ARTEMIX

ALMA REMOTE MINING EXPERIMENT

EUROPEAN ARC ALMA Regional Centre || IRAM

Yaye Awa Ba, Philippe. Salomé, Michel. Caillat (LERMA) with credits to : L. Loria, N. Kasradze

Archive and Data Mining

ARTEMIX

Goals

(i) Search by products not by instrumental configuration(ii) Provide trans-project queries (ie famous sources)(iii) Have a rapid idea of the data content (fits files)

Means

(i) ALMA observing configuration previews (meta-data)(ii) ALMA cube previews (science products QA2)

Context (1)

(i) To stand just beyond what is provided by the ALMA Observatory Science Archive (not delivering data, not providing material for data reduction). —> Redirection to the ALMA Science Archive

(ii) To use public meta-data and public fits data cubes

(iii) Not to redo what already exist in the ASA (ie rapid metadata query by multi-filters)

Context (2)

Other similar software tools

- A powerful server-side visualization tool (PI: Erik Rosolowsky) which allows users to browse and manipulate the very large ALMA data cubes without having to download them to disk first : CARTA (Cube Analysis and Rendering Tool for Astronomy)
- Japanese Virtual Observatory (JVO) science-ready ALMA images (JVO portal (<u>http://jvo.nao.ac.jp/index-e.html</u>)
- ESO dev project (Mansardi) study to determine if re-imaging and delivering the full data cubes is feasible (data reduction / QA / storage) + eventually plug automated analysis tools (like ADMIT) —> long term plan

Context (3)

—> To Provide **a pilot study** of **remotely** operated tools for **quick look** visualisation (regular discussions with F. Stoer to keep informed about the current developments

—> Not developed in ESO coding standards, but with selected techno i.e. Serveur HTTP:NodeJS, Database:MongoDB; FITS server:python...

—> Developed at the Paris Observatory, LERMA, in the framework of the French AA-ANO3 duties coordinated by the OASU (OASU, Obs. Paris, OSUG, IRAM)

1- Sources Display

—> Very light information. Ingested in a Mongo Data Base on a daily basis

—> Display the sky coverage (RA, DEC) via the plotly library (interactive : zoom, name and position)

—> Basic search method (by sesame-name, alma-name or position inside a given radius) : resolve the source position when necessary, grab pointings (projects) around the object if the source is nearby and extended

Goal : retrieve all the observed projects for a given source (region) of interest (whatever the PI, whatever the project)

08 Q+00 DEX# 1 = 🔜 👗

Distribution of ALMA sources (2010-2016)

Right Ascention [hours]

ARTEMIX

ARTEMIX

2- Region of Interest

—> Display the **frequency range observed** (basebands) for all the projects that correspond to a given region of interest

--> Display the region of interest into **AladinLite** (help getting velocity / redshift if searched by sesame-name)

—> Display a **table of the header keywords** for all fits files that correspond to this region of interest (different Project codes, different FoV...)

—> (Soon) : display a table with all the metadata for these projects (resolution, t_obs..)

Goal : quick visual inspection of what has been observed .vs. what has been imaged. Provide a link to the data cube (or 2D if in yellow)

—> On click in the table : overlay the frequency slice that has been imaged (**metadata vs fits header**), overlay the FoV (fits header box)

—> Link to **ADS** for publication check

--> Link to ESO/NRAO ALMA archive for data retrieval

Home page Tools - About Help Admin

philippe.salome@obspm.fr +3 Logout

089+0902×1===.

Show all data. Initially shown are the data of which the f	lename ends with '	".pbcor.fits",	".pbcorr.fits",	".image.fits",	"line.fits",	"cont.fits" o	r "clean.fits"

	Fits file	Target	RA	DEC	Cube size	Freq. range	Proj. code	uid
1	info 📼	NGC1365	03:33:36.38	-36:08:25.70	2916x2560x10	246.011 245.864	2013.1.01161.S	uid://A001/X12f/X321
2	Info 📼	NGC1365	03:33:36.38	-36:08:25.70	2916x2560x30	229.066 229.506	2013.1.01161.S	uid://A001/X12f/X321
3	Info 💌	NGC1365	03:33:36.38	-36:08:25.70	2916x2560x1	228.458 246.218	2013.1.01161.8	uid://A001/X12f/X321
4	info 💌	NGC1365	03:33:36.38	-36:08:25.70	2916x2560x10	230.572 230.718	2013.1.01161.S	uld://A001/X12f/X321
5	info 💌	NGC1365	03:33:36.38	-36:08:25.70	2916x2560x11	243.714 243.553	2013.1.01161.S	uld://A001/X12f/X321
6	into 💌	NGC1365	03:33:36.38	-36:08:25.70	1344x864x500	228.4 230.323	2013.1.01161.S	uld://A001/X126/X319
7	info 🔹	NGC1365	03:33:36.38	-36:08:25.70	216x216x497	228.444 230.355	2013.1.01161.S	uid://A001/X120/X31b
8	info 📼	NGC1365	03:33:36.99	-36:08:36.33	2048x1500x121	229.064 229.523	2013.1.01161.S	uid://A001/X12f/X317
9	info 📼	NGC1365	03:33:36.99	-36:08:36.33	2048x1296x1	229.837 246.192	2013.1.01161.S	uid://A001/X12f/X317

3- Quick Look Viewer

—> Display the data cube (2 images, 2 spectra) : 1 channel map, 1 moment map, 1 spectra extracted from a pixel, 1 spectra extracted from a spatial region (square). Interactive and self-consistent

—> Based on **GILDAS Mapping « go view »**. Same functionalities implemented (frequency selection, region selection, integrated flux computation)

---> Link to the detailed fits header

Goal : give a quick look preview of the data cube content

- Sometimes (oldest data) the x-axis reference frame varies (LSR, HELIO, BARY...). No computation done apart Freq —> Vel and Vel —> Freq in the same frame.
- Only slices have been extracted (not always the best cut-out or spectral resolution). No re-calibration applied.

--> PI are encouraged to retrieve the ALMA raw data and use the standard pipeline

Volumetry

Data cubes (ie $512 \times 512 \times 3000$) in $(x,y,v) \rightarrow 10s$ of MB to 10s of GB (16-20 GB at max). Difficult to handle and visualise cubes larger than that anyway. This would need other methods (ie cut-out service)

Note : The fits file are produced in QA2 —> only slices around the line of interest (less than ~10% of the observed (x,y,v)). Here again, PIs are advised to retrieve the raw data from the ALMA Science Archive.

Total (all fits, as of last week) : ~ 6 TB (updated on a daily basis : not yet achieved)

- 3.5 TB de fichiers > 1 GB
- 2.6 TB de fichiers > 2 GB
- 2.1 TB de fichiers > 4 GB

Solution for fast reading : SSD PCI Express. Very fast load of the data. Fast computation (means are parallelized). Slow part : the network transfert 2 x (NxN) and 2 x Nchans

Next : a cut-out Service ?

A cut out service to display / analyse only part of the data fits file.

- 1. Spatially (sub-region in the map) to reduce x-axis and y-axis size
- 2. In Velocity/frequency (range of channels).

To do so, there is a need for

• tools to help the user to choose which part to look at

• tools to split the files in order to scan all the data cube (or all the selected area if still too big).

Local / Remote

Local

Large range of analysis tools

But

Need to download all the fits files to be checked (even if no detection)

Speed limited by local computer performances and/or software optimization (for display) —> often need a local server

Remote

Optimization on dedicated machines (load fits, calculations)

No need to download fits files on local disk (if many and from different projects)

But

Delay for download (11 MB/s at most) and loading large file (> 2GB)

Limited analysis (yet)

Overview

Thanks !