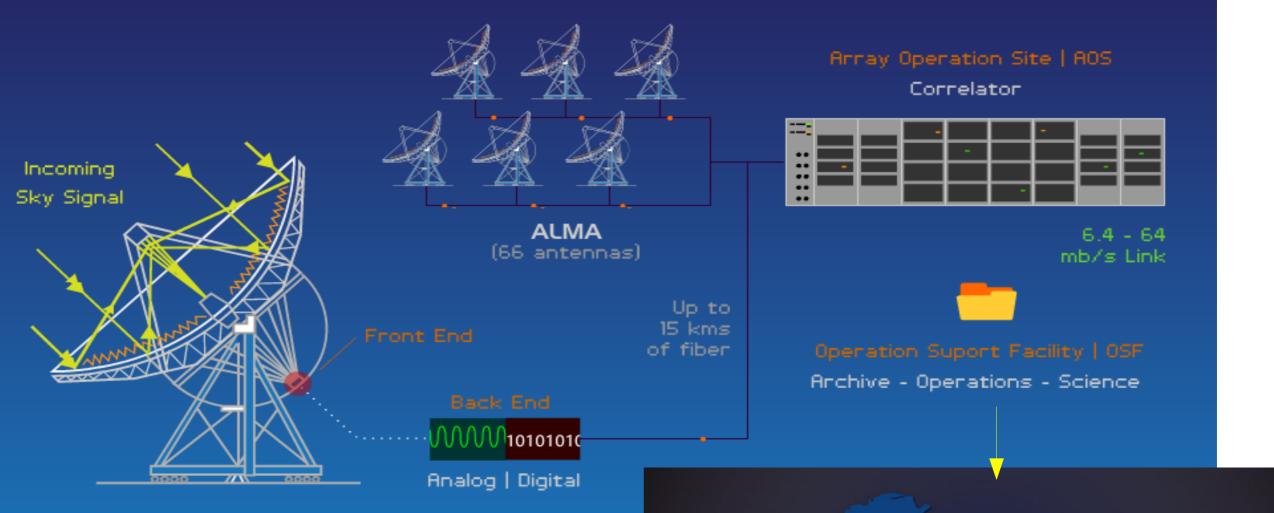


ALMA Regional Centres

- User interface
- User support (via helpdesk and f2f)
- Data delivery to the PIs
- Mirror archive operations
- Software tools
- Astronomers on duty
- Data quality assurance

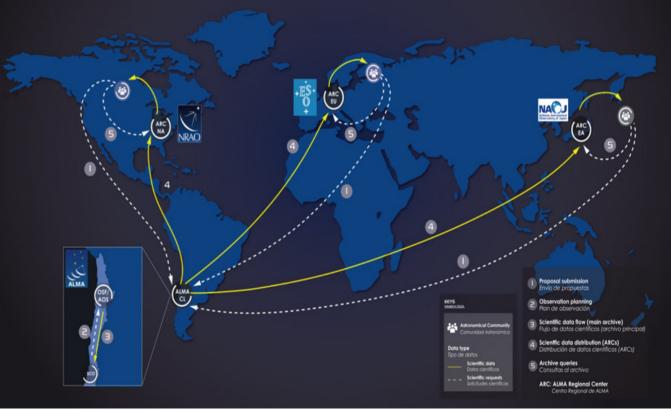
The ARCs

- Interface between JAO and users
- 1 ARC per Partner:
 - NRAO for North America
 - NAOJ for East Asia
 - ESO for Europe (split in 7 nodes)
- Operation support
 - Archive replication
 - Astronomer on duty
 - Software tools
- User support
 - Community formation and outreach (schools, workshops, tutorials, ...)
 - Phase 1 (proposal preparation)
 - Phase 2 (scheduling block preparation)
 - Data analysis, Archive mining
 - F2F user support, Helpdesk



ARC

- Archive - Helpdesk


f2f user support

ALMA data flow

Data is collected, reduced and archived. All the "almost" raw data is archived.

Each ARC hosts an archive mirror.

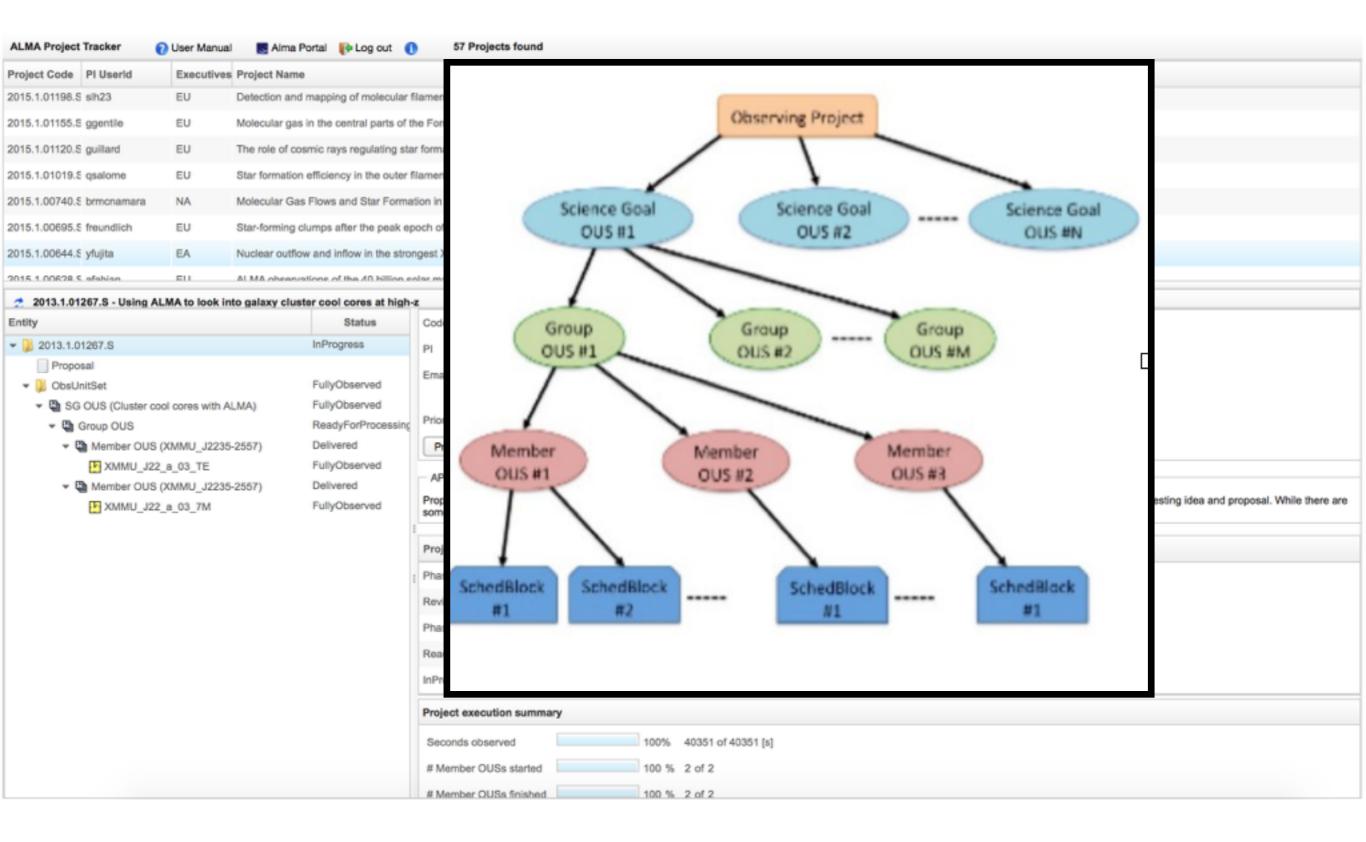
Before the end of Obs...

- Project tracker (follow you proposals)
- Highest priority projects (schedule)
- Real time observations
- ToO

ALMA Project Tracker

ALMA Project Tracker	User Manual	Alma Portal	Log out	0	
----------------------	-------------	-------------	---------	---	--

Project Code	PI Userid	Executives	Project Name	State	Time C	Time of Creation	Timed Out	Project UID
2015.1.01198.8	sih23	EU	Detection and mapping of molecular filaments in galaxy cluster cores	Reviewed		2015-04-23 10:47:18		uid://A001/X1ee/Xe16
2015.1.01155.8	ggentile	EU	Molecular gas in the central parts of the Fornax cluster: fueling the AGN	Reviewed		2015-04-23 09:55:5(uid://A001/X1ee/Xd6d
2015.1.01120.8	guillard	EU	The role of cosmic rays regulating star formation in AGN	Reviewed		2015-04-23 09:27:2:		uid://A001/X1ed/Xcd9
2015.1.01019.5	qsalome	EU	Star formation efficiency in the outer filament of Centaurus A	Reviewed		2015-04-23 06:44:0;		uid://A001/X1ed/Xb4d
2015.1.00740.5	brmonamara	NA	Molecular Gas Flows and Star Formation in Cluster Cores	Reviewed		2015-04-22 22:19:11		uid://A001/X1ee/X791
2015.1.00695.5	freundlich	EU	Star-forming clumps after the peak epoch of star formation	Reviewed		2015-04-22 20:42:01		uid://A001/X1ed/X8cd
2015.1.00644.8	yfujita	EA	Nuclear outflow and inflow in the strongest X-ray cool core of nearby galaxy groups	Reviewed		2015-04-22 18:53:0!		uid://A001/X1ee/X649
2015 1 00628 5	afahian	EU	ALMA observations of the AD billion solar masses of molecular one in the heart of the ne	Deviewed		2015.04.22 18:22-51		uid-//A001/¥1ad/¥5a2

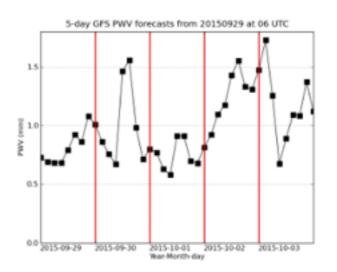

57 Projects found

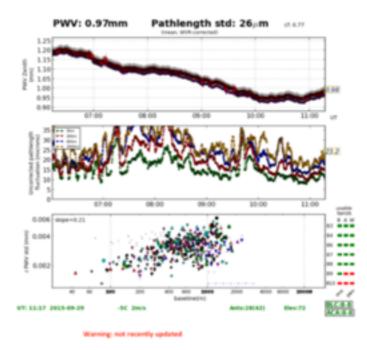
2013.1.01267.5 - Using ALMA to look into galaxy cluster cool cores at high-z

Entity	Status	Code	2013.1.01267.S		Cycle	2013.1
▼ 📙 2013.1.01267.S	InProgress	PI I	Kaustuv Basu (kmbasu)		Project UID	uid://A001/X112/X330
Proposal	E-D-Observed	Email	kbasu@astro.uni-bonn.de		Creation	2013-12-05 14:13:46
·	FullyObserved FullyObserved				date	
	ReadyForProcessing	Priority Flag	C		Executives	EU
Member OUS (XMMU_J2235-2557)	Delivered	Project Report	🛚 📙 PDF 🗆 🖳 HTML			
XMMU_J22_8_03_TE	FullyObserved	APRC Consensus re	nort			
 Member OUS (XMMU_J2235-2557) 	Delivered			regions of a shades of estavies of and d	This is done by	combining 67 and Very imposing Internation idea and propagal Miblia there are
XMMU_J22_a_03_7M	FullyObserved	some simulations incl	uded in the proposal, this should include	e a deeper discussion on the method itse	If and possible	r combining SZ and Xray imaging.Interesting idea and proposal. While there are problems.
	1					
		Project status histor	y Timestamp			
	1	Phase1Submitted	Thu, 05 Dec 2013 14:13:47 GMT			

Phase1Submitted	Thu, 05 Dec 2013 14:13:47 GMT	
Reviewed	Wed, 09 Apr 2014 15:13:24 GMT	
Phase2Submitted	Wed, 10 Dec 2014 14:17:42 GMT	
Ready	Wed, 10 Dec 2014 14:20:31 GMT	
InProgress	Tue, 16 Dec 2014 00:09:49 GMT	
Project execution summary		
Seconds observed	100% 40351 of 40351 [s]	
# Member OUSs starte	ed 100 % 2 of 2	
# Member OUSs finish	hed 100 % 2 of 2	

ALMA Project Tracker

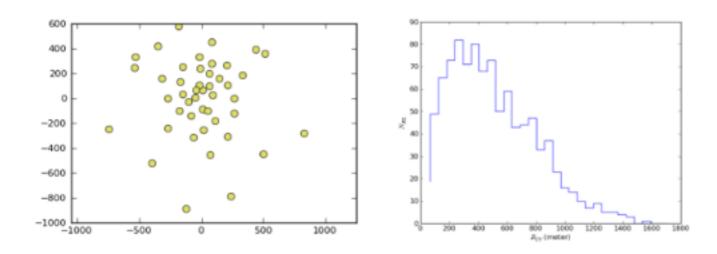

Highest priority projects


	ama Large Milli rch of our Cosmic O	meter/submillime t	ter Array	Search Site		÷ES P				
ESO	NRAO	NAOJ	Lo	g in Register Reset Pass	word Fo	rgot Account				
About	You are here: Hom	ne > Observing > High Priori	ity Projects							
	High Priorit	ty Projects								
Science	Cycle 3 Cy	ycle 2 Cycle 2 DDTs	Cycle 1 Carryover Previous Cycles							
Proposing										
Observing			cts with public metadata, including all Cycle 3 A- and B-grad							
ToO activation		archived observations. The public metadata includes the ALMA Project Code, program title and abstract, investigator names and institutes, the Executive to which the project is assigned (CL=Chile, EA=East Asia, EU=Europe, NA=North America, or OTHER), and the proposal science category (Category								
Phase 2		10=Cosmology and the high redshift universe; Category 20=Galaxies and galactic nuclei; Category 31=Interstellar medium, star formation and astrochemistry; Category 41=Circumstellar disks, exoplanets and the solar system; Category 50=Stellar evolution and the Sun).								
Project Tracker			wn an ALMA Science Archive query for the project (if the link		o archived	data avista)				
ALMA Status Page	-		will open additional fields in the table with the corresponding		o archiveo	uata existsj.				
High Priority Projects										
Data	Project Code	Title (Abstracts)		PI (COIs)	Exec	Category				
Documents & Tools	2015.1.00007.S	S Not alone?: Solv	ring the complex mass loss puzzle of U Ant	Franz F. Kerschbaum	EU	50				
Knowledgebase/FAQ										
	2015.1.00009.5	5 High Resolution z=3.07	mm-Interferometry of a Highly Magnified Lyman Break Gala	xy at Kristen E K Coppin	EU	10				
User Services at ARCs		2 0.01								
	2015.1.00016.5	A search for extr	ragalactic argonium, ArH+, a probe of the very atomic diffuse	Holger S.P. Müller	EU	31				
 Helpdesk ALMA Calendara 		interstellar medi	um							
ALMA Calendars	2015 1 00040 5	Peeching the st	as forming ISM at z=2.2	Inequalize A. Hodeo	NA	10				
EU ARC	2015.1.00019.5	5 Resolving the st	ar-forming ISM at z~2-3	Jacqueline A. Hodge	N/A	10				
NA ARC										

Real time ALMA Status

Weather

Current Data					
Radiometer	[mm]	:	1.0		
Temperature	[C]	:	-0.21		
Dewpoint	[C]	:	-20.75		
Humidity	[%]	:	15.94		
Pressure	[hPa]	:	553.1		
Wind Speed	[m/s]	:	4.49		
Wind Directio	n(deg)	1	279.0		
Wind Chill	[C]	:	-7.83		
Last update		:	Tue Sep 29 15:12:00 2015		


APEX Weather Monitor

Chajnantor PWV Forecast

Most Recent ES Configuration

(from June 23 2015)

Array	7m	12m
min BLs	8.9 m	42 m
max BLs	32.1 m	1466 m
RMS BL	19.5 m	556 m
beam (@100 GHz)	19.3"	0.49"
max recoverable scale (@100 GHz)	41.7"	8.8"

12m Array Configuration (config file) 12m Array Baseline Radial UV Density

Trigger accepted ToO

	too.almascience.org	Ċ
ne to the Science Portal at ESO		Target of Observation
O Home		
If you need to submit a ToO trigger for Cyc	le 1 please click here	
r you need to submit a 100 trigger for Cyc	he i please click liere	
ALMA Cycle 2 Targe	at of Opportunity	
ALIVIA CYCIE Z Targe	st of opportunity	
PI Information		
Name		
Salome, Philippe		
Email		
philippe.salome@obspm.fr		
Decident Information		
Project Information		
ToO Drojecto		
ToO Projects		
ToO Projects Select		
Select \$	'n	
Select		

ALMA Archive

The ALMA archive is a combined database and binary data storage system that is accessed by the different software subsystems through the same software layer. It is divided in 2 parts

- The ALMA Frontend archive (AFA), which provides the core persistence functionality
- The ALMA Science Archive (ASA) that holds a tiny subset of metadata of the AFA and provides access to external interfaces like the Archive Query interface and Virtual Observatory (VO) tools.

The ALMA archive has operational parts at 1- the Operations Support Facility (OSF), 2- the Santiago Central office and 3- the three ALMA Regional Centres (ARCs).

Main archive at the SCO, holding (all science data, commissioning, operations data, monitoring data)

Full copies of the main archive are stored at the three ARCs. Off-site backup copies of the main archive and ALMA staff local user support (quality control QA3)

From the archives at the ARCs data is distributed to PIs and archival researchers.

Goal

Provide a Science Archive with web access and programmatic access to metadata and data. This Science Archive should understand queries by physical concepts and should be intuitively usable by non-radio astronomers and expert radio-astronomers alike.

Status

Currently the ALMA Science Archive only queries on the raw metadata \rightarrow many rows for a single source may be returned.

The user interface, although it has improved a lot recently, is still under heavy development.

Future

Abstracts, Previews, metadata of publications, previews, visualization, access to individual science-grade products.

ALMA Archive

The ASA consists of 4 building blocks.

1) **The Harvester** extracts a small subset of the metadata from the AFA and writes a into the ASA database. This software is written in Java and runs twice a day.

2) **The Archive Query interface** is built using Java Server Pages (JSP) and JavaScript and provides a classical form-based search interface to selected columns of the ASA database. Once the user hits the search button, the query is transformed into the Astronomy Data Query Language (ADQL) a dialect of SQL and passed to the

3) **Query Backend** is a generic Java code allowing to query Relational Databases and return results in VO format. The result of this query is then passed back to the query interface for display. Thus, internally, all ASA queries are VO queries which also means that all user-services querying the archive will use the same query backend. This reduces cost, simplifies the the set-up, allows for easy maintenance and uses existing standards. Once the user has selected data and, the user will be sent to the ALMA Request Handler (RH)

4) **The Request Handler** manages user requests for the download of data or for the processing of data. It stores the users' requests under the user's account and provides the access control on a file level and allows for different download methods.

a) The standard method is a download manager (Java applet) which allows the user to download several files in parallel in order to optimize the use of the available bandwidth. Paused or broken downloads can be resumed.

b) It also offers a download script which is meant for users who want to download the ALMA data directly onto a processing environment without having to use a web browser.

The RH logs data access to be able to generate download statistics.

ALMA Archive

ALMA archive data is made of the following;

- Raw data (in form of ALMA science data model [ASDM], and measurement set [MS]), which can be re-processed with CASA.
- Processed image files (in .fits format), science-ready (not the full data cube but slices of science goals)
- CASA data reduction script used for producing the processed image files. *Note that the script and the resulting FITS are not optimized to the best quality image possible, but adopts standard procedures. For example, point-like sources are not self-calibrated.*

Reprocess ALMA datasets

- Install CASA (<u>http://casa.nrao.edu/casa_obtaining.shtml</u>), knowledge of python (script code) is advantageous
- Redo the full calibration : scripts available in the archive tarball. Contact your local ARC-node (IRAM)
- **Redo the imaging** (i) within casa (ii) use the GILDAS filler (either from fits images or even directly from uvfits in order to **get GILDAS uv-table**). See Documentation on IRAM website.

Query Form Results Table				
Search Reset				Query Help
Position	Energy		Time	Polarisation
Source name (Resolver) Cen A Source name (ALMA) RA Dec Spatial resolution	Source name (Resolver) Case-insensitive search for source name, to be resolved with Sesame. Wildcard matching is disabled.	6		Polarisation type
Observation Water vapour	Usage. Use Sesame (via. NED, Simbad and VizieR) to parse names commonly found throughout literature. A green tick indicates a successful search, otherwise, a red cross is returned.	13:25:27.61 Object typ	-43:01:08.8 e t 2 Galaxy)	Options View: • raw data • project View: • raw data only view: • science observations only
	Example Cen A NGC3375 ARP220	Resolver Sesame usi	ng <u>Simbad</u>	2 Selence observations only

Query Form Results Table			
Search Reset			Query Help
Position	Energy	Time	Polarisation
Source name (Resolver) Cen A Source name (ALMA) RA Dec Spatial resolution	Frequency Bandwidth Spectral resolution Band	Observation date Integration time	Polarisation type
Observation	Project		Options
Water vapour	Project code Project title PI name co Cicone, Claudia Codella, Claudio Colina, Luis Combes, Francoise Conley, Alexander Coppin, Kristen Corder, Stuartt Corder, Stuartt	PI Full Name ALMA PI name Description case-insensitive partial match over the full PI name. Wildcards can be used Example Smith, Fred SMI [*] fr?d	 View: ● raw data ● project ✓ public data only ✓ science observations only

Query Form Results Table								
Query Help								
Position	Energy	Time	Polarisation					
Source name (Resolver) Source name (ALMA) RA Dec Spatial resolution	Frequency 100 300 600 900 Bandwidth Spectral resolution 2e6 3e6 Band	Observation date Integration time	Polarisation type					
Observation Water vapour	Project Project code Project title PI name		Options View: • raw data • project • public data only • science observations only					

ALMA Science Archive Query

Query Form Results Table

Query Help

Query Help

The tooltips that appear when you hover over the search boxes will give examples of searches, and show the unit in which to enter numerical quantities. The name resolver (SESAME) will resolve names of non-solar system objects using the SIMBAD, NED, and Vizier databases.

By default, the results of a search will be a list of publically available, raw observations of science targets. To see a project-level view, and/or prorietary data, choose the appropriate options in the lower-right box. In order to see also data from calibrator observations, select the appropriate entries from the "Scan Intent" field.

Below are a list of operators and wildcards that may be used in the search fields (apart from the name resolver field, which accepts no operators).

Numerical Opera	ators	String Operators	String Operators			Logical Opera	Logical Operators		
Equal	=	Equal	~	Any text	*	Or	Ι		
Not Equal	!=	Exactly equal (case sensitive)	=	Any single character	?				
Less than	<	Exactly equal (no wild cards)	==						
Less than or equal	≤	Not equal	!~						
Greater than	>	Not exactly equal (no wildcards)	!=						
Greater than or equal	2								

Query Form Results Table			
Search Reset			Query Help
Position	Energy	Time	Polarisation
Source name (Resolver) Cen A Source name (ALMA) RA Dec Spatial resolution	 Frequency Bandwidth Spectral resolution Band 	Observation date Integration time	Polarisation type
Observation Water vapour	Project Project code Project title PI name		Options

ALMA Science Archive Query

ubmit download request Results Bookmark Export Table Results Help										
howing 1000 rows (1000 before filtering).										
	Project code	Source name 🔺	RA	Dec	Band	Integration	Release date	Velocity resolution	Frequency support	
:										
Ĵ	2011.0.00010.S	CenA	13:25:27.62	-43:01:08.8	3	516.403	2015-02-12	415.31	87.0589.14GHz	
)	2011.0.00010.S	CenA	13:25:27.62	-43:01:08.8	3	516.546	2015-02-12	415.31	87.0589.14GHz	
)	<u>2011.0.00010,8</u>	CenA	13:25:27.62	-43:01:08.8	6	692.215	2015-02-12	667.58	217.61220.48GHz	
)	2011.0.00454.S	CenA - CO knot S1	13:26:16.10	-42:46:55.7	6	57.255	2013-02-14	1324.13	211.67231.05GHz	
)	<u>2011.0.00454.S</u>	CenA - Xray N1	13:27:25.30	-42:40:17.5	6	57.218	2013-02-14	1324.13	211.67231.05GHz	
	<u>2011.0.00454.S</u>	CenA - Xray N2	13:26:56.80	-42:41:37.4	6	57.226	2013-02-14	1324.13	211.67231.05GHz	
	2011.0.00454.S	CenA - Xray N3	13:26:40.50	-42:43:50.6	6	57.225	2013-02-14	1324.13	211.67231.05GHz	
)	2011.0.00454.S	CenA - Xray N4	13:26:34.20	-42:46:19.8	6	57.237	2013-02-14	1324.13	211.67231.05GHz	
	2012.1.00019.S	Centaurus_A	13:25:27.62	-43:01:08.8	7	32.534	<u>2015-06-30</u>	848.45	332.20347.95GHz	
	<u>2012.1.00019.8</u>	Centaurus_A	13:25:14.85	-43:00:26.8	3	8.559	In Progress	1269.75	<u>112.30115.30GHz</u>	
	2012.1.00019.5	Centaurus_A	13:25:16.90	-43:00:13.9	3	8.559	In Progress	1269.75	<u>112.30115.30GHz</u>	
	<u>2012.1.00019.S</u>	Centaurus_A	13:25:16.90	-43:00:39.7	3	8.559	In Progress	1269.75	<u>112.30115.30GHz</u>	
	2012.1.00019.S	Centaurus_A	13:25:16.90	-42:59:48.0	3	8.606	In Progress	1269.75	112.30115.30GHz	
	2012.1.00019.S	Centaurus_A	13:25:18.94	-43:00:00.9	3	8.606	In Progress	1269.75	<u>112.30115.30GHz</u>	
	2012.1.00019.S	Centaurus_A	13:25:18.94	-43:00:52.6	3	8.559	In Progress	1269.75	112.30115.30GHz	

proprietary

has not yet been delivered to the PI

ALMA Science Archive Query

Query Form Results Table

Submit download request

Results Bookmark Export Table Results Help

	Project code	Source name 🔺	RA	Dec	Band	Integr	ation	Release dat	e Veloci	ty resolution	Frequency support
er:									m/s	v)	
Ď	<u>2011.0.00010.S</u>	CenA	13:25:27.62	-43:01:08.8	3	516					87.0589.14GHz
5	2011.0.00010.S	CenA	13:25:27.62	-43:01:08.8	3	516	Freque	ncy	Resolution	Polarization	87.0589.14GHz
Ō	2011.0.00010.S	CenA	13:25:27.62	-43:01:08.8	6	692	211.67	213.55GHz	976.56kHz	XX YY	217.61220.48GHz
	2011.0.00454.S	CenA - CO knot S1	13:26:16.10	-42:46:55.7	6	57.:	213.67	215.54GHz	976.56kHz	XX YY	211.67231.05GHz
	2011.0.00454.S	CenA - Xray N1	13:27:25.30	-42:40:17.5	6	57.:	226.66	228.53GHz	976.56kHz	XXYY	211.67231.05GHz
	2011.0.00454.S	CenA - Xray N2	13:26:56.80	-42:41:37.4	6	57.:		231.05GHz	976.56kHz	XXYY	211.67231.05GHz
	2011.0.00454.S	CenA - Xray N3	13:26:40.50	-42:43:50.6	6	57.:	229.10		970.30KHZ	~	211.67231.05GHz
	2011.0.00454.S	CenA - Xray N4	13:26:34.20	-42:46:19.8	6	57.23	7	2013-02-14	1324.	13	211.67231.05GHz
	2012.1.00019.S	Centaurus_A	13:25:27.62	-43:01:08.8	7	32.53	4	2015-06-30	848.4	5	332.20347.95GHz
	2012.1.00019.S	Centaurus_A	13:25:14.85	-43:00:26.8	3	8.559		In Progress	1269.	75	112.30115.30GHz
	2012.1.00019.S	Centaurus_A	13:25:16.90	-43:00:13.9	3	8.559)	In Progress	1269.	75	<u>112.30115.30GHz</u>
	2012.1.00019.S	Centaurus_A	13:25:16.90	-43:00:39.7	3	8.559		In Progress	1269.	75	<u>112.30115.30GHz</u>
	2012.1.00019.S	Centaurus_A	13:25:16.90	-42:59:48.0	3	8.606	i	In Progress	1269.	75	<u>112.30115.30GHz</u>
	2012.1.00019.S	Centaurus_A	13:25:18.94	-43:00:00.9	3	8.606		In Progress	1269.	75	<u>112.30115.30GHz</u>
	2012.1.00019.S	Centaurus_A	13:25:18.94	-43:00:52.6	3	8.559)	In Progress	1269.	75	112.30115.30GHz

ALM	IA Science A	Add/remove displayed co	lumr	15				
Query	Form Results Tab	Drag & drop columns above or b	elowi	the red bar, move the red bar itself or click on the checkboxes.				
Submi	it download request	Reorder columns			ole <u>Results Help</u>			
Showing	g 1000 rows (1000 before fit	Drag & drop the columns or drag	ig & drop the columns or drag & drop the column headers directly in the results table.					
	Project code	Show all columns Reset colur	nn ord	der Order alphabetically	Frequency support			
Filter:		✓ Project code		Project code, in the form YYYY.NNNNN.C.AAA, where:				
Ŭ	<u>2011.0.00010.S</u>	Source name		Name of the source as registered in the ASDM. Partial matches through wildcards (?, *), and boolean OR expressions (" "), can be used.	87.05.89.14GHz			
	<u>2011.0.00010.S</u> 2011.0.00010.S	RA RA	deg	Right Ascension of the field pointing.	87.0589.14GHz 217.61220.48GHz			
	2011.0.00454.S	✓ Dec	deg	Declination of the field pointing.	211.67231.05GHz			
	<u>2011.0.00454.S</u>	Jeand	Band ALMA receiver band.		211.67231.05GHz			
	2011.0.00454.S	Integration	s	Aggregated integration time for the field in the ASDM.	211.67231.05GHz			
	2011.0.00454.S	🗸 Release date			211.67231.05GHz			
	2011.0.00454.S	✓ Velocity resolution	m/s	Estimated velocity resolution from all the spectral windows, from frequency resolution.	211.67231.05GHz			
	2012.1.00019.S	19.S Frequency support GHz All frequency ranges used by the field		All frequency ranges used by the field	<u>332.20347.95GHz</u>			
	2012.1.00019.S				<u>112.30115.30GHz</u>			
	2012.1.00019.S	Frequency resolution kHz		Estimated frequency resolution from all the spectral windows, using median values of	<u>112.30115.30GHz</u>			
	2012.1.00019.S			channel widths.	112.30115.30GHz			
	2012.1.00019.S	Pol products	Pol products Polarisation products provided.		<u>112.30115.30GHz</u>			
	2012.1.00019.S	Observation date			<u>112.30115.30GHz</u>			
	<u>2012.1.00019.S</u>	PI name		case-insensitive partial match over the full PI name. Wildcards can be used	112.30115.30GHz			
< [PWV	mm	Estimated precipitable water vapour from the XML_CALWVR_ENTITIES table.	< >			

ALMA Science Archive Query

Query Form Results Table

Results Bookmark Export Table Results Help

Export Table

To download the results table, click on one of the links below:

VOTable (XML Format)

CSV (Comma Separated Values)

TSV (Tab Separated Values)

Submit download request

Showing	g 1000 rows (1000 befo	More columns							
	Project code	Source name 🔺	RA	Dec	Band	Integration	Release date	Velocity resolution	Frequency support
ilter:								m/s V	
ŏ	2011.0.00010.S	CenA	13:25:27.62	-43:01:08.8	3	516.403	2015-02-12	415.31	87.0589.14GHz
	2011.0.00010.S	CenA	13:25:27.62	-43:01:08.8	3	516.546	2015-02-12	415.31	87.0589.14GHz
	2011.0.00010.S	CenA	13:25:27.62	-43:01:08.8	6	692.215	2015-02-12	667.58	217.61220.48GHz
	2011.0.00454.S	CenA - CO knot S1	13:26:16.10	-42:46:55.7	6	57.255	2013-02-14	1324.13	211.67231.05GHz
	2011.0.00454.S	CenA - Xray N1	13:27:25.30	-42:40:17.5	6	57.218	2013-02-14	1324.13	211.67231.05GHz
	2011.0.00454.S	CenA - Xray N2	13:26:56.80	-42:41:37.4	6	57.226	2013-02-14	1324.13	211.67231.05GHz
	2011.0.00454.S	CenA - Xray N3	13:26:40.50	-42:43:50.6	6	57.225	2013-02-14	1324.13	211.67231.05GHz
	2011.0.00454.S	CenA - Xray N4	13:26:34.20	-42:46:19.8	6	57.237	2013-02-14	1324.13	211.67231.05GHz
	20121.00010.9	Centaurus A	13:25:27.62	-43:01:08.8	7	32 534	2015-06-30	848 45	332 20 347 95GHz

ALMA Science Archive Query

Results Table

Query Form

Submit download request

Results Bookmark Export Table Results Help

	Project code	Source name 🔺	RA	Dec	Band	Integration	Release date	Velocity resolution	Frequency support
er:								m/s v	
5	2011.0.00010.S	CenA	13:25:27.62	-43:01:08.8	3	516.403	2015-02-12	415.31	87.0589.14GHz
	2011.0.00010.S	CenA	13:25:27.62	-43:01:08.8	3	516.546	2015-02-12	415.31	87.0589.14GHz
	2011.0.00010.S	CenA	13:25:27.62	-43:01:08.8	6	692.215	2015-02-12	667.58	217.61220.48GHz
	2011.0.00454.S	CenA - CO knot S1	13:26:16.10	-42:46:55.7	6	57.255	2013-02-14	1324.13	211.67231.05GHz
	2011.0.00454.S	CenA - Xray N1	13:27:25.30	-42:40:17.5	6	57.218	2013-02-14	1324.13	211.67231.05GHz
D	2011.0.00454.S	CenA - Xray N2	13:26:56.80	-42:41:37.4	6	57.226	2013-02-14	1324.13	211.67231.05GHz
	2011.0.00454.S	CenA - Xray N3	13:26:40.50	-42:43:50.6	Add to 6	Google Calendar	013-02-14	1324.13	211.67231.05GHz
)	2011.0.00454.S	CenA - Xray N4	13:26:34.20	-42:46:19.8	Add to Live Calendar		013-02-14	1324.13	211.67231.05GHz
	2012.1.00019.S	Centaurus_A	13:25:27.62	-43:01:08.8		ahoo! Calendar	015-06-30	848.45	332.20347.95GHz
	2012.1.00019.S	Centaurus_A	13:25:14.85	-43:00:26.8	iCal		n Progress	1269.75	112.30115.30GHz
	2012.1.00019.S	Centaurus_A	13:25:16.90	-43:00:13.9	vCalenda	ar	n Progress	1269.75	112.30115.30GHz
	2012.1.00019.S	Centaurus_A	13:25:16.90	-43:00:39.7	3	8.559	In Progress	1269.75	112.30115.30GHz
	2012.1.00019.S	Centaurus_A	13:25:16.90	-42:59:48.0	3	8.606	In Progress	1269.75	112.30115.30GHz
	2012.1.00019.S	Centaurus_A	13:25:18.94	-43:00:00.9	3	8.606	In Progress	1269.75	112.30115.30GHz
	2012.1.00019.S	Centaurus_A	13:25:18.94	-43:00:52.6	3	8.559	In Progress	1269.75	112.30115.30GHz

Atacama Large Millimeter/Submillimeter Array In search of our Cosmic Origins			
Request Handler			Login
Archive Requests Req #848,936,240			
Request #848936240 by Anonymous User ✓ Click to edit	Include raw Select All	Deselect All Dov	vnload Selected
Requested Projects / OUSets / Executionblocks			
	Data entities 1-4 of 4		
Project / OUSet / Executionblock	File	Size	Access
Project 2012.1.00090.S			
Science Goal OUS uid://A002/X5eed86/X29			
Group OUS uid://A002/X5eed86/X2a			
Member OUS uid://A002/X5eed86/X2b			
	2012.1.00090.S_uidA002_X5eed86_X2b_001_of_001.tar	377.8MB	✓
	2012.1.00090.S_uidA002_X7143f6_Xf9b.asdm.sdm.tar	4.0GB	✓
	Data entities 1-4 of 4		4.3GB
Copyright © 2011 ALMA		ALMA, a world	dwide collaboration

NAC)J

Atacama Large Millimeter/Submillimeter	Array					
Request Handler						
Archive Requests Req #848,936,240		8				
Request #848936240 by Anonymous User 🛩	Choose one of the follow	ving download methods:				
Click to edit	Download Script	The downloads are scripted for you. You just need to execute the script from the command line. <u>Help</u>				
Requested Projects / OUSets / Executionblocks	Download Manager	ALMA's download manager is launched as a browser applet. This is a simpler, more user-friendly way to download files in	Ide raw Select All		Download Selected	
Project / OUSet / Executionblock		parallel, allowing you to pause and resume.		Size	Access	
✓ Project 2012.1.00090.S						
Science Goal OUS uid://A002/X5eed86/X29	Web Start Download Manager	ALMA's download manager is launched as a desktop application via Java Web Start. It will not stop if you close your browser.				
Member OUS uid://A002/X5eed86/X2b						
	File List	View a text file containing a list of URLs. This is useful for using third-party download		377.8MB	×	
		manager's such as DownThemAll.		4.0GB	×	
					4.3GB	
Copyright © 2011 ALMA						

Download script

Downloading

https://almascience.eso.org/dataPortal/requests/anonymous/848936240/ALMA/2012.1.00090. S_uid___A002_X5eed86_X2b_001_of_001.tar/2012.1.00090.S_uid___A002_X5eed86_X2b_001_of_0 01.tar

https://almascience.eso.org/dataPortal/requests/anonymous/848936240/ALMA/uid____A002_X7 143f6_Xf9b/2012.1.00090.S_uid___A002_X7143f6_Xf9b.asdm.sdm.tar

in up to 5 parallel streams. Total size is 4.3GB. This may take a while ...

starting download of 2012.1.00090.S_uid___A002_X7143f6_Xf9b.asdm.sdm.tar

starting download of 2012.1.00090.S_uid___A002_X5eed86_X2b_001_of_001.tar

ALMA Download Manager

	Filename	Status	Progress		
012.1.00090.S_uidA002_X5eed	186_X2b_001_of_001.tar	Completed	100% - 377.8MB of 377.8	3MB, 6.0GB/s	11
12.1.00090.S_uidA002_X7143	#6_Xf9b.asdm.sdm.tar	Completed	100% - 4.0GB of 4.0GE	3, 96.5GB/s	11
	_A002_X5eed86_X2b_001_of_001.ta	r Downloading> 16:29:	12 Completed 377.8MB	6.0GB/s	
:29:12 2012.1.00090.S_uid	A002 X7143f6 Xf9h asdm sdm tar	• Downloading> 16:29:1	.2 Completed 4.0GB	96.5GB/s	
29:12 2012.1.00090.S_uid 29:12 2012.1.00090.S_uid		<i>u</i>			
29:12 2012.1.00090.S_uid_ 29:12 2012.1.00090.S_uid		5			

File list

Request 848936240

total size of files: 4.3GB

PLEASE do not attempt to chop a single download into pieces to make it faster. This places a significant load on our servers and may result in your downloads being throttled. For example, in the Firefox plugin *DownThemAll*, make sure that the property "Max. Number of Segments Per Downloads" is set to 1. Likewise, it's easy to download more than 5 files in parallel. Please don't.

- <u>https://almascience.eso.org/dataPortal/requests/anonymous/848936240/ALMA/2012.1.00090.S_uid__A002_X5eed86_X2b_001_of_001.tar</u>
 <u>/2012.1.00090.S_uid__A002_X5eed86_X2b_001_of_001.tar</u>
- https://almascience.eso.org/dataPortal/requests/anonymous/848936240/ALMA/uid __A002_X7143f6_Xf9b
 /2012.1.00090.S_uid __A002_X7143f6_Xf9b.asdm.sdm.tar

- ALMA provides programmatic access to metadata and data
- Astroquery, an externally developed python package (Adam Ginsburg), makes use of this functionality
- https://astroquery.readthedocs.org/en/latest/alma/alma.html
- Documentation: http://goo.gl/21QQnI

Example

```
from astroquery.alma import Alma
import numpy as np
m83_data = Alma.query_object('M83')
print(m83_data)
myAlma = Alma()
myAlma.cache_location = '/big/external/drive/'
myAlma.retrieve data from uid(uids[0])
```


Calibrator Source Catalogue

	ama Large Millimeter/submillimeter Array ch of our Cosmic Origins	Search Site			
ESO	NRAO NAOJ	Log in Register Reset Password Forgot Account			
About	You are here: Home > Data				
	ALMA Data				
cience	The ALMA Archive				
roposing	The first ALMA Science data are now public. These data are accessible throu	igh the Science Portal without user registration.			
Observing	Data still within its proprietary period is only accessible to PIs as authenticate				
	data is delivered to the PI. A single project may be divided into more than one for each delivered data set.	e delivery and in these cases a unique 12 month proprietary period is defined			
Data	ior each delivered data set.				
Archive	Access is provided through the Archive link in the left side-bar.				
Calibrator Catalogue	The ALMA Archive is under development and will eventually provide access to all data obtained by the ALMA observatory. This includes: raw science data from the correlators, calibration data, processed and quality assured data, including image data cubes as well as logs and reports on project execution				
Science Verification					
Data Processing	and quality assurance.				
ocuments & Tools					
(nowledgebase/EAO	The ALMA Calibrator Source Catalogue				
(nowledgebase/FAQ	A web-based user interface to the calibrator database is provided through the	e Calibrator Catalogue link in the left side-bar.			
User Services at	The intention is to provide a more complex, public search tool for calibrator so	ources, which can also be accessed through the Observing Tool and			
ARCs	included into the Scheduling Blocks. The principles of the calibrator selection				
Helpdesk	A.8 'Calibration source selection'				
ALMA Calendars	The data comprise ALMA calibrater measurements of the flux density for some	reas drawn from soud catalogues such as ATCA, SMA and VLA, and use			
EU ARC	The data comprise ALMA calibrator measurements of the flux density for sour updated coordinates from VLBI. Stated flux density uncertainties do not in all				
NA ARC	primary amplitude calibration. Structure information, expressed as the accept				
EA ARC	ranges of ALMA baseline. Polarization information will be added during Cycle et al., 2014, "The Calibration of ALMA using Radio Sources', The Messenger,				

Calibrator Source Catalogue

ALMA Calibrator Source Catalogue

Query Form Result Table Result Plot						
Search Reset						
Position	Energy	Time				
Source name	Band 🔹	After				
RA	Frequency Min	Before				
Dec	Frequency Max					
Search radius	Flux Density Min					
	Flux Density Max					

k

Calibrator Catalogue

ALMA Calibrator Source Catalogue

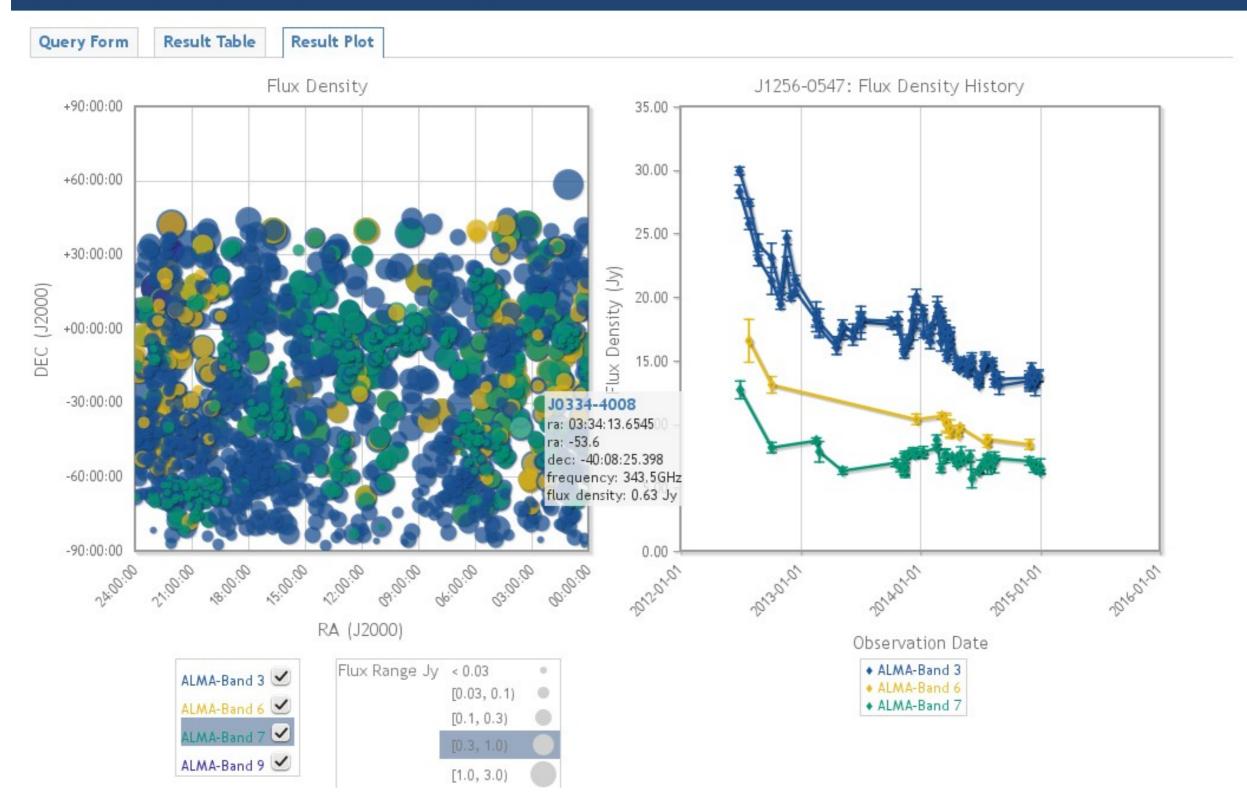
Query Form

Result Table Result Plot

Download **~**csv

Note: •hover over the column headers for more information •click on the column headers to sort

•right-click on the column headers to display columns


Name	RA	RA Err.	DEC	DEC Err.	Freq.	Band	Flux 🔻	Flux Err.	UvMin	UvMax	Observed
J0319+4130 J03	03:19:48.1601	±0.0001	+41:30:42.106	±0.0001	91.5	3	19.28	±0.95		> 508.6	2015-01-13
J0319+4130 J03	03:19:48.1601	±0.0001	+41:30:42.106	±0.0001	103.5	3	18.05	±0.80		> 508.6	2015-01-13
J2253+1608 J22	22:53:57.7479	±0.0001	+16:08:53.561	±0.0001	91.5	3	17.43	±0.42		> 343.6	2015-01-04
J2253+1608 J22	22:53:57.7479	±0.0001	+16:08:53.561	±0.0001	103.5	3	17.31	±0.36		> 343.6	2015-01-04
J1256-0547 J125	12:56:11.1666	±0.0001	-05:47:21.525	±0.0001	91.5	3	13.81	±0.45		> 1160.7	2014-12-29
J1256-0547 J125	12:56:11.1666	±0.0001	-05:47:21.525	±0.0001	91.5	3	13.72	±0.43		> 1160.7	2014-12-28
J2253+1608 J22	22:53:57.7479	±0.0001	+16:08:53.561	±0.0001	233.0	6	12.87	±0.80		> 343.6	2015-01-03
J1229+0203 J12	12:29:06.7000	±0.0001	+02:03:08.598	±0.0001	91.5	3	12.64	±0.57	20.0	> 1196.6	2014-12-29
J2253+1608 J22	22:53:57.7479	±0.0001	+16:08:53.561	±0.0001	343.5	7	12.38	±0.73		> 343.6	2014-10-05
J1229+0203 J12	12:29:06.7000	±0.0001	+02:03:08.598	±0.0001	91.5	3	12.29	±0.77	20.0	> 1196.6	2014-12-28
J0319+4130 J03	03:19:48.1601	±0.0001	+41:30:42.106	±0.0001	233.0	6	11.3	±0.89		> 508.6	2014-10-12
J2202+4216 J22	22:02:43.2914	±0.0001	+42:16:39.980	±0.0001	97.7	3	8.96	±0.45		> 64.4	2011-10-31
J2202+4216 J22	22:02:43.2914	±0.0001	+42:16:39.980	±0.0001	109.8	3	8.91	±0.45		> 72.4	2011-10-31
J1256-0547 J125	12:56:11.1666	±0.0001	-05:47:21.525	±0.0001	233.0	6	8.38	±0.39		> 1160.7	2014-12-01
J0319+4130 J03	03:19:48.1601	±0.0001	+41:30:42.106	±0.0001	343.5	7	7.68	±1.00		> 508.6	2015-01-01
J1256-0547 J125	12:56:11.1666	±0.0001	-05:47:21.525	±0.0001	343.5	7	6.64	±0.60		> 1160.7	2015-01-03
J1229+0203 J12	12:29:06.7000	±0.0001	+02:03:08.598	±0.0001	233.0	6	5.71	±0.28	20.0	> 1196.6	2014-12-01
J0522-3627 J052	05:22:57.9846	±0.0001	-36:27:30.851	±0.0001	91.5	3	5.34	±0.21	20.0	> 656.6	2014-12-28
J0522-3627 J052	05:22:57.9846	±0.0001	-36:27:30.851	±0.0001	103.5	3	5.26	±0.21	20.0	> 656.6	2014-12-28
J0854+2006 J08	08:54:48.8749	±0.0001	+20:06:30.641	±0.0001	91.5	3	5.13	±0.17		> 1470.4	2014-12-16
J0854+2006 J08	08:54:48.8749	±0.0001	+20:06:30.641	±0.0001	103.5	3	5.05	±0.18		> 1470.4	2014-12-16

Calibrator Catalogue

ALMA Calibrator Source Catalogue

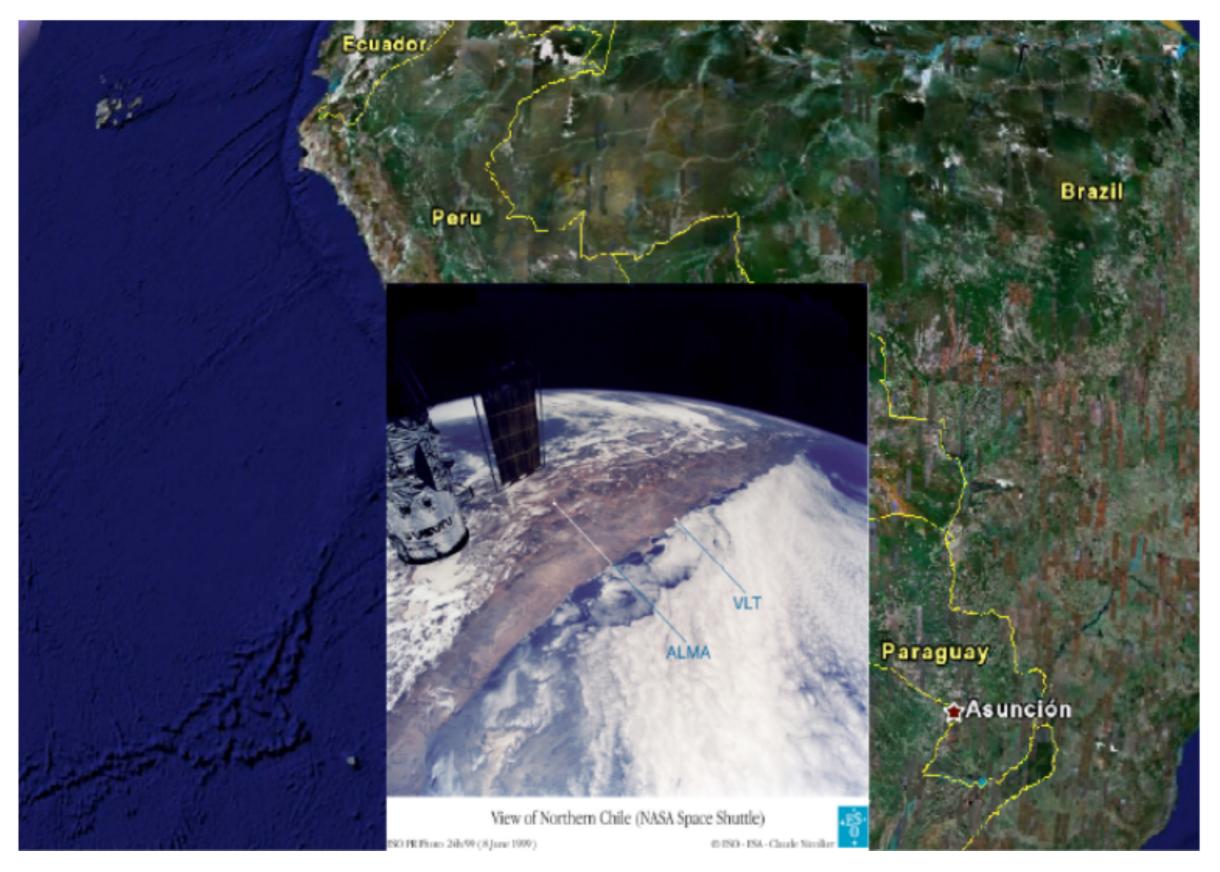
NEXT

NEED of a robust PIPELINE : once the ALMA pipeline is running in full production mode

- science products can be ingested into the ASA directly
- search can be based on products instead of raw-data.
- ALMA can offer previews
- users will be able to access individual data cubes directly

Further developments of externally developed software tools

- A powerful server-side visualization tool (PI: Erik Rosolowsky) which allows users to browse and manipulate the very large ALMA data cubes without having to download them to disk first.
- The second of such tools is a a post-pipeline science-analysis tool (PI: Lee Mundy). This tool will run at JAO directly after the ALMA pipeline and will do source extraction, line-finding and science analysis : **ADMIT**
- Japanese Virtual Observatory (JVO) science-ready ALMA images (JVO portal (<u>http://jvo.nao.ac.jp/index-e.html</u>)


Concluding remarks

- Success = maximizing the end-to-end user experience
- Astronomers not data will be the rare resource
- More work and responsibility will shift to observatories
- science-grade data reduction **pipelines** will be the norm
- All this will have a deep impact on how we do science
- Parallelism will be increasingly required
- The Science Archive follows that paradigm
 - Queries on physical concepts, focus on relevant information, programmatic access, parallel downloads ...
 - Future: previews, first science-analysis ADMIT (P2.17), pipeline user-reprocessing (O7.8), visualization (O5.2), VO
- This will be **golden times for astronomers**

Stoer (ADASS 2014)

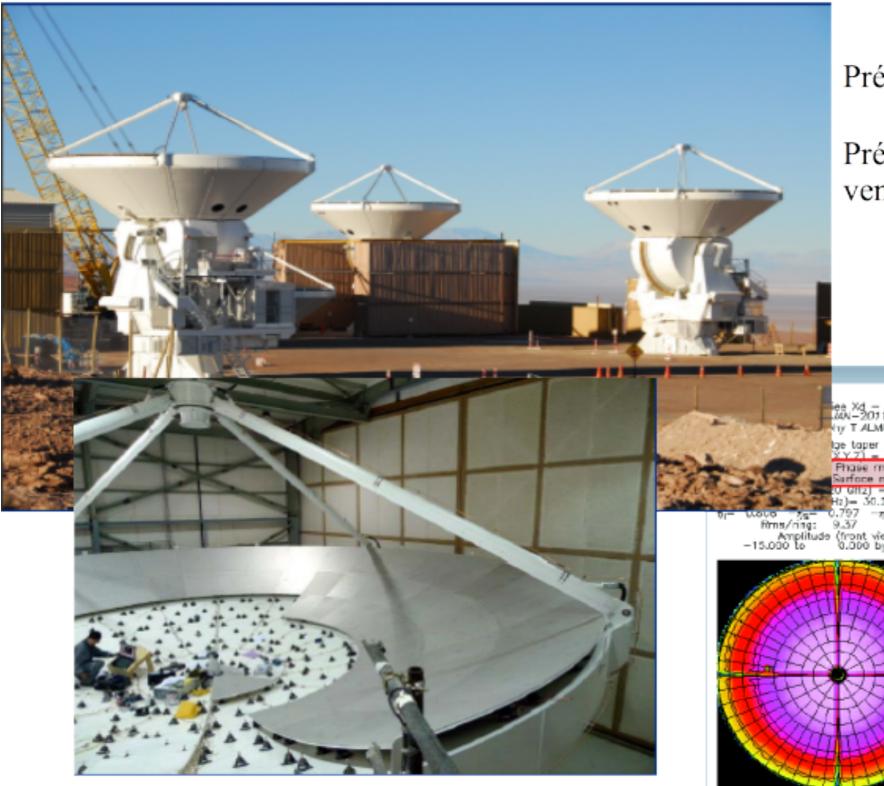
END

Le site

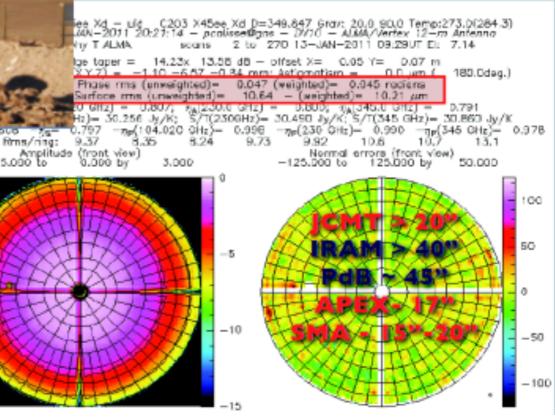
San Pedro de Atacama

Operations Support Facilities OSF (2900m altitude)

 \propto


ALMA Operations Site AOS (5000m altitude)

Toconao



Les antennes

Précision de surface <25µm

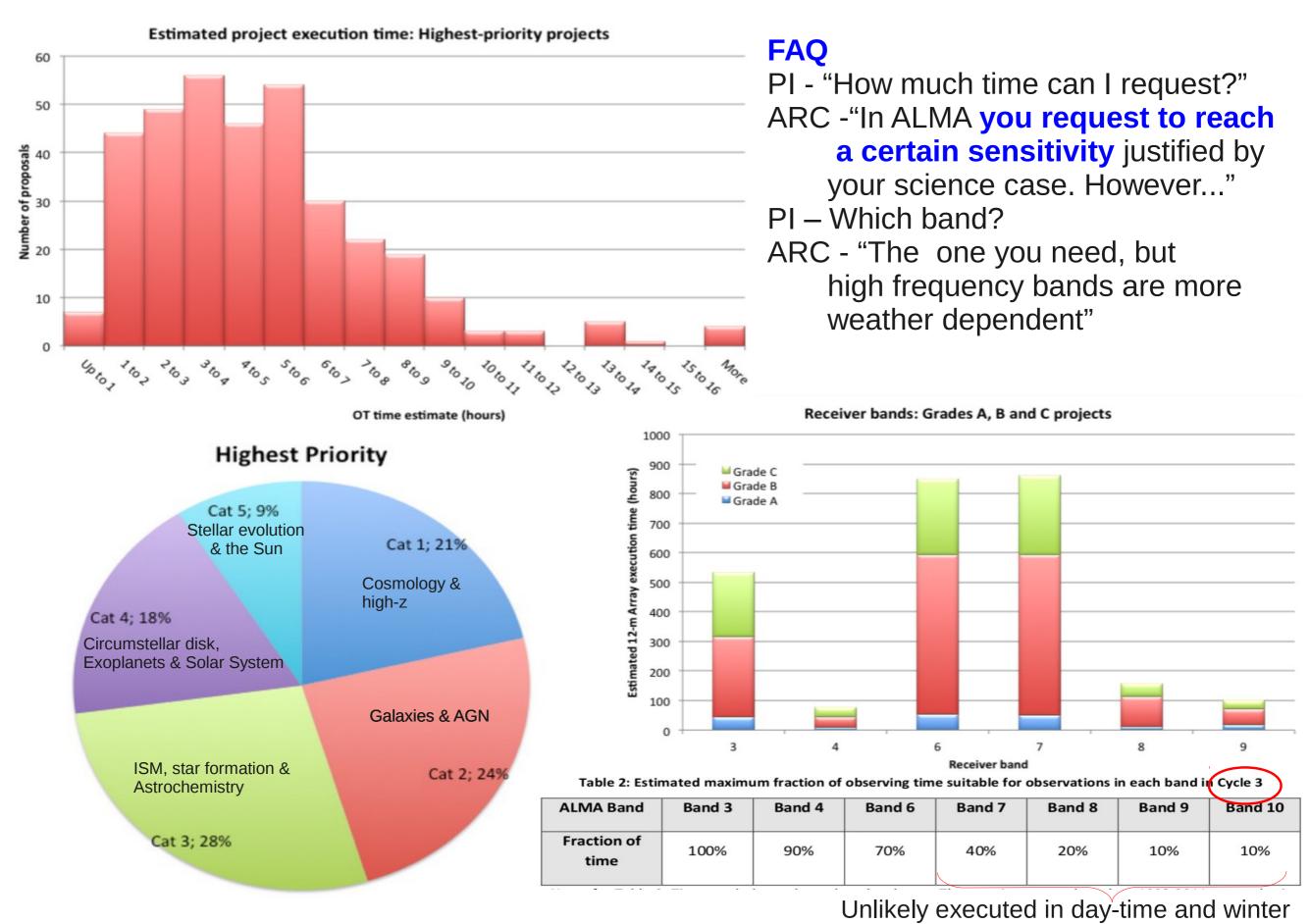
Précision de pointage 0.6"avec du vent à 9m/s

Transporteurs

L'OSF (Operation Site Facility)

Early Science Cycles

Early Science observations are conducted on a best effort basis to allows community to observe with incomplete, but already superior array, with priority given to the completion of the full ALMA capabilities


Past & current ALMA Early Science cycles:

	Cycle 0 Sep. 2011 – Jan. 2013	Cycle 1 Jan. 2013 – May. 2014	Cycle 2 Jun. 2014 – Oct. 2015
Telescope Hours dedicated to Science Antennas Receiver bands Wavelengths [mm] Baselines Polarisation limitations)	800 > 12x12-m no ACA 3, 6, 7, 9 3, 1.3, 0.8, 0.45 up to 400 m single-dual	800 > 32x12-m+9x7m+2TP 3, 6, 7, 9 3, 1.3, 0.8 0.45 up to 1000 m single dual	2000 (incl. some Cycle 1) > 34x12-m+9x7m+2TP +4, 8 +2, 0.7 up to 1500 +full (with
Proposal outcome Submitted Highest priority Filler Success rate	917 112 51 12% (18%)	1133 198 93 17% (25%)	1381 354 (35A, 319B) 159 26% (37%)

Pressure factors (highest priority projects)

- Cycle 1: Europe: 9.1 (global ALMA: 5.8)
- Cycle 2: Europe: 4.9 (global ALMA: 3.9)

Early Science Cycle 2 projects

Early Science Cycle 3

Hours dedicated to Science Antennas	2100 hours > 36x12m main array	/ + 10x7m+2TP A	NCA	
Receiver bands	3, 4, 6,	7,	8, 9,	+ 10
Wavelengths [mm]	3.1, 2.1, 1.3,	0.87,	0.74, 0.44	+0.35
Baselines Polarisation	up to 10 km Single + Dual in all Banc Full Stokes (with limitati		up to 2 km	
Single dish Correlator modes	only spectral line in bands<8 mixed (simultaneous high and low resolution)			

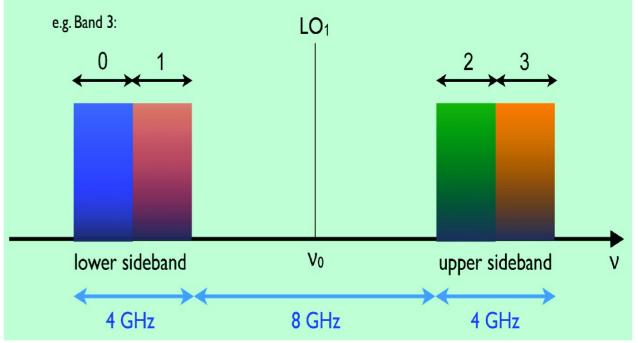
	Date	Milestone	
	24 March 2015	Release of Cycle 3 Call for Proposals, Observing Tool & supporting documents	
24 March 2015 Opening of the Archive for proposal submission		Opening of the Archive for proposal submission	
0.00	23 April 2015 (15:00 UT)	Proposal submission deadline	
	August 2015	Announcement of the outcome of the Proposal Review Process	
	1 October 2015	Start of ALMA Cycle 3 Science Observations	
	30 September 2016 End of ALMA Cycle 3		

Cycle 3 capabilities: receivers and spectral setup

Band	Frequency range ¹ (GHz)	Wavelength range (mm)	IF range	Туре
3	84 - 116	3.6 – 2.6	4 - 8	2SB
4	125 – 163	2.4 - 1.8	4-8	2SB
6	211 – 275	1.4 - 1.1	5 - 10	2SB
7	275 – 373	1.1 - 0.8	4-8	2SB
8	385 – 500	0.78 – 0.60	4-8	2SB
9	602 – 720	0.50 - 0.42	4 - 12	DSB
10	787 – 950	0.38 - 0.32	4-12	DSB

Table A-4: Properties of ALMA Cycle 3 Receiver Bands

Main array and ACA use separate correlators that offer the same setups.


Time Division Mode (high sensitivity low spectral resolution) and Frequency Division Mode (Low sensitivity high spectral resolution) are available.

For each receiver 2 sidebands separated by 8-10 GHz and up to 4 basebands per sideband are allowed. Different correlator modes can be specified for each baseband

Up to 4 independent spectral windows (with up to 3840 channels) per baseband are allowed.

All spws within a given baseband must use the same correlator mode

Many channels observed at the same time imply high data rate. Maximum data rate allowed is 60MB/s, but data rate above 6 MB/s must be technically justified. Data can be binned to reduce data rate at correlator stage.

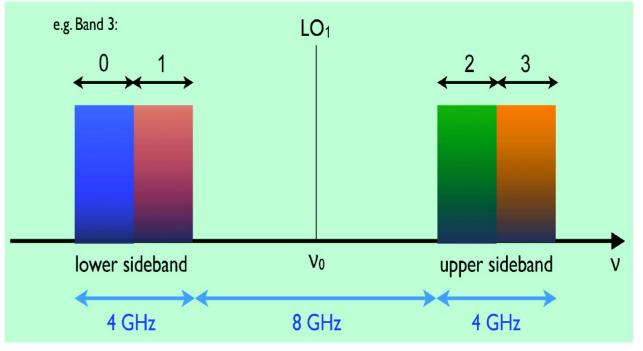
(see Kazi's talk)

Cycle 3 capabilities: receivers and spectral setup

Table A-5: Properties of ALMA Cycle 3 Correlator Modes, dual-polarization operation ^{1,2}

Bandwidth ⁽³⁾ (MHz)	Channel spacing ⁽⁴⁾ (MHz)	Spectral resolution (MHz)	Number of channels	Correlator mode ⁽⁵⁾	
2000 ³	15.6	31.2	128 ³	TDM	Continuum
1875	0.488	0.976	3840	FDM	
938	0.244	0.488	3840	FDM	
469	0.122	0.244	3840	FDM	Creatral
234	0.061	0.122	3840	FDM	Spectral lines
117	0.0305	0.061	3840	FDM	
58.6	0.0153	0.0305	3840	FDM	

Main array and ACA use separate correlators that offer the same setups.


Time Division Mode (high sensitivity low spectral resolution) and Frequency Division Mode (Low sensitivity high spectral resolution) are available.

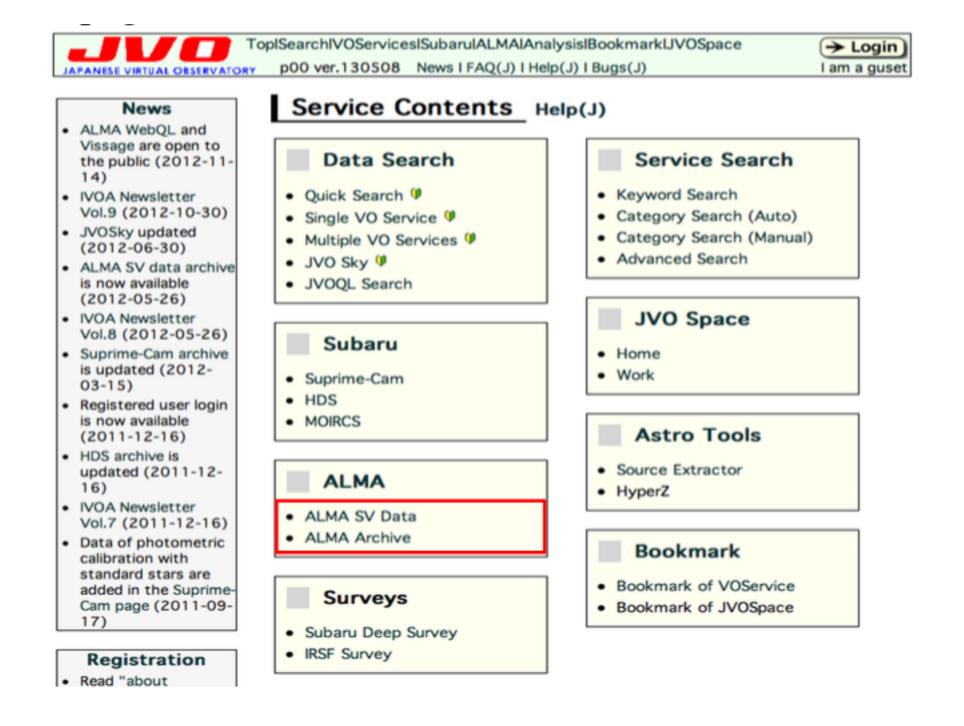
For each receiver 2 sidebands separated by 8-10 GHz and up to 4 basebands per sideband are allowed. Different correlator modes can be specified for each baseband

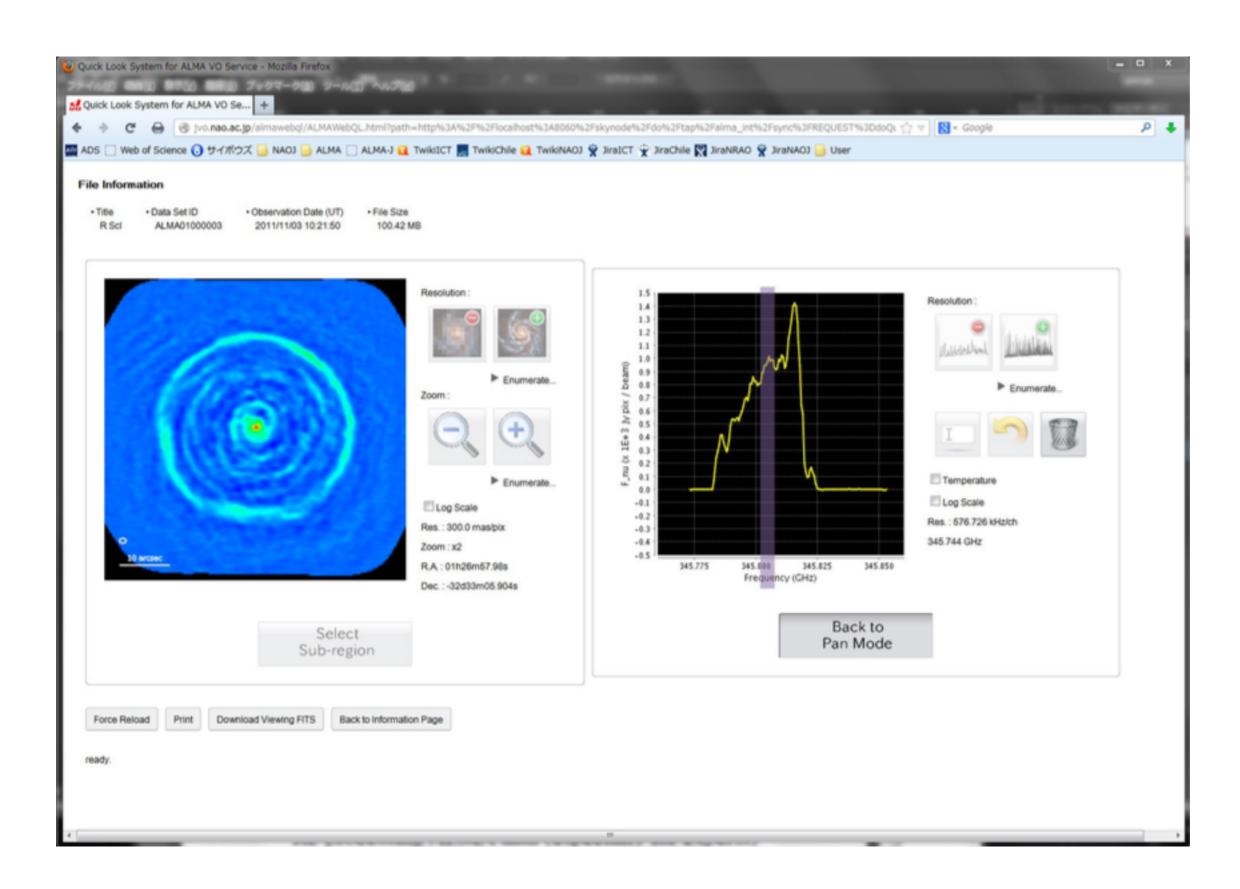
Up to 4 independent spectral windows (with up to 3840 channels) per baseband are allowed.

All spws within a given baseband must use the same correlator mode

Many channels observed at the same time imply high data rate. Maximum data rate allowed is 60MB/s, but data rate above 6 MB/s must be technically justified. Data can be binned to reduce data rate at correlator stage.

(see Kazi's talk)


Cycle 3 capabilities: angular scales

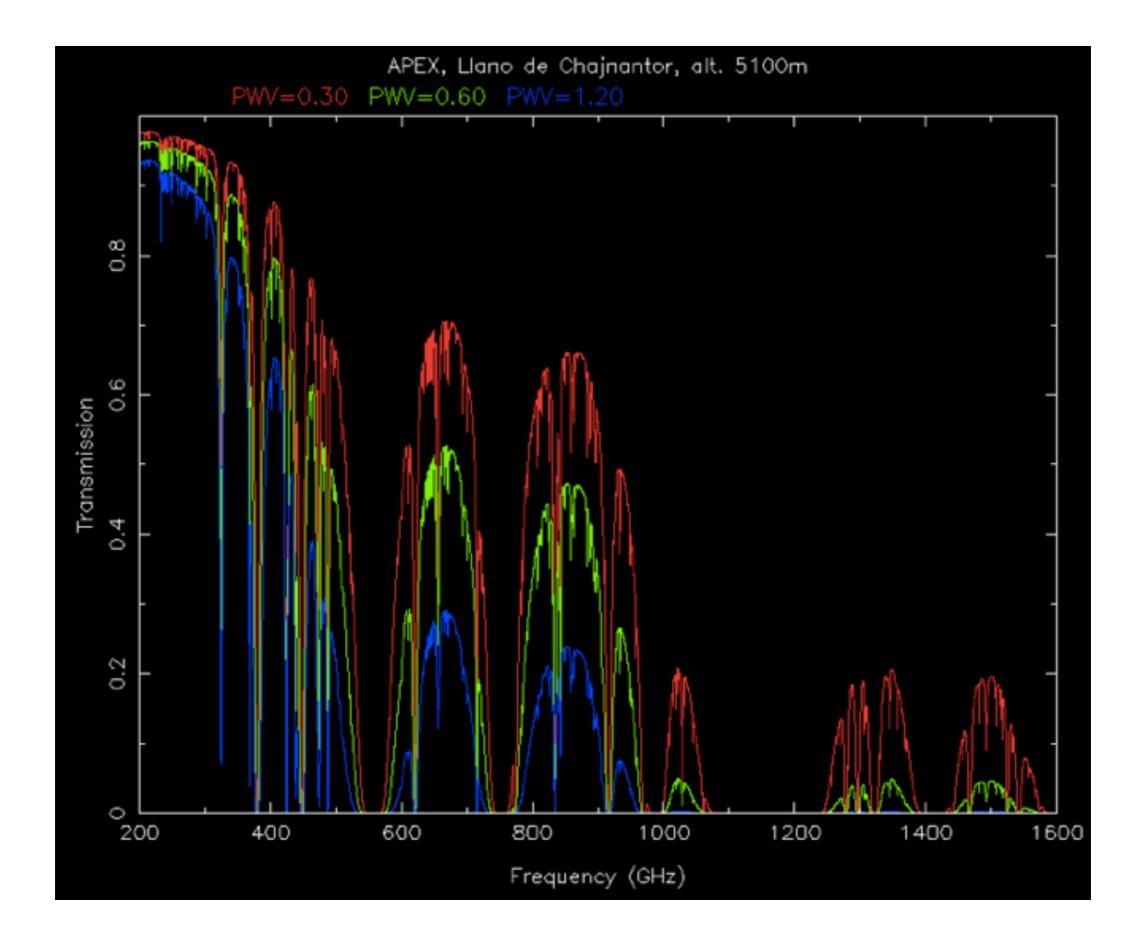

Maximum Recoverable Scale ¹ a	and Coarsest and Finest Angular Resolutions ³	for the Cycle 3 12-m Array
	configurations	

Frequency	Maximum Recoverable Scale without ACA ^{2,3}	Coarsest allowed angular resolution ^{2,3,4}	Finest achievable angular resolution ^{2,3,5}
(GHz)	(arcsec)	(arcsec)	(arcsec)
100	25.3	6.8	0.075
150	16.9	4.6	0.050
230	11.0	3.0	0.030
345	7.3	2.0	0.034
460	5.5	1.4	0.060
650	3.9	1.0	0.040
870	2.9	0.8	0.030

Maximum Recoverable Scales for ACA 7-m

Frequency (GHz)	Maximum Recoverable Scale ^{1,2} (arcsec)			
100	42.8			
150	28.5			
230	18.6			
345	12.4			
460	9.3			
650	6.6			
870	4.9			

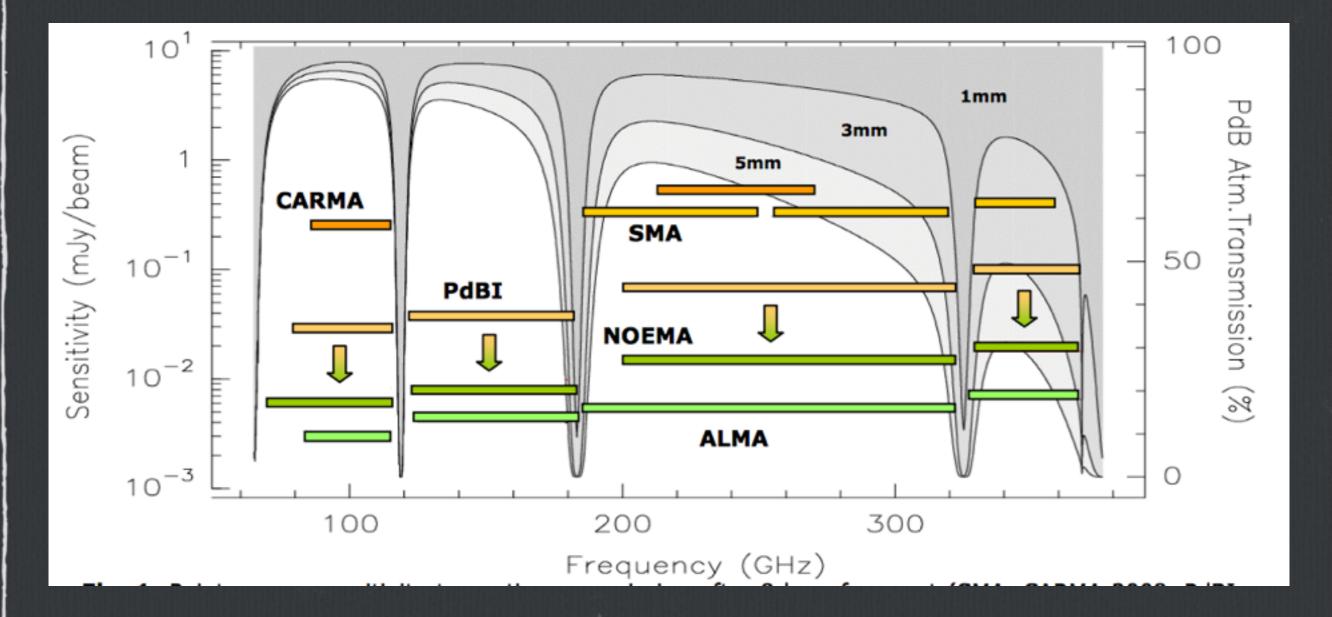
ALMA, c'est quoi ?


- 50 antennes de 12m de diamètre à 5000m d'altitude
- Observant à des fréquences entre 30-1000 GHz (cad 0.3-10mm) grâce à 10 récepteurs
- Distance min/max entre 2 antennes (ligne de base) : 150m-16km (diamètre de la télescope synthétisé):
- Pouvoir de résolution <10 mas (détails (pixel) de l'ordre de 10m sur la Lune depuis la Terre). Distinguer 2 pièces de 1 centime à Orleans
- ALMA Réseau Compact: 4 antennes de 12m + 12 antennes de 7m

ALMA, c'est quoi?

ALMA est une collaboration internationale entre: ESO – Europe (14 états membres) NRAO – Amerique du Nord (USA, Canada) NAOJ – Asie (Japon, Taiwan),

Et en collaboration avec le Chili où est construit l'instrument (désert de Chajnantor). Coût: ~1.2 milliard €, partagé par l'ensemble des partenaires.

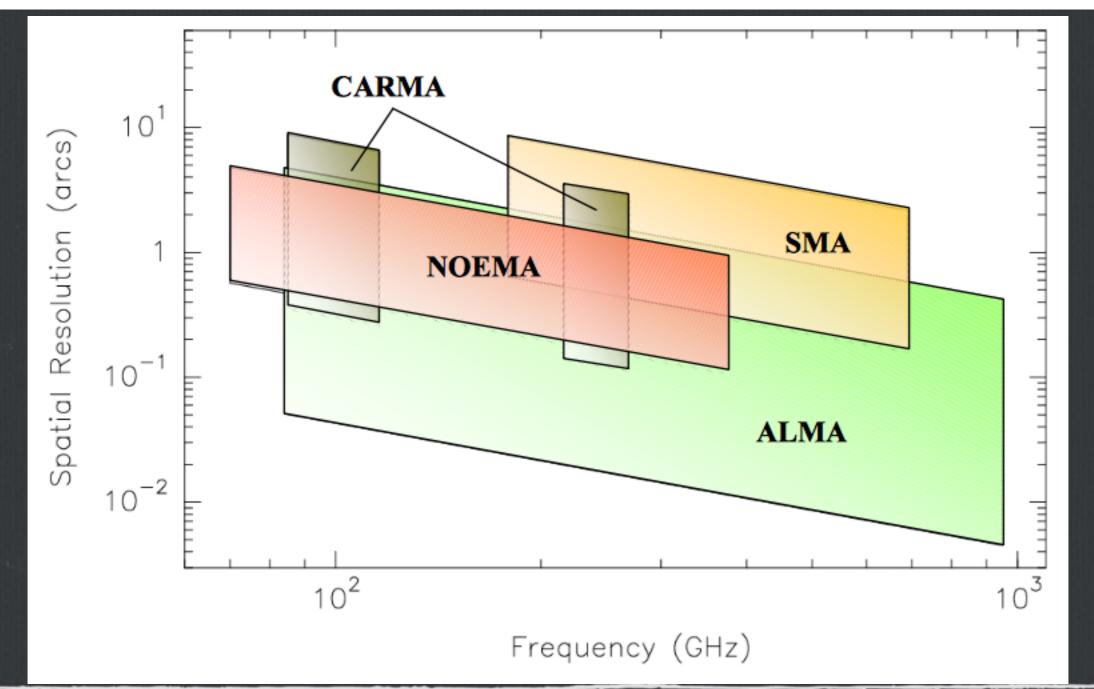

Cycle 3 Proposal Types

- Standard (including also time-critical, multiple-epoch observations, and continuous monitoring of a target over a fixed time interval within Cycle 3).
- Target of Opportunity (ToO): to observe targets that can be anticipated but not specified in detail.

ToO and time-constrained projects requiring a time window smaller than 14 days will not be guaranteed but attempted on a best effort basis

- Director's Discretionary Time (DDT) proposals may be submitted at any time during Cycle 3
 - Proposals requiring the immediate (within 2 weeks) observation of an unexpected astronomical event
 - Proposals requesting observations on a highly competitive scientific topic
 - Follow-up observations of a program recently conducted with ALMA or any other observing facility, where a quick implementation is expected to provide breakthrough results

	Altitude (m)	N _{ANT}	Diameter (m)	Coll.Area (m ²)
IRAM PDBI	2550	6	15	1060
CARMA	2200	15	6/10	772
SMA+CSO+JCMT	4080	10	6/10/15	481
NMA	1340	6	10	471
IRAM NOEMA	2550	12	15	2120
ALMA	5060	50	12	5652



ALMA sites in Chile

OSF Hotel Archive Laboratoreo Maintenance

	Altitude (m)	N _{ANT}	Diameter (m)	Coll.Area (m ²)
IRAM PDBI	2550	6	15	1060
CARMA	2200	15	6/10	772
SMA+CSO+JCMT	4080	10	6/10/15	481
NMA	1340	6	10	471
IRAM NOEMA	2550	12	15	2120
ALMA	5060	50	12	5652

