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2.2.1 Cosmological principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
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1
Introduction

Cosmology is the study of the evolution of the Universe on large scales. Here, large means on scales
much larger than the typical distances between galaxies, that is tens of Mpc. But why would such a
science even be needed? When did it become clear that observations do not agree with an infinite,
homogeneous and stationary Universe? Both from the observational and the theoretical point of
view, one can say that cosmology was born in the beginning of the 20th century. But interestingly,
unanswered questions (whose answers lie in modern cosmology) appeared much earlier than that.

1.1 Olbers’ paradox

Olbers’ paradox can be stated quite simply: ”Why is the night sky dark?”. The question is actually
much older than Olbers formulation (1823). Kepler (for example) was wondering the same thing as
early as 1610. The paradox arises when considering a homogeneous stationary and infinite universe.
Then the content of the universe can be described with a constant number density n of sources of
light of luminosity L. The flux received by an observer from a source of light located at a distance r
is then L

4πr2
. Summing over all sources, the total flux is:

F =

∫ ∞
0

nL

4πr2
4πr2dr = +∞. (1.1)

Allowing for the fact that stars are not point-like and can screen other stars further along the
line of sight, we get a night sky that should be as bright as the typical surface of a star. Neither
Kepler nor Olbers gave a really satisfactory answer to the paradox. Kepler assumed that there were
no stars beyond a certain distance, which conflicts with homogeneity but was reasonable at the time,
and Olbers assumed that light was absorbed along the way by interstellar gas, which would induce
an increase in the temperature of the gas and break stationarity. The point is that Olbers paradox
cannot be resolved in a homogeneous, stationary and infinite universe. Modern cosmology solves it
by getting rid of stationarity. Let’s also mention that until but 20 years ago another solution was
to postulate a universe with a fractal content (thus getting rid of homogeneity without introducing a
center). While this is compatible with observations up to scales of a few tens of Mpc, recent galaxy
surveys show that homogeneity is reached on > 100 Mpc scales.

1.2 Hubble’s law

In 1929, Edwin Hubble found a correlation between the distance of 24 nearby galaxies and their
radial velocities. The distances were estimated using Cepheid stars when the image resolution was
good enough that individual star could be identified. Indeed, Cepheid stars have an average intrinsic
luminosity that can be measured from the period of its fluctuation. Measuring the received flux then
yields the distance (assuming negligible absorption along the line of sight). In other cases, much more
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CHAPTER 1. INTRODUCTION

Figure 1.1: On the left, the original velocity-distance diagram by Hubble (1929). On the right, a
modern version (credit: Ned Wright, compiled with data from Betoule et al. 2014) of the diagram,
The black dots are a binned representation of a sample of 740 supernovae of type Ia.

approximate estimators of the distance were used. Although no reference is given in the original paper,
the radial velocities were most likely obtained through measurements of the Doppler shift of spectral
lines by V. M. Slipher. Hubble’s insight was to recognize that the receding velocities (corrected from
the Sun’s own velocity) were proportional to the distance of the galaxies:

v = H0d (1.2)

H0 is called the Hubble constant. Hubble’s original estimation of H0 was wildly wrong (more than 7
times the current value), mainly because of the strongly underestimated distances of the most distant
galaxies in his sample. Nevertheless, this was the first observational hint that the universe as a whole is
expanding homogeneously. Modern cosmology still probes this relation, using different but equivalent
quantities, applied to the case type Ia supernovae whose distances can be accurately computed (they
have a well known peak luminosity). The original and modern versions of the velocity-distance relation
are shown in fig. 1.2.

The notion of redshift

In cosmology the redshift of an object is a quantity that is used very often. It is originally an
observational measurement, quantifying by how much the observed wavelength of a line emission from
a distant galaxy is shifted to the red side of its rest-frame value.

z =
λobs − λrest

λrest
(1.3)

It is tempting to interpret it as a simple Doppler effect (z = v
c where v is the receding velocity

of the observed galaxy), as in Hubble’s analysis. However, redshifts larger than 1 are observed (not
by Hubble...). While this is still possible using v ∼ c and the appropriate special relativistic formula,
General Relativity teaches us that the main part of the receding velocity, called the Hubble flow, is
not an actual velocity but the result of the expansion of the universe.

Since there is a one-to-one relation between the redshift and the distance of an object through
Hubble’s law and thus a one-to-one relation to the time when the light we observe was emitted by
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1.3. DISCOVERY OF THE COSMIC MICROWAVE BACKGROUND

the object, redshift has actually come to replace time has a variable for tracking the evolution of the
universe.

1.3 Discovery of the cosmic microwave background

Hubble’s observation drew a picture of a universe in expansion. Even without resorting to a self-
consistent theoretical model (provided by general relativity), consequences can be inferred. If we
extrapolate the expanding behaviour in time, the Universe was much denser in the past. Since a large
fraction of the baryonic content of the universe is hydrogen gas and that, by definition, the universe
does not exchange heat with anything, the gas undergoes an adiabatic expansion. Thus it was denser
AND hotter in the past. Then, sufficiently early on, it must have been in the form of a plasma.
Photons interact much more strongly with charged particles (protons and electrons) than with neutral
atoms. At the time, matter and radiation must have been in thermal equilibrium. When matter
cooled down sufficiently for hydrogen to recombine (at a few thousands K depending on the density)
the matter-radiation interaction became much weaker and the mean free path of photons very large.
Thus we should be able to observe those relic photons that last interacted with matter at the epoch
of recombination. At the time, they had a black-body spectrum (arising from the thermodynamical
equilibrium with matter). It can be shown that the effect of expansion preserves the black-body
spectrum while inducing a decrease in the effective temperature, shifting the peak wavelength in the
microwave range.

There were theoretical predictions as long ago as the 50’s that this thermal radiation bath, maned
the Cosmic Microwave Background (CMB), existed. In 1964 Wilkinson and Roll, colleagues of R. Dicke
at Princeton university started building a radiometer to measure the expected signal. At the same time
Penzias and Wilson, working at Bell Labs, had built a very sensitive antenna/receiver combination for
radioastronomy observations. These last two measured an isotropic ”noise” they could not interpret
as instrumental or of terrestrial origin. Their measurement was performed at λ = 7.5 cm and was
consistent with a black-body temperature of 3.5 ± 1K. They contacted R. Dicke who suggested that
it could be the expected CMB. Two years later, Roll and Wilkinson confirmed the interpretation by
measuring an isotropic emission at 3.2 cm consistent with a 3.0± 0.5K black-body. Since this original
observations a number of dedicated instruments have been built to observe the CMB in ever greater
details as it is a fossil of the early universe where a wealth of information about cosmology is encoded.
The most famous are probably the three satellite programs COBE (1990), WMAP (2001) and Planck
(2009), that were able to observe the CMB near its peak emission (∼ 1mm), where the atmosphere
has strong absorption bands. The near-perfect fit to a black-body spectrum as measured by COBE
and the tiny temperature anisotropies of the CMB measured by Planck can be seen on fig. 1.3.
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CHAPTER 1. INTRODUCTION

Figure 1.2: Left panel: fit of the COBE data to a 2.73 K blackbody spectrum (Fixsen et al., 1996,
AJ, 473, 576). Right panel: temperature fluctuations map of the sky observed by Planck (Planck
collaboration, 2014, A&A, 571, A1).
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2
The expanding universe: FLRW formalism

2.1 Basics of General Relativity for cosmology

We will here summarize the fundamental aspects of the theory of General Relativity (hereafter GR).
Indeed, modern cosmology derives from the simplest application of GR: the case with the highest
possible symmetry level. This section is a reminder and some prior knowledge of special and general
relativity is assumed.

2.1.1 The metric tensor

Special relativity was build to account for a striking observational fact: the speed of light measured
in all inertial frames is the same. In other words, the relation c2dt2 − dx2

1 − dx2
2 − dx2

3 = 0 should
hold when moving from one inertial frame to another (the xi designate Cartesian coordinates, t is the
time and c the speed of light). As we know, this invariance requirement is the core of the Lorentz
transformation. But on an even more fundamental level, it states that a 4-dimensional space-time
where differential distance is defined as ds2 = c2dt2 − dx2

1 − dx2
2 − dx2

3 is the natural framework in
which the Lorentz transformation operates. If we denote the position 4-vector characterizing an event
dx = (ct, x1, x2, x3), we can rewrite the differential (proper) distance between two events:

ds2 = ηµνdx
µdxν (2.1)

where ν is the Minkowsky metric tensor:

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (2.2)

Note the choice of signature (1,−1,−1,−1), common in the field of cosmology.
Within special relativity, the metric is unique, uniform over the full 4D spacetime (the component

of η are constants). General relativity relaxes this condition. For every event of space-time, there
exists a reference frame, the frame of a free-falling observer, whose metric tensor is locally of the
Minkowsky form. That a free-falling observer can locally work with special relativity is actually a
formulation of the equivalence principle and thus of postulate of GR. Moving away macroscopically
from the event in time or space, special relativity fails and the form of the metric tensor changes, its
coefficients becoming functions of space and time. Global inertial frames do not have meaning in GR.
In the general case, the metric tensor is denoted g in GR, and the differential proper distance between
two events reads:

ds2 = gµνdx
µdxν (2.3)

with gµν a function of time and space coordinates.
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CHAPTER 2. THE EXPANDING UNIVERSE: FLRW FORMALISM

2.1.2 Einstein’s equation

How the metric changes when moving away from a free falling observer is quantified by Einstein’s
equation, the second main postulate of GR. It states that this change is determined by the local
matter and energy content of the universe, or in other words the stress-energy (or energy-momentum)
tensor.

The stress-energy (energy-momentum) tensor

One of the most useful predictions of Special Relativity is the conservation of the norm of the
4-momentum of an isolated system. The 4-momentum of a point particle can be written p =
(E/c, p1, p2, p3), where E is the energy, and the pi = γmvi are the relativistic 3-momentum com-
ponents, with γ the Lorentz factor, m the mass and vi the components of the 3-velocity. Then the
norm of the 4-momentum is ηµνp

µpν = E2

c2
− p2 = m2c2, where p2 stands for the squared norm of the

3-momentum.
For a continuous medium such as a fluid (a relevant approximation in cosmology) the interesting

quantity is the 4-vector field of density of 4-momentum. This quantity also obeys a conservation law.
Using an Eulerian description of the fluid, this law will take the form of a conservation differential
equations. To express the conservation of any continuous quantity it is necessary to introduce the
corresponding fluxes. In our case: the fluxes of momentum. This is exactly the information provided
by the stress-energy tensor.

T =



T 00 = energy density
cT 01 =energy flux
through x1 = cst

cT 02 =energy flux
through x2 = cst

cT 03 =energy flux
through x3 = cst

T 10c−1=density of p1
T 11 = flux of p1

through x1 = cst
T 12 = flux of p1

through x2 = cst
T 13 = flux of p1

through x3 = cst

T 20c−1=density of p2
T 21 = flux of p2

through x1 = cst
T 22 = flux of p2

through x2 = cst
T 31 = flux of p2

through x3 = cst

T 30c−1=density of p3
T 31 = flux of p3

through x1 = cst
T 32 = flux of p3

through x2 = cst
T 33 = flux of p3

through x3 = cst


(2.4)

Looking, for example, at the component of the first line in the stress-energy tensor, it is indeed
possible to relate them through a conservation law. The rate of change of the energy content of an
infinitesimal cubic volume of size ε is:

ε3
∂T 00

∂t

Per unit time, the energy inflow and outflow through the 6 faces of the cubic volume are:

ε2cT 01(x), −ε2cT 01(x+ ε), ε2cT 02(y), −ε2cT 02(y + ε), ε2cT 03(z), and− ε2cT 03(z + ε)

or in total,

−ε3c
(
∂T 01

∂x
+
∂T 02

∂y
+
∂T 03

∂z

)
.

Equating this to the rate of change of energy content yields:

∂T 00

∂t
+ c

∂T 0i

∂xi
= 0.
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2.2. THE COSMOLOGICAL PRINCIPLE AND THE
FRIEDMANN-LEMAÎTRE-ROBERSTON-WALKER METRIC

Or, using the summation over the 4 space-time components implied by the greek indexes:

∂T 0α

∂xα
= 0

The same procedure can be applied to the conservation of momentum, yielding the compact, general
conservation law:

∂T βα

∂xα
= 0 (2.5)

When applied to the stress-energy tensor of a perfect fluid this equation is equivalent, in the
framework of special relativity, to both the matter conservation equation and Euler’s equation. To
write this tensor equation in the framework of GR, we simply replace the derivation operator by the
covariant derivative:

∂T βα

∂xα
+ ΓαµαT

βµ + ΓβµαT
µα = T βα;α = 0 (2.6)

where the Γ are the Christoffel symbols or metric connections. We refer the reader to a full course
in GR for complete definitions of the metric connections and covariant derivative. We will simply say
that the covariant derivative subtracts from the observed change in a quantity (vector or tensor) the
change along an infinitesimal path imposed by the non-flat geometry of space-time, and thus recovers
the intrinsic change of the quantity. In other words, it disentangles the change due to gravitation from
those due to other processes.

Einstein equation

The form of the stress-energy tensor varies depending on the assumed properties of content of space-
time (dark matter, gas, radiation, etc...) but the conservation equation 2.6 always remains valid.
Consequently if a second order tensor describing the geometry of space-time is to be proportional to
the stress energy tensor, as a postulate of GR, it should obey the same equation. This is not the case
of the Ricci tensor, the unique contraction of the 4th order Riemann tensor describing the curvature of
space-time. This is why Einstein built the so-called Einstein tensor by subtracting its divergence from
the Ricci tensor and stated that it should be proportional to the stress energy tensor. Once again we
refer the reader to a full course in GR of the exact definitions of Riemann, Ricci and Einstein tensors.
We will denote the Einstein Tensor G. The proportionality constant between Einstein tensor and the
stress energy tensor, beyond dimensionality requirements, is chosen such that Newton’s Law can be
recovered in the weak gravitational field limit. Finally Einstein’s equation can be written:

Gµν =
8πG

c4
Tµν (2.7)

2.2 The cosmological principle and the Friedmann-Lemâıtre-Roberston-
Walker metric

2.2.1 Cosmological principle

The cosmological principle is a postulate upon which standard modern cosmology is built. It states
that:

13



CHAPTER 2. THE EXPANDING UNIVERSE: FLRW FORMALISM

On sufficiently large scales, the universe is spatially homogeneous and isotropic.

Let us first mention that this principle is still being challenged. Until recently, for example, the
possibility of the distribution of matter in the universe having a fractal structure (that is showing
pattern on any scale) was considered. However, as observations of the distribution of galaxies farther
and farther away from us improved, it appeared that indeed, on scales larger than 50 Mpc, fluctuations
in the distribution of matter (as inferred from observed galaxies) decreased steadily with increasing
scale. For example, if one measures the average density in a sphere of radius R and evaluate the
variance of the fluctuations of this quantity when the center of the sphere is chosen at random, it will
appear that the variance decrease and goes to zero with increasing R.

Ignoring completely what happens at ”insufficiently” large scales is the first step to build a cosmo-
logical solution to GR. Will we impose homogeneity and isotropy to the metric and the distribution
of matter (that is the stress-energy tensor).

Before we proceed to present this cosmological solution, it is interesting to ponder why the cos-
mological principle should apply at all. While gravity, the dominant force shaping the large scale
structures of the universe, tends to destroy homogeneity (a slightly overdense region in an homoge-
neous universe will attract matter and grow more overdense) it takes longer and longer to achieve
this as one looks at larger scales. As large scales look more homogeneous in observations, one can
surmise that the universe was much more homogeneous in the past on all scale and is growing less so
under the action of gravity. But why was it homogeneous in the first place? A logical answer is that
some interaction other than gravity helped (like, for example, pressure in a perfect gas). However,
GR states that no interaction can propagate faster than the speed of light. We will see that in a
theory where the evolution of the universe arose from an initial Big Bang, this creates a potential
difficulty: homogeneization should be possible only up to scales equal to the distance travelled by a
photon between the Big Bang and the present.

2.2.2 The Friedmann-Lemâıtre-Robertson-Walker metric

In applying the cosmological principle, will we rephrase it so: at any given instant in time, all ex-
periments and observations will produce the same results anywhere in the universe. The large scale
restriction in now implied. We will now derive the implications for the form of the metric tensor. Let’s
consider two observers with fixed spatial coordinates at a distance dl from each other. At time t they
send each other a light pulse, and mesure the proper time until they receive the pulse from the other.
Since they are stay at fixed coordinates, this proper time will be dτ =

√
g00dt =

√
g00 dl/c, and it

should be the same for both. Thus g00 should not depend on the spatial coordinates.

A careful mathematical definition of a space-time that is spatially homogeneous and isotropic shows
that is can be foliated with a one parameter family of space-like homogeneous and isotropic surfaces.
The world line of any observer that can verify isotropy is perpendicular to the space-like surfaces. If
not, the intersection of the space-like surface and the surface perpendicular to the world line of the
isotropic observer create a special direction that breaks isotropy. Thus the metric can be written in
the form:

ds2 = g00(t)c2dt2 − dl2 (2.8)

where dl is the line element for the 3D space-like surface. Let us now specify dl2.

In a 3D non-Euclidean space that is homogeneous and isotropic the curvature of any geodesic, at
any point along the geodesic, should be the same. Let’s denote R the associated radius of curvature.
If we embed this non-Euclidean 3-space in an Euclidean 4-space with Euclidean coordinates (x,y,z,w),
the non-Euclidean 3-space of constant positive Gaussian curvature R−3 (actually an hypersphere of
radius R) can be described by the equation:

x2 + y2 + z2 + w2 = R2 (2.9)
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2.2. THE COSMOLOGICAL PRINCIPLE AND THE
FRIEDMANN-LEMAÎTRE-ROBERSTON-WALKER METRIC

Or, using the spherical coordinate (r, θ, φ) such that r2 = x2 + y2 + z2:

r2 + w2 = R2 (2.10)

The infinitesimal distance between two points in the euclidean 4-space can be written:

dl2 = dx2 + dy2 + dz2 + dw2 = dr2 + r2(dθ2 + sin2 θ dφ2) + dw2 (2.11)

If these two points are constrained to be on our non-Euclidean 3-space, differentiating eq. 2.10 gives
the relation rdr + wdw = 0, then r2dr2 = w2dw2. Combining again with eq. 2.10, one gets:

dw2 =
r2dr2

R2 − r2
(2.12)

Then the infinitesimal distance between 2 points on the 3D non-Euclidean space of constant positive
curvature R−3 is:

dl2 =
R2

R2 − r2
dr2 + r2(dθ2 + sin2 θ dφ2) (2.13)

Finally, noting that the radius of curvature can actually be a function of time and introducing the
rescaled variable σ = r/R(t), we get the expression for the Friedmann-Lemâıtre metric:

ds2 = g00(t)c2dt2 −R2(t)

(
1

1− σ2
dσ2 + σ2(dθ2 + sin2 θ dφ2)

)
(2.14)

It is then possible to set g00 to 1 by redefining the time variable. The above relation was established
in the case when space-like sections of space-time have uniform positive curvature. The case when the
curvature is zero simply yields,

ds2 = c2dt2 −R2(t)(dx2 + dy2 + dz2) = c2dt2 −R2(t)(dσ2 + σ2(dθ2 + sin2 θ dφ2)). (2.15)

The case with constant negative curvature is more tricky. Indeed such a manifold cannot be globally
embedded in an Euclidean 4-space. One has to embed it in a Minskowsky-like 4-space, with metric
relation dl2 = dx2 + dy2 + dz3 − dw2 where it is defined by the relation x2 + y2 + z2 − w2 = −R2. A
metric relation valid for all three cases can be written:

ds2 = c2dt2 −R2(t)

(
1

1−Kσ2
dσ2 + σ2(dθ2 + sin2 θ dφ2)

)
, (2.16)

where K = −1, 0,+1 corresponds to the negative, zero and positive curvature cases. This metric is
known as the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric. It is the basic framework for
the standard cosmological model. While manageable in terms of analytical development it is still more
complicated than the simple expanding-contracting flat universe case. Since a zero curvature is still
compatible with the ever stronger constraints from cosmological observations we will from now on focus
our analytical developments on the flat universe (using Cartesian rather than spherical coordinates)
mentioning results for the general case when necessary.

2.2.3 Meaning of the expansion factor

The R(t) notation is natural when we consider a hyperspheric universe, but not especially so for a
flat universe. To conform with usual modern cosmology notation, we will replace it by a(t), called the
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CHAPTER 2. THE EXPANDING UNIVERSE: FLRW FORMALISM

expansion factor. Then the metric tensor is:

gµν =


1 0 0 0
0 −a2(t) 0 0
0 0 −a2(t) 0
0 0 0 −a2(t)

 (2.17)

It is important to grasp the physical meaning of the expansion factor. First, obviously from eq.
2.16, the expansion relates the proper (physical) distance and the coordinate (also called comoving)
distance through ds = a(t)dx). Two particles with fixed spatial coordinates will see their physical
distance increase (or decrease) with time. By convention the expansion factor is equal to unity
at present time.

All definitions of physical quantities (e.g. density) and local laws governing physical process (e.g.
Euler’s equation, laws of thermodynamics, etc.) should be written in terms of proper (physical)
distances. For example if a masse m occupies a comoving volume ∆x3 the physical density is m

a3∆x3
.

Let us consider an observer emitting a monochromatic light signal at wavelength λ0 between times
t0 and t0 + δt0. A second observer, located at a comoving distance ∆X receives the signal the signal
between t1 and δt1. Relating the physical distance of the observers to t0 and t1 is inconvenient since
it changes in time: the distance already covered by photons on their way keeps expanding! It is much
simpler to related ∆X to t0 and t1. Remembering that c is a constant velocity defined using proper
distances:

∆X =

∫ t1

t0

c

a(t)
dt (2.18)

We also have:

∆X =

∫ t1+δt1

t0+δt0

c

a(t)
dt (2.19)

Choosing δt0 and δt1 small compared to other time scales, we can derive from the above equations:

c

a(t0)
dt0 =

c

a(t0)
dt0 (2.20)

dt1 =
a(t1)

a(t0)
dt0 (2.21)

If we think in terms of an electromagnetic wave and we accept that the number of oscillations
n in the wave train does not change between emission and reception, we have to accept that the
frequency has changed since they are received over a different time interval. Then we have the relation
n = dt0

c
λ0

= dt1
c
λ1

, or:

λ1 =
a(t1)

a(t0)
λ0 (2.22)

We see that wavelength transforms the same way as distance. Obviously the energy of the photon
(or the associated electromagnetic field) decreases with cosmic expansion. Where does the energy go?
Is energy conservation broken? Let us emphasize that this result is established in a situation where the
metric remains homogeneous and isotropic and so is of limited validity. However, it is consistent with
the results found when computing the covariant divergence of the stress-energy tensor of radiation in
an FLRW metric, which is the form in which the energy conservation is expressed in GR.
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2.2.4 Momentum decay in a flat FLRW universe

Can we characterize the motion of a single free-falling particle in a FLRW metric? From GR, we know
that such a particle moves along a geodesic with equation:

d2xµ

du2
+ Γµνκ

dxν

du

dxκ

du
= 0, (2.23)

where u is any parameter describing the position along the geodesic (proper time for example). Let
us recall that the metric connections can be derived from the metric tensor using the relation:

Γαβγ =
1

2
[gαβ,γ + gαγ,β − gβγ,α] , (2.24)

where the comas denote a partial derivative with respect to the space-time variable corresponding
the index following the coma. Since the FLRW metric is homogeneous, only time derivatives will
produce non-zero results in the above formula. Moreover, since g is diagonal the two other indexes in
the non-zero connection coefficients should be equal. Thus we only have to evaluate Γ0αα and Γα0α.
It is trivial to checks that Γ000 = 0. Using the usual convention that latin indexes run over space
coordinates only we get:

Γ0ii =
ȧa

c
Γ0
ii = g00Γ0ii =

ȧa

c

Γi0i = − ȧa
c

Γi0i = giiΓi0i = g−1
ii Γi0i =

ȧ

ca

Injecting these connection coefficients into the space component of the geodesic equation we get:

d2xi

du2
+ Γi0i

cdt

du

dxi

du
+ Γii0

dxi

du

cdt

du
= 0 (2.25)

We now chose u to be the proper time.

d2xi

dτ2
= −2

ȧ

a

dt

dτ

dxi

dτ
(2.26)

This is easily integrated to show that dxi

dτ = cst
a2

. The dxi

dτ are the space component of the comoving

4-velocity. Then the space components of the comoving 4-momentum are mdxi

dτ . If follows that the
space components of the physical momentum evolve as:

p ∝ a−1 (2.27)

Once again, on a superficial level, a usual law, conservation of momentum, seems to be broken
if a is not constant. However, classical mechanics is not able to describe gravitation arising from a
uniform, infinite non-empty space (Poisson’s equation does not apply).

2.3 Friedmann equations of the expanding universe

To decide how the FLRW metric changes with time (through the function a(t)) we have first to
compute the Einstein tensor associated to our metric, then model the matter content of the universe,
that is specify the stress-energy tensor, and finally relate the two using Einstein’s equation.

2.3.1 Computation of the Einstein tensor

The Riemann tensor is related to the metric connections through:

Rαβγδ = Γαβδ,γ − Γαβγ,δ + ΓµβδΓ
α
µγ − ΓµβγΓαµδ (2.28)

17
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Given the small number of non-zero connection coefficients, and that only Rαβαγ are needed to compute
the Ricci tensor, we can check that the only non-zero relevant Riemann tensor coefficients are:

R0
i0i =

äa

c2
(2.29)

Ri0i0 = − ä

c2a
(2.30)

Rjiji =
ȧ2

c2
(i 6= j) (2.31)

Consequently the Ricci tensor, defined by Rµν = Rαµαν , can be calculated:

Rµν =


−3 ä

c2a
0 0 0

0 äa+2ȧ2

c2
0 0

0 0 äa+2ȧ2

c2
0

0 0 0 äa+2ȧ2

c2

 (2.32)

The corresponding Ricci scalar is R = gµνRµν = − 6
c2

(
ä
a +

(
ȧ
a

)2)
and the Einstein tensor, defined by

Gµν = Rµν − 1
2gµνR, is:

Gµν =
1

c2


3 ȧ

2

a2
0 0 0

0 −2äa− ȧ2 0 0
0 0 −2äa− ȧ2 0
0 0 0 −2äa− ȧ2

 (2.33)

We can check that this expression of the Einstein tensor is indeed spatially homogeneous and isotropic.

2.3.2 The stress-energy tensor in cosmology

Deciding on the content of the universe is part of the modelling. It can reflect reality more or less
accurately. We will start with the most simple case beyond an empty universe, the case of dust.

The case of dust

In cosmology dust refers to a collection of particles without motions relative to each other. If we
consider a local inertial frame in which dust is at rest with density ρ0, the only non-zero component of
the stress-energy tensor will be T 00 = ρ0c

2. This level of modelling is adapted for a first approach and
will already give some relevant insight on the dynamics of the universe. It will however be useful to
refine it by considering a perfect fluid rather than dust: that is a case where particles do have motion
relative to each other, but do no interact microscopically. For example radiation can by described as a
perfect fluid but not as dust. The first step toward writing the stress-energy tensor for a perfect fluid
is to write it for dust that has a velocity v (4-velocity u = γ(c, v1, v2, v3)) in the local inertial frame.
Referring to eq. 2.4, T ij is the flux of pi through a unit surface xj = cst. The number of particles
going trough the unit surface per unit time is

ρvj
mp

where ρ is the (relativistic) density of the moving

dust and mp is the mass of the particle. Then the flux of pi = γmpvi is T ij = γρvjvi. Due to length
contraction under Lorentz transformation, we have the relation ρ = γρ0 where ρ0 is the mass density
of the dust in the local frame where it is at rest. Then T ij = γ2ρ0vjvi = ρ0u

jui. A similar approach
can be followed for components involving time, thus we obtain the expression of the stress-energy
tensor for dust of rest-frame density ρ0 moving with a uniform 4-velocity u:

Tµν = ρ0u
µuν (2.34)
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The case of a perfect fluid

The particles of a perfect fluid can be considered as a collection of subsets of particles all moving with
a 4-velocity within du of the same 4-velocity u in the local rest frame of the fluid. Each of these
subsets can be modelled as dust. If n is the number density of particles in the local rest frame of the
fluid, and η(p)dp3 the number density of particles with 4-momentum whose space components are
within dp3 of p = mpu, the stress-energy tensor of the corresponding subset is:

dTµν =
η(p)

γ

pµpν

mp
dp3 (2.35)

Note the γ factor due to the fact that we are not using the number density in the subset’s rest frame
but in the fluid rest frame. The total stress-energy tensor then is:

Tµν =

∫
η(p)

γ

pµpν

mp
dp3 (2.36)

A first remark is that under the assumption that η actually only depends on the norm of p (true only
in the local rest frame of the fluid) and thus is an even function of the components of p and that η
goes to zero fast enough at infinity, it is easy to check that T is diagonal.

Let us first focus on the space-space components of Tµν . We will show that they identify with
the relativistic pressure. In special relativity, Newton’s second law writes: F = dp

dτ , where vectors are
4-vectors and τ is the proper time. If the force is measured by an observer in the rest frame of the
fluid, the proper time is equal the of coordinate time. Thus, the relativistic pressure can be defined
by P~u = S−1 d~p

dt , where ~p is the relativistic 3-momentum of a system of surface S (~u is a unit vector
normal to the surface) on which the gas pressure acts. Using Newton’s third law, the variation of
(relativistic) momentum of the system is equal to the variation of the momentum of the gas particles
hitting the surface. Without loss of generality, we can choose ~u along the x axis. Then, supposing the
collision is elastic, the change in momentum of a particle hitting S is −2γmpv1 = −2p1. Counting the
number of particles hitting the surface in dt we get Sdt

∫
p1>0 η(p) p1

γmp
dp3, where integration is over

half of the p-space. Then, accounting for all collisions within dt, the pressure is:

P =

∫
p1>0

2p1η(p)
p1

γmp
dp3 (2.37)

Since the integrand is an even function of p1 we can remove the factor 2 and integrate over the whole
p-space, recovering the right hand side of eq. 2.36. Thus we showed that:

T 11 = P (2.38)

Of course, the same reasoning applies for the other space-space components: T 22 = T 33 = P . On the
other hand:

T 00 =

∫
η(p)

E2

γmpc2
dp3 =

∫
η(p)γmpc

2dp3 = ρc2 (2.39)

where ρ is the relativistic density of the gas. Finally, the stress-energy tensor of an ideal gas in the
local rest frame of the gas is:

Tµν =


ρc2 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

 (2.40)

This expression can be directly adapted to the case of a gas of photons. It can be generalized in
the case when the local frame is not the rest frame of the gas to:

Tµν =

(
P

c2
+ ρ

)
uµuν − ηµνP (2.41)
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and then, in General Relativity to:

Tµν =

(
P

c2
+ ρ

)
uµuν − gµνP (2.42)

In the framework of the cosmological principle it is sufficient to consider the case where u = (c, 0, 0, 0).
Indeed, considering a non uniform 3-velocity field of the gas would break homogeneity and isotropy
and a uniform velocity field can be set to zero by choosing the correct frame. Then, the covariant
form of the stress-energy tensor Tµν = gµαgνβT

αβ writes:

Tµν =


ρc2 0 0 0
0 a2P 0 0
0 0 a2P 0
0 0 0 a2P

 (2.43)

2.4 The Friedmann equations

Introducing in Einstein’s equation the expressions of Einstein’s tensor and the stress-energy tensor
for an ideal gas in the framework of the cosmological principle yields two independent equations, the
so-called Friedmann equations. In the case of a flat universe we can use eq. 2.33 and eq. 2.43 and we
get:

3
ȧ2

a2
= 8πGρ (2.44)

2
ä

a
+
ȧ2

a2
= −8πG

c2
P (2.45)

Quite obviously an equation of state for the gas is needed to close this system of equations. In
other words, the expansion of the universe proceeds differently depending on the nature of its content
(radiations, relativistic gas, non-relativistic gas, etc.).

2.4.1 Proper (physical) and comoving distances

When discussing the distance between two points, dx is called the comoving distance between them,
while ds = a(t)dx is called the proper distance. Which one matches the usual notion of physical
distance? The answer comes from considering that a photon travelling from one point to another and
back will take the same time (as measured by an observer located at the departure point) at different
epochs in the history of the universe if the physical distance between the points remains constant (as

c is a constant). The time measured by the observer is dt = a(t)dx
c = ds

c . Then obviously, the proper
distance matches the usual notion of physical distance. But it also means that the physical distance
between two points with fixed (x, y, z) coordinates changes with times, thus the idea of an expanding
(contracting) universe. If however we compute the space component of the relative 4-velocity between
these two points, we find 0! It very important to realize that the increased physical distance between
two points with fixed spatial coordinates does not translate into an actual relative velocity. If it did,
by taking two points sufficiently separated we would obtain a velocity larger than c. This pseudo-
velocity is often called the Hubble flow. As it sometimes mimics the effects of the physical velocity
(producing a Doppler shift for example) it is unfortunately often confused with a real velocity, even
among astronomers (but usually not among cosmologists).

We will now study several simple cases for the content of the universe that are relevant for cos-
mology.
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2.4.2 The dust universe

In section 1.3.2, we defined dust as a collection of particles without motion relative to each other. The
important factor was that the relative physical velocities were zero, not that relative physical distances
remained fixed. Thus, in the framework of an expanding universe, dust will be defined as a collection
of particles with fixed comoving relative distances (or fixed (x, y, z) coordinates). Obviously dust is
characterized by P = 0.

Matter conservation

How does the density ρ evolves in time? Let’s multiply both sides of 2.44 by a3 and derive with respect
to t:

d

dt
(8πGρa3) =

d

dt
(3ȧ2a) = 6äȧa+ 3ȧ3 = 3ȧa2

(
2
ä

a
+
ȧ2

a2

)
= −3ȧa2 8πG

c2
P = 0 (2.46)

This can be rewritten in a more friendly way as:

ρ(t) =
ρ0

a3(t)
(2.47)

We can understand this relation quite simply. By definition, the comoving number density (and
thus density and energy density) of dust is constant. Since the physical volume is related to the
comoving volume by ds3 = a3(t)dx3, the (physical) density evolves as a−3. The universe was denser
when the expansion factor was smaller. This is an expression of matter conservation in a dusty
universe. It can also be derived using the zero divergence of the stress-energy tensor.

2.4.3 The Einstein - de Sitter universe

The flat dusty universe, although the simplest, is of particular interest for cosmologists because i)
it correctly describes the period when dark matter (behaving mostly as dust) dominated the energy
content of the universe and ii) it has a simple analytic solution.

By convention, if t0 is the present time, a(t0) = 1.

Then, noting ρ0 the current density of the universe and using a = 0 as the origin of the time axis,
it is easy to solve eq. 2.44. The solution is:

a(t) =
√

6πGρ0 t
2
3 (2.48)

The expanding nature of the universe and the existence of a Big Bang is already encoded in this
simplest possible modelling of a non-empty universe. Something that Einstein had trouble accepting
at first!

Can we compute the age of the universe if we assume the dust model was valid all along? ρ0,
the current average density of the universe is not easy to measure. But we can make use of another
observation: Hubble’s law.

Computing the Hubble constant: the incorrect way

The quick and dirty way to relate the Hubble constant to the expansion factor is to confuse the
receding velocity of galaxies with a physical velocity when it is actually caused by the expansion of the
universe. Then, considering that the fixed coordinate distance between us and a distant galaxy is ∆x,
the physical distance is L = a(t)∆x and the velocity is v = ȧ(t)∆x. We can plug these expressions
into Hubble’s law:
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v = H0L (2.49)

ȧ(t0)∆x = H0a(t)0∆x (2.50)

H0 =
ȧ(t0)

a(t0)
(2.51)

While popular, this demonstration sets the dangerous habit of considering the Hubble flows as a
physical velocity and may lead to incorrect computations when large distances (with photon travel
time of the order of H−1

0 ) are involved.

Computing the Hubble constant: the correct way

Let us member that the receding velocities of galaxies are actually computed from a Doppler shift
with v

c = δλ
λ . We have learned that the wavelength of a travelling photon behaves exactly as a physical

distance, it increases proportionally to a(t). Thus:

v =
δλ

λ
c =

δa

a
c =

ȧ

a
cδt =

ȧ

a
L (2.52)

Let us mention that this computation does not depend on the specific time in the history of the
universe when the photon is received and is valid both for the Hubble constant (referring to the present
time) and for the so-called Hubble parameter (referring to any time).

H(t) =
ȧ

a
(2.53)

Computing the Hubble constant for the Einstein - de Sitter cosmology gives: H0 = 2
3t0

. Thus, the
observation of the local universe allows us to estimate the age of the universe. Using the current
estimation H0 ∼ 70 km.s−1.Mpc−1, yields t0 = 9.4 Gyr. Einstein - de Sitter cosmology is not the
model that agrees best with observations (e.g. it lacks a contribution from dark energy), but it still
captures the correct orders of magnitude.

2.4.4 The case of curved space-time

We have seen that the cosmological principle does not imply that space-time is flat. A uniform positive
or negative curvature is also a possibility. Deriving Friedmann’s equation in those cases is somewhat
more cumbersome, but still tractable. If k is the sign of the curvature (with value 1 or −1), the
Friedmann’s equations for a dust universe take the form:

3
ȧ2

a2
+ 3c2 k

a2
= 8πGρ (2.54)

2
ä

a
+
ȧ2

a2
+ c2 k

a2
= −8πG

c2
P (2.55)

It is easy to check that the relation ρ(t) = ρ0a
−3 holds also in this case for the dust universe

(P = 0). It is also possible to verify that taking the time derivative of the first equation yields the
second. Thus, in the case of the durst universe, the dynamical content of the second Friedmann
equation disappears.

Although there exist no analytical solution to Friedmann’s equations if k 6= 0, some properties can
be derived from the form of the equation. Isolating the time derivative of the expansion factor we get:

ȧ =

√
8πGρ0

3a
− kc2 (2.56)
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Knowing that the universe is currently expanding, we can distinguish three behaviours:

• If k < 0 (open, saddle-like universe): as a(t) grows, ȧ decreases asymptotically
towards a positive constant. The universe will expand indefinitely.

• If k = 0 (flat universe): this is the Einstein - de Sitter case. The universe expands
indefinitely, as ȧ asymptotically reaches zero.

• If k > 0 (closed, hyperspherical universe): the universe expands, but the expansion
rate reaches 0 for a finite value of a = a1. Using the other possible sign in front of the square
root when writing ȧ, it is possible to connect the expanding solution with a contracting
solution starting at a1. Then the universe ends in a Big Crunch.

2.4.5 The cosmological constant and dark energy

At the time when Einstein built GR, the prevalent view was that the universe was (on large scales)
in a stationary state. With the basic version of Eintein’s equation, there are no a(t) = cst solution to
Friedmann’s equation. Consequently, Einstein introduced the simplest possible change to his equation
that would yield a stationary universe: Gµν − Λgµν = 8πG

c4
Tµν (the sign in front of Λ depends on

the chosen signature), where Λ is the so-called cosmological constant. It is tempting to put the
cosmological constant term on the other side of the equation and interpret it as a contribution to
the stress-energy tensor. Yielding to temptation we introduce dark energy as a component of the
content of the universe. It acts as a uniform negative pressure. It can be shown that in the presence of
the cosmological constant, the Newtonian limit of GR yields the following modified Poisson equation:
∇2φ = 4πGρ−Λc2, where φ is the Newtonian potential. Though not obvious from Einstein’s equation,
the dark energy also acts as a negative uniform mass. Friedmann’s equations can be derived as:

3
ȧ2

a2
+ 3c2 k

a2
− c2Λ = 8πGρ (2.57)

2
ä

a
+
ȧ2

a2
+ c2 k

a2
− c2Λ = −8πG

c2
P (2.58)

We can check that a universe with uniform positive curvature gives a(t) = cst for the correct
fined-tuned value of Λ. Although the cosmological constant was dropped in the 30’s when it became
undeniable from the observation that the universe was expanding, it came back in the 70’s, with a
value not fine-tuned to yield a stationary universe, in the form of dark energy. Indeed, particle physics
theory showed the particle - antiparticle pairs were constantly appearing and annihilating even in
empty space, giving it an energy. This theory received a first observational confirmation in the 2000’s
from Super Novae observations that implied a a(t) function only compatible with a non-zero Λ.

Once again, even in the zero-curvature case, there is not analytical solution to Friemann’s equation
with non-zero Λ. It is however easy to see that when dark energy dominates over matter, which
happens at large enough a, Friedmann’s equations reduces to: ä

a = c2

3 Λ, producing an exponential,
ever accelerating expansion. At small a, the cosmological constant term is negligible and the Einstein
- de Sitter solution is valid.

2.4.6 The radiation universe

The universe does not contain matter only, but also radiation. Do they dominate the energy content
in different situations or do we have to take both into account simultaneously (thus invalidating the
previously studied solutions) ? Let’s first study the case of a flat universe filled with radiations only
and zero cosmological constant. If we call ε the radiation energy density, and P the radiation pressure,
it is easy to check that, in a 1D kinetic theory toy-model, P = ε. A full 3D theory yields ε = 3P . We
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Figure 2.1: Evolution of the expansion factor as a function of time for different models of the universe.
The time origin is fixed at the present time and all models satisfy the same value for the Hubble
constant.

can revisit energy (instead of matter) conservation in this case. Let’s multiply both sides of the first
Friedmann equation by a4 and take the time derivative (here ρ is replaced by ε

c2
):

d

dt

(
8πG

c2
εa4

)
=

d

dt

(
3ȧ2a2

)
= 6ȧäa2 + 6ȧ3a

= 3ȧa3

(
2
ä

a
+
ȧ2

a2

)
+ 3ȧ3a

= 3ȧa3

(
−8πG

c2
P +

ȧ2

a2

)
= 3ȧa3 8πG

c2

(
−P +

ε

3

)
= 0

Thus we find that ε(t) ∝ a−4. This is consistent with the view the number density of photons
is proportional to a−3 (same as dust) while their individual energy decreases as a−1 (wavelength
proportional to a). While rough evaluations from observations show that the energy content of the
universe is currently dominated by matter over radiation (and actually dark energy over matter), at
sufficiently small a, that is early enough in the history of the universe, it was dominated by radiation
because of the a−4 behaviour of the radiation energy density. During this radiation dominated period,
it is a simple matter to show from the above equations that the solution for a(t) is:

a(t) ∝ t
1
2 (2.59)
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2.5 The standard ΛCDM model of the universe

A realistic model of the universe has to include include both matter and radiation, dark energy, and
should not make any a priori assumption about the curvature. Let us first say a few words about the
mixture of matter and radiation.

Mixture of dust and radiation and conservation laws

For the kinetic pressure of baryons to be non negligible compared to the rest mass energy, relativistic
velocities have to be involved. On cosmological scales this happens only in the very early universe
and even then, the radiation pressure was much stronger than the baryon kinetic pressure. Thus we
will restrict this discussion to the case of a mixture of dust and radiation. Let us denote the matter
energy density ρmc

2, the radiation energy density ε = ρrc
2 and the radiation pressure p = 1

3ε. We have
seen that when dust and radiation are considered separately, ρm ∝ a−3 and ε ∝ a−4. We obtained
this result using the two Friedmann equations and the equation of state (3 equations, 3 variables:
a, ρ, P ). Replacing ρc2 by ρmc

2 + ε and P by 1
3ε in Friedmann’s equations, we have to solve for three

variables (a, ρm, ε) with 2 equations. We need another one. This equation should describe how dust
and radiation interact (or not), how radiation pressure acts on dust.

While it does not provides a third independent equation, it is interesting to write the first principle
of thermodynamics. Consider a volume V . Under the assumption of the cosmological principle it
will not exchange heat with the rest of the universe (heat flows would break isotropy), thus the first
principle writes:

dU = −PdV (2.60)

d(ρmc
2V + εV ) = −1

3
εdV (2.61)

If we assume that dust and radiation do not interact, this equation is replaced by d(ρmV ) = 0 and

d(εV ) = −1
3εdV that can be easily integrated to ρmV = cst and εV

4
3 = cst. Thus we generalize the

ρm ∝ a−3 and ε ∝ a−4 relations to the case of the mixture of non-interacting dust and radiation. If
they do interact these relations do not hold anymore and eq. 2.61 shows how matter and radiation can
exchange energy density. Radiation pressure can oppose the expansion of matter. Further physical
modelling is needed to quantify the efficiency of the interaction. However, all estimates show that the
energy exchanged between matter and radiation is negligible compared to the energy of each of them,
except during the very early history of the universe. Thus we will assume from now on that
dust and radiation do not interact and that the relations ρm ∝ a−3 and ε ∝ a−4 hold.

Parametrization of the standard cosmological model

In the general case the first Friedmann equation can be written:

3
ȧ2

a2
+ 3c2 k

a2
− c2Λ = 8πGρm + 8πGρr

It is relevant to introduce the quantity,

ρc =
3H2

0

8πG
, (2.62)

where H0 is the Hubble constant (present value of the Hubble parameter H(t)). ρc is called the critical
density of the universe (we will see why below). Then the Friedmann equation can to transformed to:

1

H2
0

ȧ2

a2
= − c2k

H2
0a

2
+
c2Λ

3H2
0

+
ρm
ρc

+
ρr
ρc

(2.63)
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And finally we come to the formulation:

H2 = H2
0

[
ΩΛ +

Ωk

a2
+

Ωm

a3
+

Ωr

a4

]
(2.64)

with

ΩΛ =
c2Λ

3H2
0

, Ωk = −k
c2

H2
0

, Ωm =
ρm(tnow)

ρc
, Ωr =

ρr(tnow)

ρc
. (2.65)

Writing eq. 2.64 at t = tnow we obtain the constraint : ΩΛ + Ωk + Ωm + Ωr = 1. In a universe
with negligible radiation content and without a cosmological constant, Ωk = 1− Ωm. That is to say,
if the matter density of the universe is currently larger than the critical density, the universe is closed
(has a positive curvature and ends in a Big Crunch) and if the current matter density of the universe
of less than the critical density, the universe is open (negative curvature, infinite expansion). Hence
the naming of the critical density.

The five parameters H0,Ωm,ΩΛ,Ωk,Ωr give a first level modelling of the universe. For a finer
description, parameters describing how homogeneity of broken on small scales (e. g. amplitude of
density fluctuations) are necessary. When trying to constrain those parameters from observations (of
the CMB for example), various minimal set of parameters are used depending on the observation.
Combining several type of observations (CMB, weak lensing, Baryon acoustic oscillations, etc.), the
current favoured model is:

Parameter Value

H0 67.74± 0.46 km.s−1.Mpc−1

Ωm 0.3089± 0.0062

ΩΛ 0.6911± 0.0062

Ωk 0.0005± 0.0006

Ωr 9.10−5 ± 3.610−6

A first conclusion is that a flat universe is currently favoured. Even if it is not actually flat,
curvature was never a driving factor for the expansion. The second conclusion is that radiations are
currently negligible.
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3
The cosmic microwave background (CMB)

As we mentioned in the introduction the CMB is, from an observational point of view, an isotropic
emission that very accurately fits the spectrum of a black-body at 2.7 K. The bulk of the universe is
currently transparent to the typical wavelength of this black-body. However we learned that wave-
length scales with the expansion factor. This raises two questions: what was the shape of the spectrum
at an earlier time and what happened when it did interact with matter?

3.1 A black-body radiation in a expanding universe

A black-body spectrum at temperature T is characterized by a photon number density per frequency
interval dν:

n(ν, T )dν =
8πν2

c3

1

exp
(

hν
kBT

)
− 1

dν (3.1)

At a different epoch, the frequency of a photon is changed to ν1 = a
a1
ν and the photon number

density at that frequency is n1(ν1)dν1 = a3

a31
n(ν)dν (the comoving number density of photons within

dν is unchanged but is now covering a dν1 frequency interval). Thus,

n1(ν1)dν1 =
a3

a3
1

8πν2

c3

1

exp
(

hν
kBT

)
− 1

dν

=
8πν2

1

c3

1

exp
(

hν
kBT

)
− 1

dν1

=
8πν2

1

c3

1

exp

(
hν1

kBT
a
a1

)
− 1

dν1

This is just a black-body distribution with temperature T1 = T a
a1

. As long as we ignore the
interaction between matter and radiation, the CMB evolves as a black-body with a temperature:

T ∝ a−1 (3.2)
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CHAPTER 3. THE COSMIC MICROWAVE BACKGROUND (CMB)

Current radiation density and the redshift of equivalence

From the spectral number density of photons for a black-body, it is a simple matter of integrating over
the frequency to derive the radiation energy density. This gives the well known formula:

ε =
4σT 4

c
with σ =

2π5k4
B

15h3c2
the Stefan constant (3.3)

We can now compute the current contribution of the CMB photons to the critical density of the
universe using the black-body temperature of Tcmb = 2.7 K :

Ωcmb
r =

ρr
ρc

=
ε

c2ρc
=

4σT 4
cmb

c3

8πG

3H2
0

∼ 5. 10−5 (3.4)

As we can see, the CMB is contributing about half of the best-estimate value of ΩR ∼ 9. 10−5. Other
ultra relativistic particles such as neutrinos contribute to the remaining part of ΩR.

As we already mentioned in the section on the ΛCDM model, the current radiation energy density
is negligible compared to both the matter energy density and the dark energy density. The relative
contributions were different in the past however. Eq. 2.64 shows the radiation contribution scales
at a−4, the matter contribution as a−3 and the dark energy contribution is constant (to the best of
our knowledge). Thus there was a time when the contribution of radiation and energy were equal,
the corresponding redshift is called the redshift of equivalence and is denoted zeq. It can be simply
computed as:

zeq =
Ωm

Ωr
− 1 ∼ 3400 (3.5)

Then, the universe was ∼ 1010 times denser than now! Before that time, we can assume that the
universe is radiation dominated ( a ∝ t

1
2 ), them matter dominated (a ∝ t

2
3 ) and finally dark energy

dominated (a ∝ exp(c
√

Λ
3 t) ). Assuming no coupling between the CMB and matter (an assumption

that needs to be verified at high redshift) we can also estimate simply the temperature of the CMB
at equivalence:

Tcmb(zeq) = Tcmb(z = 0)(1 + zeq) ∼ 9000K (3.6)

Recombination

We have already mentioned that there should be a period in the history of the universe when the gas,
cooling with expansion, should recombine from a plasma to a neutral state. Later on, the primordial
photons (not produced in stars and such) are effectively decoupled from matter. When does this
happen? Before or after the redshift of equivalence? We will now estimate the temperature when
recombination occurred.

The process of recombination relies on the following reversible reaction:

p+ + e− 
 H + γ (3.7)

We will consider that the time scale associated with this photo-ionization/recombination process is
much longer than the Hubble time H−1 (this is no longer true when the fraction of free electrons drops
to ∼ 10−4) and that the different species are in thermo-dynamical equilibrium. We will consider a set
of N electron and N protons (to ensure a global nul-charge), and we will call n the number of free
electrons and protons. Then the number of hydrogen atoms is N − n. This set of particles (and each
species subset) easily exchanges energy with a heat bath through the ionizing/recombination photons.
The CMB itself is the heat bath (the energy density of the CMB is much greater than the kinetic and
binding energy of the particles). And thus we assume that our set of particles is in thermal equilibrium
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3.1. A BLACK-BODY RADIATION IN A EXPANDING UNIVERSE

with the heat bath at temperature T . Then, a single, non-interacting particle of type i (i denoting
either electron, proton and atom) had the following partition function:

zi =

∫
gi exp

(
−
mic

2 + p2

2mi

kBT

)
d3x

h3
d3p, (3.8)

where gi is the multiplicity of each microscopic state, mi the mass of the particle and p its momentum.
Notice that we include the rest mass energy. Considering that the particles occupy a volume V , we
can transform is integral to:

zi =
4πgiV

h3
(kBT2mi)

3
2 exp

(
− mic

2

kBT

)∫ ∞
O

x2e−x
2
dx

Using the result
∫∞

0 x2e−x
2
dx =

√
π

4 we get:

zi =
giV

h3
(kBT2πmi)

3
2 exp

(
− mic

2

kBT

)
(3.9)

If we consider the particles as non-interacting and indistinguishable, the partition function for electrons
is zne

n! , and for the full set of particles:

Z =
zne
n!

znp
n!

zN−nH

(N − n)!
(3.10)

The quantity n is an internal variable for this system. Then if F = −kBT ln(Z) is the free energy
of the system, the equilibrium value of n is such that ∂F

∂n = 0. This yields the relation:

∂ ln(Z)

∂n
=

∂

∂n
[n ln(ze) + n ln(zp) + (N − n) ln(zH)− 2 ln(n!)− ln(N − n)] = 0

Injecting the Stirling formula n! ∼ n lnn− n we get:

ln

(
zezp
zH

)
=

∂

∂n
[2n ln(n)− 2n+ (N − n) ln(N − n)−N − n]

= 2 ln(n)− ln(N − n)

zezp
zH

=
n2

N − n

If we denote x = n
N the ionization fraction of the gas, and we plug in the expression of the partition

functions:

x2

1− x
N =

gegp
gH

V (kBT2π)
3
2

h3

(
memp

mH

) 3
2

exp

(
− mec

2 +mpc
2 −mHc

2

KBT

)
(3.11)

Now, electrons and protons have spin 1/2 so ge = gp = 2 and the ground state of hydrogen two
hyperfine levels with spin 0 and 1 with multiplicity 1 and 3 so gH = 4. We make the approximation
mp = mH , denote E0 = mec

2 + mpc
2 −mHc

2 the ionization energy of Hydrogen and nB = N/V the
number density of all hydrogen species (neutral and ionized), the above equation simplifies to:

x2

1− x
=

(2πmekBT )
3
2

nh3
e
− E0
kBT (3.12)

This relation is known as the Saha equation. Obviously if T is large enough x goes to 1 (fully ionized
plasma) and if T goes to zero, x goes to zero (fully neutral gaz). If the factor in front of the integral
was of the order unity, recombination would occur around a temperature such that kBT ∼ E0, that
is T ∼ 100 000K. However, the prefactor is large and the transition occurs at a significantly lower
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CHAPTER 3. THE COSMIC MICROWAVE BACKGROUND (CMB)

Figure 3.1: Behaviour of the ionization fraction of hydrogen as a function of temperature for different
value of the baryon number density corresponding, from left to right to Ωb = 0.02, 0.04 and 0.06.
Figure taken from ”The Cosmic Microwave background”, 2008, R. Durrer, Cambridge Univesity Press.

temperature. Moreover, we see that a larger number density of baryons induces a recombination at
larger temperature (and thus an earlier epoch). The function x(T ) is shown in fig. 4.2. We can see
that the universe recombined within a rather narrow range of temperatures between 4000 K and 3000
K ( redshift z ∼ 1300, about 300000 years after the Big Bang). By that time, matter was already
driving the expansion of the universe.

3.2 The isotropy paradox solved by inflation

The CMB is observed to be isotropic (once various contaminations have been removed) to one part in
104. This means that the slice of universe revealed by the CMB was homogeneous in temperature and
density both, at the same level. This is believable only if it was able to reach and maintain homogeneity
trough pressure forces for example (or forces of another type early on). Then, it is necessary that a
signal travelling at the speed of light (at best) had time to cross from one end to the other of this slice
of the universe between the Big Bang and the time when the CMB was emitted.

Particle horizon at recombination

The comoving distance covered between time t0 and t by a particle travelling at the speed of time is:

∆x =

∫ t

t0

c

a(t)
dt (3.13)

If we choose t0 = 0, we define the particle horizon hp, the maximum comoving distance between two
particles so that, at time t, they have been able to interact (exchange photons, neutrinos, feel the
other’s gravitational pull, etc) since the Big Bang. Changing the integration variable, we can write:
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3.2. THE ISOTROPY PARADOX SOLVED BY INFLATION

hp =

∫ a

0

c

ȧ(t)a
da

=

∫ a

0

c

H(a)

da

a2

=

∫ ∞
z

c

H(z)
dz

In a flat ΛCDM model we get:

hp =
c

H0

∫ ∞
z

dz√
ΩΛ + Ωm(1 + z)3 + Ωr(1 + z)4

(3.14)

Assuming a totally radiation dominated universe until zeq then a totally matter dominated universe
between zeq and zrec allows to estimate the integral analytically with 20% accuracy. A numerical
integration using the ΛCDM numerical value for the parameters yields hp = 0.055 c

H0
. We want to

compare this with the comoving radius of the spherical slice of the universe where we observe the
CMB. This radius is determined by the distance travelled by a photon between zreq and now:

hcmb =
c

H0

∫ zreq

0

dz√
ΩΛ + Ωm(1 + z)3 + Ωr(1 + z)4

(3.15)

Once again, we could get an order-of-magnitude estimation (10% accuracy) by considering a matter
dominated universe. The correct numerical computation gives hcmb = 3.145 c

H0
. As we can see, the

comoving particle horizon at zrec is small compared to the comoving size of the spherical slice that we
observe. We can even estimate that only regions of angular size less than

hp
hcmb

∼ 1 deg were causally
connected. It appears then, that a simple ΛCDM model cannot explain the homogeneity of the CMB.

Inflation

If we want to solve the horizon problem, we have to modify our model in such a way that hp > hcmb.
The easiest way to do it is to assume that the little known energy content of the every early universe
obeys a different equation of state than radiation.

It is useful (and usual) to described a generic, one-component universe with the parameterized
equation of state P = wρc2. Then w = 0 corresponds to the dust universe, w = 1/3 describes the
radiation universe and w = −1 a universe where dark energy dominates. The Friedmann equations

can be solved easily in this generic case. The solution is a(t) =
(

t
tnow

) 2
3(1+w)

if w 6= −1 and a(t) = eHt,

where H does not depend on time, if w = −1.
Now, what value of w yields a solution of the horizon problem? Let’s compute hp for a generic

expansion law a(t) ∝ tα where α = 2
3(1+w) . Since H = αa−1/α in this case, we get:

hp =
c

α

∫ ∞
zreq

(1 + z)−
1
αdz (3.16)

It is interesting to see that if α > 1 this integral diverges. This case corresponds to an accelerating
expansion (ȧ > 0). It means w < −1

3 , a condition that is not compatible with ordinary matter and
radiation but is satisfied by dark energy for example. If we assume that for a given period in the
history of the very early universe this condition was satisfied, by pushing the redshift of the beginning
of this period at a high enough value, we can make hp larger than hcmb and solve the horizon problem.

This period of accelerated expansion, that also solves other problems of the standard cosmological
model (like the flatness coincidence), is called inflation. The corresponding theory is phenomenological.
It adds an inflaton field to the stress-energy tensor with the required properties to produce inflation.
What particles are associated to this field is an open question.
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4
Using supernovae as cosmic candles

4.1 Standard candles

Dying stars

During their life, stars are supported against their own gravity by thermal pressure. Since their
thermal energy is radiated away as light, they need an energy source to maintain their pressure:
the thermonuclear fusion of hydrogen into Helium in the core of the star (where the temperature
is sufficiently high). Toward the end of their life, hydrogen is completely consumed, pressure drops
and the core contracts gravitationally. It becomes denser and hotter until the thermonuclear fusion
of heavier elements (helium, carbon, neon, oxygen, silicon...) becomes possible, restoring thermal
pressure. If the mass of the star is less than 8 M� the core will not reach a high enough temperature
and density to fuse carbon because the collapse will be stopped before that point by the Fermi pressure
of electrons. These stars shed they outer layers and a core remains with mass < 1.4 M�: a white
dwarf. More massive stars cannot be supported by the Fermi pressure of electrons. They will contract
further and convert the matter in their core into Fe. Fe is the end product of thermonuclear fusion,
the most stable element: energy cannot be gained by turning it into something else. Then fusion
will switch off in the core, the pressure will drop, and the star will collapse on itself triggering the
so-called type II core collapse supernovae. The exploding star (outer layers rebound on the core) reach
a luminosity comparable to that of a full galaxy during a few weeks, making it visible at cosmological
distances. In the case of type II supernovae however, the peak luminosity varies with the mass of the
star.

What would be useful for cosmology is a standard candle: an object of known luminosity. Measur-
ing the received flux would then gives us its distance. If receding velocity is also measured by Doppler
shifts we have two quantities that are related through the expansion law and thus we can test our
cosmological model against observations. Galaxies are not standard candle either: their luminosity
depends on their mass which is very difficult to determine independently, but also on their stellar
population, morphological type, etc... Type Ia supernovae, on the other end are reasonably close to
being standard candles.

Type Ia supernovae

The progenitor of a Type Ia supernovae is a binary system where a red giant and a white dwarf orbit
each other. As the envelope of the red giant expands the material reaches of Roche limit and is sucked
down by the white dwarf, whose mass gradually increases. When is reaches 1.4 M�, the Fermi pressure
of electrons cannot support the star any longer and it undergoes gravitational collapse followed by a
thermonuclear explosion, forming a type Ia supernovae. All these, originating in stars with 1.4 M�
mass, have similar luminosity. Some variation occur depending in the metal content of the progenitor
star, but those variations can be estimated using information from the spectrum of the supernovae.
They are therefore good standard candles to use for cosmology.
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4.2 The brightness-distance relation

Assuming that absorption is negligible along the line of sight, the flux received from a supernovae can
be computed as a function of its redshift if we assume that the supernovae is in the Hubble flow, that is
has no peculiar velocity. We start with the relation between the comoving distance to the supernovae
rc and its redshift:

rc =

∫ z

0

c

H(z)
dz (4.1)

Then the received flux is:

E(z) =
LSN
4πr2

c

(1 + z)−2 (4.2)

Two effects contribute to the (1 + z)−2 factor. First, the photons emitted in a time interval dt are
received in (1+z)dt (see section 2.2.3). Then their energy has decreased by a factor (1+z)−1. A usual

quantity to measure the received flux is the apparent magnitude m(z) = −2.5 log
(
E(z)
E0

)
, where E0 is

a reference flux (that of Vega). But in the case of supernovae, we can even get rid of the reference flux
and supernovae luminosity by computing ratio of received fluxes, or difference of magnitudes. We will
compare the supernovae to a reference supernovae located 10 pc away from us, because this matches
the definition of the absolute magnitude M :

r(z) = m(z)−m(z10pc) = m(z)−M = −2.5 log

(
E(z)

E(z10pc)

)
(4.3)

For example, in an Einstein - de Sitter universe (Ωm = 1), we have rc(z) = 2c
H0

(
1− 1√

1+z

)
, and

evaluating z10pc = H0×10−5

c ∼ 2.25 10−9 using the Hubble law, we find the relation.

r(z) = 44.75 + 5 log

[(
1− 1√

1 + z

)
(1 + z)

]
(4.4)

While this formula is insensitive to the value of Ωm, it is valid only for Ωm = 1. In the general
case, with ΩΛ 6= 0, r(z) is sensitive to both the values of Ωm and ΩΛ. The r(z) can be computed for
any cosmological model, and can be plotted from observation using spectroscopic measurement for z
and bolometric ones for r(z). Thus waiting long enough to observe enough supernovae, and observing
faint ones to probe large z values, we can test cosmological models.
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4.2. THE BRIGHTNESS-DISTANCE RELATION

Figure 4.1: Comparison of SN data to different cosmological models (adapted from Kowalski, 2008,
ApJ, 686,749). Full line is the best fit ΛCDM model. The bottom dashed line is Einstein - de Sitter
model.
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5
Writing classical physics equations in a flat, homogeneous, expanding

metric

Cosmological models can only be tested against observations. Observable quantities, usually object
emitting light, are determined by a number of physical processes: hydrodynamics, radiative transfer,
magnetic fields, etc... In RG, the equation governing these processes are derived, in the general case,
by building a relevant stress energy tensor and then writing Tαβ;α = 0. In some cases it is possible to
use a linear perturbation theory around an isotropic/homogeneous metric (for describing the CMB
anisotropies for example). In many other cases it is even simpler, the metric is not even perturbed:
only perturbation for the variables for hydrodynamics, radiative transfer and other equation describing
physical processes are considered. This regime is usually called Newtonian perturbation theory.

5.1 Regime of validity

The rigorous method for determining when the Newtonian perturbation theory is valid is to write the
covariant version of the equation describing the physical processes (Tαβ;α = 0), build a perturbation
theory around an homogeneous cosmological metric including perturbation of the metric, apply it to
Tαβ;α = 0 and Einstein’s equation, and finally examine what are the perturbation parameters (sev-
eral ”small” parameters may be needed: small velocities, weak gravitational fields, etc...) that allow
to recover minimally modified versions of the classical equations. This is beyond the scope of this
document but can be found in many cosmological textbooks for the case of Euler’s equation.

Let’s us however states what the necessary conditions are under which the Newtonian perturbation
theory is valid. A first obvious condition is that the perturbation to the metric and stress-energy tensor
should be small. In the case of dust, this means that the density perturbations should remain small.
But to be able to revert to a Newtonian gravity in a expanding homogeneous space-time and study only
the density perturbation, there is another condition. The size of the regions showing a departure from
the average properties of the universe (or the wavelength of the modes considered) should be much
smaller than the Hubble Radius RH = c

H . Indeed, if this is not the case, by the time the information of
a growing density patch has travelled to the other side of the region, the expansion factor has changed
significantly: a situation that can obviously not be handled using Newtonian gravity (no retarded
potentials) in a homogeneously expanding space-time.

5.2 Rewriting physical quantities and the differential operators in
comoving space

Classical physics equations are valid using physical (not comoving) quantities: proper distance, proper
time, etc... In a flat space-time, choosing a frame where matter is at rest on average, we can replace the
proper time with the coordinate time. Using physical distances as a system of coordinate is however
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EXPANDING METRIC

inconvenient. If we do so, we already need a non-zero velocity field to describe the unperturbed
expansion (the Hubble Flow). A more practical way is to write the equation in comoving space. We
will now outline a procedure to do so. Let’s note r the proper (physical) distance, x the comoving
distance, vr the physical velocity and vx the comoving velocity (some textbooks use the peculiar
velocity avx instead as a variable). We have the relations:

r = a(t)x (5.1)

vr = ȧx + avx (5.2)

Although the Hubble flow (first term of the r.h.s of eq. 5.2) should not be considered an actual
velocity it does appear in the relation between vr and vx. This would be a problem if it could
take values of the order of or larger than c. But the condition that x � RH ensures than ȧx � c.
Converting spatial partial derivatives is simple enough:

∂

∂ri
=

1

a

∂

∂xi
(5.3)

Although proper and coordinates time are identical in our case, the time partial derivative requires
a more careful examination. Indeed, we want to express the relation between ∂

∂t

∣∣
r

and ∂
∂t

∣∣
x
. Let’s

write the differential of f(t, r):

df =
∂f

∂t

∣∣∣∣
r

dt+
∂f

∂r1
dr1 +

∂f

∂r2
dr2 +

∂f

∂r3
dr3 (5.4)

=
∂f

∂t

∣∣∣∣
r

dt+
∂f

∂r1
d(ax1) +

∂f

∂r2
d(ax2) +

∂f

∂r3
d(ax3) (5.5)

=
∂f

∂t

∣∣∣∣
r

dt+
1

a

∂f

∂x1
(x1da+ adx1) +

1

a

∂f

∂x2
(x2da+ adx2) +

1

a

∂f

∂x3
(x3da+ adx3) (5.6)

=

(
∂f

∂t

∣∣∣∣
r

+
ȧ

a
(x.∇x)f

)
dt+

∂f

∂x1
dx1 +

∂f

∂x2
dx2 +

∂f

∂x3
dx3 (5.7)

Thus by identification:
∂

∂t

∣∣∣∣
r

=
∂

∂t

∣∣∣∣
x

−H(x.∇x) (5.8)

5.3 Continuity equation

In physical space the continuity equation writes:

∂ρ

∂t

∣∣∣∣
r

+∇r.(ρvr) = 0 (5.9)

Using the comoving density ρx = ρa3 we can cast this equation in comoving space:

∂ρx a
−3

∂t

∣∣∣∣
x

−H(x.∇x)(ρx a
−3) +

1

a
∇x

[
ρx a

−3(ȧx + avx)
]

= 0 (5.10)

Pugging in the classical vector calculus formula ∇.(φA) = A.∇φ+ φ∇.A, where φ is a scalar and A
a vector, the above equation reduces to:

∂ρx

∂t

∣∣∣∣
x

+∇x.(ρxvx) = 0, (5.11)

and thus it takes the exact same form in comoving space, using comoving variable as in physical
space. This is not the case if the peculiar velocity avx is used. Neither will it be the case of the Euler
equation, whatever velocity is used.
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5.4 Poisson’s equation

In a universe without a cosmological constant, it can be shown that RG yields the usual Poisson’s
equation in the weak field limit:

∇2
rφ = 4πGρ (5.12)

where φ is the gravitational potential. Considering the relation between the potential and the Newto-
nian force, the comoving potential is naturally defined as φx = φa, and the Poisson’s equation is also
unchanged in comoving space:

∇2
xφx = 4πGρx (5.13)

If a cosmological constant is considered, in the weak field limit gravitation is governed by the
modified Poisson’s equation ∇2

rφ = 4πGρ − c2Λ that transforms into ∇2
xφx = 4πGρx − c2Λa3 in

comoving space.

5.5 Euler’s Equation

Before we write Euler’s equation, we should ask ourselves two questions. Is dust an adequate de-
scription of the content of the perturbed universe and is Euler’s equation adequate to describe dust?
Since we are considering perturbations around an homogeneous universe, we cannot assume that the
(comoving) relative distances between particles will remain fixed. However, the important properties
of dust is that we can use P = 0. In practice, as long as P � ρc2, that is as long as the velocities
are non relativistic and radiation pressure is negligible, we can describe the content of the universe
as dust. Whether dust ca be described as a fluid is a different issue. The main component of matter
is dark matter composed of particles that interact with each other and with baryons only through
gravitation. The short range interactions that are necessary to enable a fluid description (avoiding
multiple streams) are absent. A collisionless Boltzmann equation would be a proper description for
such a system. However, in the regime of small perturbations arising from homogeneous cosmological
initial conditions, multistream features will not have had time to develop yet and a fluid description is
acceptable. In physical space, Euler’s equation for a self-gravitating pressureless fluid takes the usual
from:

∂vr

∂t

∣∣∣∣
r

+ vr.∇rvr = −∇rφ (5.14)

In comoving space, this transforms to

∂(ȧx + avx)

∂t

∣∣∣∣
x

−Hx.∇x(ȧx + avx) + (ȧx + avx).
1

a
∇x(ȧx + avx) = − 1

a2
∇xφx. (5.15)

Taking care that ∂(ȧx+avx)
∂t

∣∣∣
x

= äx + ȧvx + a ∂vx
∂t

∣∣
x
, Euler’s equation in comoving coordinates reduces

to:

∂vx

∂t

∣∣∣∣
x

+ 2Hvx + vx.∇xvx = − 1

a3
∇xφx −

ä

a
x (5.16)

We can see two additional terms compared to the physical space version. 2Hvx is a drag term
created by expansion on comoving velocities. This drag term also exists, with a different numerical
coefficient if we use the peculiar velocity as a variable. We can verify that in the absence of gravity,
in the linear regime, vx ∝ a−2. The other new term, on the r.h.s, is spurious in a way. Indeed, it
appears to cancel the Newtonian force created at x by a non-zero homogeneous density background.
One could argue that this force should be zero, for symmetry reasons. However, in applying Gauss
theorem one can find a non-zero force directed at of origin of coordinates (wherever it is chosen!).
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EXPANDING METRIC

The point is that Poisson’s equation is ill-behaved (and should not be used) for a source field whose
L2-norm is not finite. But of course this involves scales beyond RH where we do not expect our theory
to hold. Looking at density perturbations, we will subtract the average non-zero value and thus get
rid of this large scale inconsistency.
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6
The growth of density perturbations

6.1 Newtonian perturbation theory

Zero-order solution

The continuity equation in comoving space (eq 5.11) admit the following homogeneous solution (we
drop the x subscript from now on to denote comoving quantities):

ρ0 = cst v0 = 0 (6.1)

Integrating Poisson’s equation in spherical coordinates yields ∇φ0 = 4πGρ0
3 x + A

x3
x, where A is an

integration constant. Injecting Friedman’s equation to get rid of ρ0 we get:

∇φ0 = −a3 ä

a
x +

A

x3
x (6.2)

Then, we can check that (v0, φ0) is a solution of Euler’s equation for A = 0.

In comoving space a homogenous solution to the continuity, Poisson and Euler’s
equations (eq. 5.11, 5.13 and 5.16) is:

ρ0 = cst, v0 = 0, ∇φ0 = −a3 ä

a
x (6.3)

Perturbations

Let us consider small perturbations around the zero-order solution:

ρ = ρ0(1 + δ) v = v0 + v1 φ = φ0 + φ1 (6.4)

The quantity δ is called the overdensity and is much used in structure formation theory. Note that
it has the same value in physical and comoving space. Injecting these expression in the continuity,
Poisson and Euler equations, the zero-order solution cancels out (as expected) and dropping 2nd order
terms we get the linearised set of equation:

∇2φ1 = 4πGρ0δ (6.5)

∂δ

∂t
+∇.v1 = 0 (6.6)

∂v1

∂t
+ 2Hv1 = − 1

a3
∇φ1 (6.7)
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CHAPTER 6. THE GROWTH OF DENSITY PERTURBATIONS

Taking the divergence of the linearised Euler’s equation and reinjecting Poisson’s and the continuity
equations we finaly get:

δ̈ + 2Hδ̇ − 4πG
ρ0

a3
δ = 0 (6.8)

6.2 Solutions

During the matter dominated era

During the matter dominated era in a ΛCDM universe, the expansion faction behaves as a(t) = At
2
3 ,

with a constant different than for an Einstein de Sitter model. Then H(t) = 2
3t , and injecting the

simplified Friedmann first equation in eq. 6.8, we get:

δ̈ +
4

3t
δ̇ − 2

3t2
δ = 0 (6.9)

The general solution to this equation is:

δ(t) = At−1 +Bt
2
3 (6.10)

As we see these one decaying mode and one growing mode. Neglecting the decaying mode we get
that actually δ(t) ∝ a(t).

All perturbation in the matter density field, as long as their typical scale is smaller
than of Hubble length, grow linearly with the expansion factor during the matter
dominated era.

During the radiation dominated era

It is not straightforward to apply the Newtonian perturbation theory during the radiation dominated
era, and a fully consistent approach requires a much more complex GR perturbation theory. Let’s
keep going with a Newtonian perturbation theory, injecting some knowledge learned from the full GR
theory when needed.

Let us first consider the case of a universe filled with matter obeying the equation of state P = c2
sρ

(typically not dust but an ideal gas). It is then easy to check that eq. 6.8 is modified in the following
way:

δ̈ + 2Hδ̇ − c2
s

a2
∇2δ − 4πG

ρ0

a3
δ = 0 (6.11)

In the case of a static universe (H = 0, a = 1) we recover the equation describing the Jeans
instability in a self-gravitating fluid with dispersion equation ω2 = c2

sk
2 − 4πGρ0. In this case, the

amplitude of small scale modes with k >
√

4πGρ0
cs

will oscillate, while the amplitude of larger scale
modes will grow exponentially. Pressure support sets a minimal scale (the Jeans length) for the
density perturbation to be able to grow. In the case of an expanding universe, this minimal scale will
change with time, and the drag imposed by the 2Hδ̇ will slow the growth to a power law rate and
damp the oscillations. Although photons do not actually behave as a self-gravitating fluid, they are, in
GR, subject to gravity through their energy density and supported by their pressure. Estimating the
Jeans length for photons (cs ∼ c) during the radiation dominated era, one finds a value much larger
than the horizon. Thus we infer that the amplitude of perturbations in the photon energy density
evolves with (slowly) damped oscillations. This can be shown rigorously with a full GR treatment.
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From GR we know that during the radiation dominated period, radiation is the dominant com-
ponent driving the expansion. This implies that in the weak field limit, Poisson’s equation should
include their contribution. Defining the total density ρ = ρm(1 + δm) + ρr(1 + δr), where δr = ε

c2
is

the equivalent radiation density, the linearized Poisson equation is ∇2φ1 = 4πG(ρmδm + ρrδr). As we
assume that matter and radiation are not interacting except through gravitation, they obeys their own
separate conservation and dynamical equations. Thus the continuity and Euler equation describing
matter are unchanged. Then linearized density perturbation equation is simply modified as:

δ̈m + 2Hδ̇m −
4πG

a3
(ρmδm + ρrδr) = 0 (6.12)

Since δr locally oscillates on a short time scale, it averages out to zero. The secular evolution
of δm on the other hand, is driven by changes in a(t) as dictated by the above equation. Then we
can expect that in the secular evolution δ̈m ∼ H2δm = 8πG

3a3
ρδm. Since in the matter dominated era

ρ = ρr + ρm � ρm, we get δ̈m � 4πG
a3
ρmδm. Thus, the evolution of matter perturbation on long

time scales (much longer than the oscillation periods for the photon density fluctuations) during the
radiation dominated era can be described with the approximate equation:

δ̈m + t−1δ̇m = 0, (6.13)

where we have injected a(t) ∝ t
1
2 . The general solution to this equation is:

δ(t) = A+B ln(t) (6.14)

During the radiation dominated era, matter density fluctuations with typical sizes
smaller than the Hubble length grow as ln(a). Compared to a power law growth,
they are nearly frozen.

6.3 The initial density perturbation field

6.3.1 Gaussian random fields

Ramdom fields

A 3D random field is a set of random variables Y (x), one for each location (or infinitesimal cube of
volume dx3) in 3D space. Such a field is characterized by a collection of joint probability distribution
functions:

Pn(Y (x1) = y1, . . . , Y (xn) = yn) (6.15)

The initial density fluctuation can be described as a particular type of random field.

The cosmological principle and random fields

In a very general way, we stated the cosmological principle as the universe being homogeneous and
isotropic on large enough scales. Considering now that the initial density fluctuations in our universe,
described by the overdensity δ, are simply a realisation of a random fields characterized by the joint
probability distribution functions Pn, we can apply the homogeneity and isotropy requirements apply
to the distribution functions themselves. Thus we require them to be invariant under translation and
rotation. For example, the one-point distribution function of the overdensity should not depend on
the location.
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CHAPTER 6. THE GROWTH OF DENSITY PERTURBATIONS

Gaussian random fields

The simplest flavour of inflation predicts than primordial density fluctuation are actually an homoge-
neous Gaussian random field. In that case, the P1 function is simply a Gaussian probability function
with a variance independent of location. The value of δ at two different locations are not uncorrelated
however and thus is it not so easy to build a realisation of initial density fluctuations in real space. It
is much easier to do in Fourier space because of the following two properties:

• The Fourier transform of the Gaussian random field is a Gaussian random field. Thus the real
and imaginary parts of δ̂(k), the Fourier transform of δ(x), are random variables with Gaussian
probability distribution functions.

• The homogeneity requirement translates in Fourier space into the Fourier coefficients being
independent realisation of the (k-dependent) probability function.

Thus a Gaussian random field is more easily describe and generated in Fourier space. The only
thing that we need to characterize the field is a prescription on how the variance of the Gaussian
probability function depends on k. This information is provided by the so-called power spectrum.

6.3.2 2-point correlation function and power spectrum

We mentioned that in real space, the value of a homogeneous Gaussian random field are dawn from
a single probability function but are not independent (non-zero correlation function) while in Fourier
space they are independent but drawn from Gaussian function whose variance depends on k. Actually,
the real space correlations are determined by the k-dependence of the fourier space variance. This is
quantified by the relation between the 2-points correlation function and the power spectrum.

Let us use the following convention for the direct and inverse Fourier transforms:

f̂(k) =

∫
f(x)e−ik.xd3x (6.16)

f(x) =
1

(2π)3

∫
f̂(k)eik.xd3k (6.17)

The 2-point correlation function of the overdensity (or any quantity) is defined as:

ξ(x1,x2) = 〈δ(x1)δ(x2)〉 (6.18)

where 〈. . . 〉 denotes the average over many realisation of the random field, also called ensemble average.
Since ξ is completely determined by the underlying P1 and P2, which invariant by translation and
rotation under the cosmological principle, ξ is a function of r = |x2 − x1| only. To show the relation
between ξ and the power spectrum let us insert the Fourier transform of δ into the simplified expression
ξ(r).

ξ(r) = 〈δ(x)δ(x + r)〉 (6.19)

=

〈
1

(2π)6

∫ ∫
δ̂(k)eik.xδ̂(k′)eik

′.(x+r)d3k d3k′
〉

(6.20)

=
1

(2π)6

∫ ∫
〈δ̂(k)δ̂(k′)〉 ei(k+k′).x eik

′.rd3k d3k′ (6.21)

We define the power spectrum P (k) with the relation:

〈δ̂(k)δ̂(k′)〉 = P (k)(2π)3δD(k + k′) (6.22)

where δD designate the Dirac delta function. Remembering that real and imaginary part of the Fourier
coefficients of δ are independent realisation of a Gaussian probability function, and that since δ is real,
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6.3. THE INITIAL DENSITY PERTURBATION FIELD

δ̂(k) and δ̂(−k) are complex conjugate, it is quite easy to show that P (k) is proportional to the
variance of the Gaussian probability distribution of the Fourier coefficients. Injecting this relation in
6.21 and integrating over k we get:

ξ(r) =
1

(2π)3

∫
P (k′)eik

′.rd3k′ (6.23)

This shows that the 2-point correlation function is simply the Fourier transform of the power spectrum.
Both encode the same information about the Gaussian random field.

Note that even applied to a dimensionless quantity, P (k) has a dimension of k−3. Thus it is quite

usual to define the ”dimensionless” power spectrum ∆2(k) = k3

2π2P (k). This quantity is meaningful
when considering the variance of the real space signal, that can be computed as:

〈δ(x)2〉 = ξ(0) (6.24)

=
1

(2π)3

∫
P (k)d3k (6.25)

=

∫
∆2(k) d ln(k) (6.26)

We see that ∆2 quantifies the contribution to the variance (in some sense the energy density) of the
real space signal per logarithmic bin.

6.3.3 Linear evolution of the initial density fluctuations power spectrum

Initial power spectrum

It is often stated in textbooks on cosmology and structure formation that inflation predicts a ”near
scale-invariant power spectrum for the initial fluctuations”. This statement, although true, needs
to be qualified! It applies to the fluctuations of the gravitational potential when considering the
dimensionless power spectrum ∆2:

∆2
φ(k) = cst (6.27)

Each logarithmic bin contributes equally to the variance of the gravitational potential. From this,
using that δ̂(k) ∝ k2φ̂(k) (from Poisson equation), we get:

Pδ(k) ∝ k (6.28)

So the dimensional power spectrum of the density fluctuation is not scale free, which is sometimes
a source of confusion. We have shown the density fluctuation grow linearly with the scale factor on
sub-horizon scale in the matter dominated era. That is all corresponding Fourier mode (above a certain
k) grow that the same rate. To be able to determine the evolution of the power spectrum we need
more information. First the horizon is growing and some mode that were first on scale larger than the
horizon will enter the horizon at some point, so we need information on the growth of super-horizon
fluctuations. Then we need to know what happened during the radiation dominated era.

The growth of fluctuations on super-horizon scale

A rigorous treatment of the linear growth of fluctuations requires a full GR treatment, especially on
super-horizon scales where no other theory is valid. Since such a treatment is beyond the scope of
these lecture notes let us simply state the result:
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• On super-horizon scales, during the radiation dominated era, comoving density
fluctuations grow as a2.

• On super-horizon scales, during the matter dominated era, comoving density
fluctuations grow as a.

Let us emphasize that there is a lot of work and subtleties involved in deriving these results
(starting with fact that ”comoving” in the above statement refers to the comoving gauge choice).

Evolution of the power spectrum during the radiation dominated era

Fluctuations grow as ln(a) on sub-horizon scales, much more slowly than on super-horizon scales where
they grow as a−2. We will make the approximation that they are simply frozen on sub-horizon scales
until the redshift of equivalence. Let us consider 2 modes k1 and k2, entering the horizon at expansion
factor a1 and a2 respectively. Until a1 they have grown at the same rate, so the ratio of their amplitude
as not changed from the initial value:

|δ̂(k1, a1)|
|δ̂(k2, a1)|

=

(
k1

k2

) 1
2

(6.29)

Between a1 and a2, δ̂(k1) is frozen and remains (almost unchanged). On the other hand, δ̂(k2)
grows as a2, thus:

|δ̂(k2, a2)|
|δ̂(k2, a1)|

=
a2

2

a2
1

(6.30)

Consequently,

|δ̂(k1, a2)|
|δ̂(k2, a2)|

=
a2

1

a2
2

(
k1

k2

) 1
2

(6.31)

In the radiation dominated era, the horizon is:

h =

∫ ∞
z

c

H(z)
dz ' c

H0

∫ ∞
z

dz√
Ωr(1 + z)4

=
c

H0

√
Ωr

a (6.32)

So we have the simple relation k ∝ a−1 between the comoving wave number and the expansion

factor when it enters the horizon. Thus we have
a21
a22

=
k22
k21

. So

|δ̂(k1, a2)|
|δ̂(k2, a2)|

=

(
k1

k2

)− 3
2

(6.33)

After a2 the two modes follow the same evolution (frozen then growing as a) and this ratio does
not change. Modes that enter the horizon after radiation-matter equivalence alwyas follows the same
grows and the ratio of their amplitude is unchanged from its initial value.

If we define keq as the wave number of the mode that enter the horizon at the redshift of equivalence
zeq, we can deduce that anytime in the matter dominated era when the linear theory remains valid,
the power spectrum of matter fluctuations follows this behaviour:

Evolved linear powerspectrum:

• If k � keq: P (k) ∝ k

• If k � keq: P (k) ∝ k−3
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Figure 6.1: Compilation of recent observations of the matter power spectrum compared with the-
oretical prediction. Credit: D. Baumann, ”Cosmology”, Lecture notes. Reproduced with informal
authorisation.

47


	Introduction
	Olbers' paradox
	Hubble's law
	Discovery of the cosmic microwave background

	The expanding universe: FLRW formalism
	Basics of General Relativity for cosmology
	The metric tensor
	Einstein's equation

	 The cosmological principle and the Friedmann-Lemaître-Roberston-Walker metric
	Cosmological principle
	The Friedmann-Lemaître-Robertson-Walker metric 
	Meaning of the expansion factor
	Momentum decay in a flat FLRW universe

	 Friedmann equations of the expanding universe
	Computation of the Einstein tensor
	The stress-energy tensor in cosmology

	The Friedmann equations
	Proper (physical) and comoving distances
	The dust universe
	The Einstein - de Sitter universe
	The case of curved space-time
	The cosmological constant and dark energy
	The radiation universe

	 The standard CDM model of the universe

	The cosmic microwave background (CMB)
	A black-body radiation in a expanding universe
	The isotropy paradox solved by inflation

	Using supernovae as cosmic candles
	Standard candles
	The brightness-distance relation

	Writing classical physics equations in a flat, homogeneous, expanding metric
	Regime of validity
	Rewriting physical quantities and the differential operators in comoving space
	Continuity equation
	Poisson's equation
	Euler's Equation

	The growth of density perturbations
	Newtonian perturbation theory
	Solutions
	The initial density perturbation field
	Gaussian random fields
	2-point correlation function and power spectrum
	Linear evolution of the initial density fluctuations power spectrum



